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Chapter 1
Introduction

In this book, we will learn about the Markov Chain Monte Carlo (MCMC) meth-
ods. MCMC is a powerful framework that is useful when we want to integrate a
complicated function or want to handle a complicated probability distribution. His-
torically, it has been a popular tool in physics, which is the authors’ main research
field. Recently, it became a common tool in statistics as well, and also in the fields
where statistical methods are important, for example, machine learning and finance.

MCMC is not difficult at all, rather it is a simple technique based on a very natural
idea. Of course, it is a huge mistake if you think a simple technique can be applied
to only easy problems. Rather, a simple technique can have a variety of applica-
tions. Indeed, many problems in various fields such as quantum physics, Bayesian
statistics, and combinatorial optimization reduce to the calculation of probability
and expectation values that can be solved via MCMC. Therefore, if you have some
basic knowledge of MCMC, you can write simulation code by yourself whenever
you come up with a problem, regardless of the field of your interest. You can also
understand a complicated simulation code somebody wrote for you.

Very unfortunately, however, it is not easy to find an introductory textbook that
explains the MCMC methods from the very basic points to the practical level in
plain language. Although there are a few good advanced textbooks, it is not easy
for a student or engineer without strong mathematical background and programming
skills to digest the materials and run simulation codes. For this reason, if you want
to learn MCMC, probably you have to collect information from many sources, get
advice from experts, and repeat trials and errors. Often, it is a hard task even for
talented researchers in theoretical physics; believe us, we saw many examples. The
entrance barrier is too high!

In this book,wewill explain the basic ideas ofMCMCwithout assuming advanced
knowledge of mathematics and programming. To make the subject more accessible,
we provide plenty of examples. We hope that readers will be able to write simulation
code by themselves based on a proper understanding after reading this book. The best
way to understand a subject is to get our hands dirty, and for that purpose, we provide

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
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2 1 Introduction

a lot of sample code. Youmay think you can just use a ready-made software package,
but a proper understanding of MCMC can help you understand what is going on in
the black box. Furthermore, it would help you when you come up with a problem
to which no ready-made package can be used. Note also that, if you learn MCMC,
you will see that it is very simple and you can immediately calculate various things
by writing very short simulation code. Often, it takes a longer time to understand
how to use a software package than to write a program by yourself. In this book, we
explain the MCMC methods step by step, without leaving a black box. The goal is
to master practically useful techniques based on transparent logic.

This book is organized as follows.

• In the rest of this chapter, we will briefly explain what kinds of problems are
efficiently solved via MCMC, and why it is better to use the MCMC algorithms.

• In Chap. 2, we will see a “naive” Monte Carlo algorithm that is not MCMC. We
will learn the advantage of using random numbers and the Markov chain. We will
also learn when and how a naive approach fails. The purpose of this chapter is to
illuminate the advantages of MCMC.

• In Chap. 3, we will learn the general aspects of MCMC. There are various kinds of
Markov Chain Monte Carlo algorithms, but they are called by this specific name
because all of them satisfy certain conditions. By understanding such conditions,
we can design a suitable algorithm depending on the actual problems we want to
solve.

• Chapter 4 introduces the Metropolis algorithm. We start with the integral of a
function of one variable. This very simple example contains almost all the essence
of MCMC. The generalization to multivariate functions is discussed in Sect. 4.8.

• Chapter 5 contains a few other algorithms: the HMC algorithm, which has a wide
variety of applications; the Gibbs-sampling algorithm, whose applications are lim-
ited compared to the HMC but extremely convenient when it does work; and the
metropolis-Hastings algorithm, which is the foundation of those two algorithms.
Each algorithm has its pros, cons, and pitfalls.

• In Chap. 6, several applications of the MCMCmethods are shown. Among count-
lessly many applications, here we introduce Bayesian statistics, which is a popular
topic in statistical analysis; the Ising model, whose importance in physics cannot
be overstated; the traveling salesman problem, which is a typical combinatoric
optimization problem; and high energy physics, which is a pursuit of the funda-
mental laws of nature. Each of these applications has its features that (sometimes)
prevent us from using simple algorithms. In such situations, we have to design
appropriate strategies flexibly, while keeping the basics of Markov Chain Monte
Carlo.

• Some exercises are provided at the end of Chaps. 3, 4, and 5.
• In Appendix A, programs mentioned in the main text are explained one by one.
In Appendix B, we summarized some mathematical tips used in this book, such
as matrix calculations and Gaussian integral. In Appendix C, the Hamilton equa-
tion in classical mechanics is explained, which is used in the HMC algorithm.
Appendix D contains supplementary comments on the Jackknife method intro-
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duced in Chap. 4. In Appendix E, the conjugate-gradient method, which solves
simultaneous equations iteratively, is explained.

Now let us start learning aboutMCMC:what is the target, andwhat is the strategy?

Probability and Expectation Value

Let us start with a simple example regarding probability and expectation values.
Suppose you have a lottery ticket. You may hit the first prize or second prize, or you
may miss it. In any event, the outcome will be unique and mutually exclusive. Let
us denote such mutually exclusive events by A1, A2, A3, · · · , and the probability of
an event Ai by P(Ai ). By definition, the sum of the probabilities is 1:

∑

i=1,2,···
P(Ai ) = P(A1) + P(A2) + · · · = 1. (1.1)

The expectation value of the prize money you get is obtained by multiplying the
prize money (say f (Ai ), with f (A1)=$10,000,000 and so on) by the probability and
summing over:

The expectation value of prize money =
∑

i=1,2,···
f (Ai )P(Ai )

= f (A1)P(A1) + f (A2)P(A2) + · · · .
(1.2)

Similar math appears when we consider the correlation between the income
and characteristics or abilities of individuals. Suppose n parameters {x} =
x1, x2, · · · , xn describe factors such as math skill, networking skill, or geekiness. Let
P(M |x1, x2, · · · , xn) be the probability that the income is $ M when the individual
is characterized by the parameters {x}, and P(x1, x2, · · · , xn) be the distribution of
the abilities of the alumni from a university (e.g., more students are good at math,
snobby or geeky). The latter can change depending on the education policy. Hence, to
see how the education policy affects alumni’s average income, one should calculate1

The expectation value of alumni’s income =
∫

dM
∫

dx1 · · ·
∫

dxnM · P(M |x1, · · · , xn) · P(x1, · · · , xn). (1.3)

1 Money is not themost important thing in life, butwe do notwant tomake the argument complicated
here.
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Fig. 1.1 The integral can be
approximated by the sum of
the areas of rectangles, by
dividing the domain of
integration into small pieces.
This picture is for univariate
integration. The
generalization to multivariate
integration is
straightforward—modulo the
curse of dimensionality!

Curse of Dimensionality and Markov Chain Monte Carlo
Method

It is easy to perform integrals like Eq. (1.3) if n is 1 or 2. Just by dividing the domain
of integration like in Fig. 1.1 and replacing the integral with a sum, a reasonably
good approximation is obtained. By dividing the domain into smaller and smaller
pieces, the approximation becomes better and better. In principle, such calculations
are very easy. Even a beginner in programming would be able to code this algorithm
immediately.

In practice, however, this approach does not really work. Suppose that there are n
variables x1, · · · , xn , and each of them is divided into 10 intervals. Then the domain
of integration is divided into 10n pieces, whichmeans we need at least 10n operations
just to take the sum. 10 intervals for each may be too coarse, so you would want to
have 100 intervals for each variable. Then there are 100n = 102n pieces. The cost
increases exponentially with n, and hence, it works only for small values of n. In
2012, the then-fastest supercomputerKei could carry out 10petaflops= 1016 floating-
point operations per second. If we tried the integration with n = 10 variables and
neglected all the costs but the summation, it could take 100n/1016 = 104 seconds,
which is about three hours. For n = 12, it could take 100n/1016 = 108 seconds,
which is about three years. Note that this is a very optimistic estimate; in reality,
we need more operations such as the evaluation of the integrand at each point, so it
costs much more. As of the time of writing this book, good machines in the world
are more than ten times faster than Kei, but the improvement over almost a decade is
not enough to increase the value of n by 1. This problem—the exponential increase
of the cost—is called the curse of dimensionality.
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The Markov Chain Monte Carlo method enables us to do such calculations by
using random numbers. The key idea that leads to the drastic reduction of the cost
is that, in many cases, most of the domain of integration does not contribute to the
integral.

In the example of alumni’s salaries: have you ever seen anybody who is an
Olympic-level athlete, extremely good at math and rumored to get the Fields Medal
soon, with a perfect and likable personality loved by everybody? Probably not, such
people are very rare. Also, nobody is bad at everything. Most people are more or less
similar, they have good and bad parts, and most of n parameters are close to the aver-
age. Therefore, P(x1, x2, · · · , xn) is negligibly small in most of the n-dimensional
parameter space. Perhaps few very talented people get high income, but the expec-
tation value does not change much even if such rare cases are ignored.2

Then, when the integral (1.3) is performed, a good approximation should
be obtained just by summing up the contribution from the region where
P(x1, x2, · · · , xn) is not too small. This is the key idea of MCMC: by cutting out the
“important parameter region”, or “states with high probability”, the computational
cost can be reduced.3

How can we realize this idea? What is the role of random numbers? We will see
the answer in the following sections.

2 If such people founded a big company and got astronomically big income, the expectation value
would be affected significantly. In MCMC, such rare cases can also be treated properly.
3 In addition to the property that “states with high probability” are typically a small region in the
domain of integration, another important property that contributes to the reduction of the com-
putational cost is that, in many problems, such “states with high probability” give similar results
regardless of the microscopic details of the states. If you know some statistical physics, you can
understand it as: typical states (� states with high probability) cannot be distinguished by macro-
scopic quantities (e.g., income).



Chapter 2
What is the Monte Carlo
Method?—A Simulation with Random
Numbers

The Monte Carlo method is a general term for computational methods that utilize
random numbers (see e.g., [1]). Usually, it specifically means a class of algorithms
that are guaranteed to give the right answer if we continue the simulation long
time. Let us first see a few simple examples of Monte Carlo algorithms that are
different from the “Markov Chain”Monte Carlo [2, 3]. (More nontrivial applications
of “naive” Monte Carlo algorithms than those mentioned in this chapter can be
found, e.g., in Ref. [4].) These algorithms are very easy, but there are significant
limitations. By knowing the limitations of such “naive” Monte Carlo algorithms, we
can understand the advantage of the Markov Chain Monte Carlo algorithms.

2.1 Random Numbers

First of all, what are random numbers? Random numbers are a sequence of numbers
that are randomly generated following a certain probability distribution P(x). A
typical example is numbers determined by throwing dice. In this case, integers from
1 to 6 appear with the same probability,1 P(1) = P(2) = P(3) = P(4) = P(5) =
P(6) = 1

6 . Supposewe threwdicen times and obtained a sequencea1, a2, . . . , an .We
throw dice onemore time and get an+1. Canwe predict an+1 from a1, a2, . . . , an? Not
really. We cannot tell what the likely value of an+1 is. We can only say any integer
between 1 and 6 is equally likely. In this way, x is determined without referring
to the history. The adjective “random” means this property. The random numbers
associated with a generic probability distribution P(x) can be defined in the same
manner: the probability that an+1 = x is obtained is P(x), regardless of the history
a1, a2, . . . , an .

1 We assume that the dice are “fair”.
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Below, we introduce two kinds of random numbers that are used very frequently.
We will also explain that the “random numbers” used in numerical simulations
are not literal random numbers in the mathematical sense and hence some care
is needed to obtain the right answer. We will provide only minimal materials needed
for understanding later sections in this book. For a more complete presentation, see
e.g., Ref. [5].

2.1.1 Uniform Random Numbers

Suppose that any real number in an interval [0, 1] can be obtained with the same
probability. Random numbers obtained in this way are called uniform random num-
bers. Roughly speaking, we can imagine a gigantic die that returns integers between
1 and N with the equal probability 1

N . Then, by dividing these integers by N , we
can obtain discrete values 1

N , 2
N , N−1

N , 1 with uniform probability. By sending N to
infinity, we can get uniform random numbers.

Because computers can handle only a finite number of digits, the uniform random
numbers we can use on a computer are not literal real numbers. They are discrete
random numbers, just like the ones obtained by throwing a gigantic die. For example,
in C, there is a function called rand, which randomly returns integers from 0 to
RAND_MAX. The value of RAND_MAX depends on the environment. On authors’
machines, it is 2147483647 = 231 − 1.

2.1.2 Gaussian Random Numbers (Normal Distribution)

Random numbers following nontrivial probability distributions are useful for various
purposes. Here, as an example, let us see the Gaussian random numbers whose
distribution is proportional to the Gaussian function e−x2 .

The Gaussian random numbers play important roles later in this book. Further-
more, because of the central limit theorem, which we will mention shortly, the Gaus-
sian function appears in many places. This is a very basic example of the probability
distribution and is a crucial piece when we introduce the HybridMonte Carlo (HMC)
algorithm in Sect. 5.1.

In Fig. 2.1, the Gaussian function e−x2 is plotted. Because of the shape, it is
often called a “bell curve”. We can see that this function decays very quickly as
|x | becomes large. For this reason, the integral of this function between −∞ and
+∞ is finite, though the domain of integration is infinite. The precise answer is∫ ∞
−∞ dxe−x2 = √

π. Therefore, by normalizing it as

P(x) = e−x2

√
π

(2.1)
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Fig. 2.1 Gaussian function
e−x2
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such that the integral is 1, we can interpret it as a probability distribution of x .
(For a given function to be interpreted as the probability distribution, it has to be
non-negative everywhere, and the integral has to be 1.)2

More generally, we can introduce parameters σ and μ that control the width and
mean of the distribution, such that

Pσ,μ(x) = e− (x−μ)2

2σ2√
2πσ

. (2.2)

The example above (Eq. (2.1)) was σ = 1√
2
, μ = 0. In Fig. 2.2, graphs for σ =

1, 2, 4,μ = 0 are shown. Random numbers generated following this probability dis-
tribution (Gaussian distribution, or normal distribution) are called Gaussian random
numbers.

We encounter the Gaussian distribution in our daily lives, often without realizing
it. A common situation is associated with measurements. Suppose we did a mea-
surement. It may be a complicated experiment, or it may be as simple as measuring
the length of something by using a measuring tape. In any event, any measurement
involves errors. There can be many sources of errors. For simplicity, let us assume
that there are K sources, and each of them contributes randomly. Then the total error
is the sum of K random numbers.

When K is sufficiently large, something very interesting happens: the “error”
which arises as a sum of many random numbers follows the Gaussian distribution,
regardless of the details of the sources. This can be shown mathematically and is
called the central limit theorem. (See e.g., Ref. [6] for details including a proof.)

Let us see a concrete example. For simplicity, we assume that each source of the
error gives a uniform random number between −0.5 and +0.5 and that the total

2 Strictly speaking, this is probability density rather than probability. For infinitesimal dx , the
probability that a value between x and x + dx is obtained is given by P(x)dx .
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Fig. 2.2 The normalized
Gaussian function (the
Gaussian distribution, the
normal distribution, or a bell

curve) Pσ,μ(x) = e
− (x−μ)2

2σ2√
2πσ

for σ = 1, 2, 4 and μ = 0
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error is the sum of K uniform random numbers. We generated uniform random
numbers and calculated the sum.We repeated this procedure many times and plotted
the distribution of the sums. (This example is essentially the same as the random
walk that will be explained in Sect. 3.1.) In Fig. 2.3, we plot such distributions for
K = 1, 2, 3, 4, 5, and 100. The sum is denoted by x , and the horizontal axis is taken
to be x/

√
K .

The uniform distribution is obtained for K = 1, of course. The plot for K = 2
looks like a triangle. These two distributions do not look like theGaussian distribution
at all. However, for K = 3 and K = 4, the distributions look similar to a bell curve.
To obtain a perfect agreement with the Gaussian distribution, we need to take the
K → ∞ limit. However, the distribution approaches Gaussian rather closely only
with 3 or 4 sources of errors. Therefore, it is not unnatural to assume that the errors
in actual measurements follow the Gaussian distribution. Hopefully, the reason that
the Gaussian distribution is important in statistical analyses is clear to you by now.

Let us apply the same reasoning to other examples such as the distribution of
the heights of humans. Some people are short, some people are tall. There can be
many factors affecting the heights, but very roughly, let us assume that the height is
determined by summing the positive and negative contributions from various factors
(e.g., lifestyles such as early bird or night owl, eating habits such as meat-eater or
vegetarian, genetic factors such as the heights of the parents). By identifying such
positive or negative effects with the errors in the measurements, we can repeat the
same argument as above. Therefore, we can expect that the distribution of the heights
is Gaussian about the mean—and it is indeed the case. Our guess based on the central
limit theorem does explain the reality. There are many other examples of this kind.

Note that several assumptions have to be satisfied for the central limit theorem to
be applicable, and hence, we must not assume the Gaussian distribution uncritically
for anything and everything. For example, it has been pointed out that the price
volatility in the financial market follows a power law (something like x−p), and if
the log-normal distribution, which is a relative of Gaussian distribution, is used, the
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Fig. 2.3 x is defined as a sum of K uniform random numbers in [−0.5,+0.5]. The distribution
of x is plotted by taking the horizontal axis to be x/

√
K . 1,000,000 samples are used for each K .

The dashed line is the Gaussian distribution whose width is determined by fitting the distribution at
K = 100. We can see the convergence to the Gaussian distribution as K becomes large. The width
σ is proportional to

√
K

risk of large price fluctuation can be underestimated. The Gaussian distribution is a
popular option because it is mathematically simple, but it is dangerous to use it when
it is not justified empirically or theoretically.

2.1.3 Random Numbers Versus Pseudorandom Numbers

We cannot throw dice every time we need a random number, because many random
numbers are needed for a numerical simulation. In practice, we have to generate
pseudorandom numbers which look almost random and use them. It is important
to understand the difference between pseudorandom numbers and actual random
numbers, although it is unlikely that the difference leads to troubles at the level of
simulations discussed in this book.

As a concrete example, let us see the linear congruential generator. Firstly, for
natural numbers a, b, and M , we define a recurrence relation

xn+1 = axn + b (mod M).

On the right-hand side, “mod M” means the remainder after the division by M . From
any initial value x0 between 0 and M − 1, we can make a sequence of numbers {xn}
that looks random. This is the linear congruential generator.

This algorithm is very simple and convenient.However, the sequence x0, x1, x2, . . .
is not random in the mathematical sense, and hence, some care is needed when we
use it for simulations. To understand that it is not random in the literal sense, note
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that the same sequence is obtained from the same initial value x0. Therefore, once
xm = x0 holds for certain m, after that point the same sequence x0, x1, x2, . . . , xm
is repeated. Namely, this sequence has a periodicity, and the period is at most M . It
is also known that, depending on a choice of the recurrence relation and the initial
value x0, the distribution of x’s can be biased.

In this sense, the sequence of numbers obtained from the linear congruential
generator is only pseudorandom,which looks almost random but not exactly random.
The same applies to any algorithm to generate random numbers (unless you use a
quantum computer; see e.g., Ref. [7]). Indeed, there is a famous quote by John von
Neumann [8]: “Anyone who considers arithmetical methods of producing random
digits is, of course, in a state of sin. For, as has been pointed out several times, there
is no such thing as a random number—there are only methods to produce random
numbers, and a strict arithmetic procedure of course is not such a method.”

To create pseudorandom numbers, something like the initial value x0—the seed
of the sequence—is specified, and the same “random numbers” are generated from
the same seed. The sequence is periodic, and depending on the algorithm, there may
be a bias in the distribution. This is the reason that they are called “pseudo”-random
numbers.

If we use a pseudorandom number generator without understanding its features,
we may get stuck in pitfalls. For example, for calculations that consume a lot of
random numbers, we should not use a generator that has a short period. The linear
congruential generator is often used as a default random number generator on per-
sonal computers. In the authors’ personal computers, the period is at most 231 − 1.
If we write a program that uses a lot of random numbers, the periodicity may cause
trouble. Another, more common problem is to repeat the same sequence of pseu-
dorandom numbers multiple times, due to the error in the seed setting. Then, as
demonstrated in Sect. 4.7.3, a wrong answer may be obtained.

The Mersenne twister [9], which is regarded as a very good random number
generator, has a very long period 219937 − 1. For any practical purposes, this value is
large enough.

2.2 Integration Utilizing Uniform Random Numbers

Next, let us perform simple calculations by using random numbers. We use a rather
naive kind of Monte Carlo method which is different from the Markov Chain Monte
Carlo. We provide you with sample codes, so please actually run them on your
computer. Then you can get a better sense of the meaning of “calculating by using
random numbers”, and you can fully comprehend the limitations of a naive method.
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2.2.1 Calculation of π with Uniform Random Numbers

As a starter, let us consider a simple example for which a naive Monte Carlo method
works efficiently: we calculate the area of the gray fan-shaped region in Fig. 2.4 by
using random numbers. This region is a quarter of a unit disk, so the area has to be
π
4 . Therefore, this exercise is essentially a determination of the numerical value of π
via Monte Carlo simulation.

A standardmethod is to divide the entire region intomeshes like in the left panel of
Fig. 2.4 and count the number of cells overlapping with the gray region. This method
leads to a reasonable approximation that becomes exact when the mesh becomes
infinitely fine.

A calculation via Monte Carlo is as follows. Firstly, we generate a pair of uniform
random numbers (x, y) between 0 and 1. If x2 + y2 < 1, a point (x, y) is in the fan-
shaped region. In Fig. 2.4, the area of the entire region (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) is 1,
and the area of the fan-shaped region is π

4 . Therefore, if we generate many pairs of
random numbers (x, y), the probability that x2 + y2 < 1 holds (i.e., the point (x, y)
falls into the fan-shaped region) should eventually converge to π

4 .
Let us see a sample code written in C:

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main(void){
int niter=1000; //Specify the number of samples.
srand((unsigned)time(NULL)); //Set the seed of random
number generator.

int n_in=0; //Initialize the counter.
/*************/
/* Main loop */
/*************/
for(int iter=1;iter<niter+1;iter++){

double x = (double)rand()/RAND_MAX;
double y = (double)rand()/RAND_MAX;
//Generate random numbers x,y in [0,1].

if(x*x+y*y < 1e0) //If xˆ2+yˆ2<1....
n_in=n_in+1; //Add 1 to n_in.

printf(""%d %.10f\n",iter,(double)n_in/iter);}
}
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Fig. 2.4 We want to calculate the area of the fan-shaped region x2 + y2 < 1 (gray region). [Left]
Divide the entire region into meshes and count the number of cells overlapping with the gray region.
[Right] Generate random numbers (x, y) many times, and count how many times they fall into the
gray region

Firstly, in order to use a randomnumber generatorrand,we includedstdlib.h.
Next, we set the seed of the random numbers by

srand((unsigned)time(NULL));

Here, to avoid using the same sequence of random numbers every time, we use
the system time for the seed. The variable n_in is a counter for the number of points
in the fan-shaped region.

The following part, denoted as “main loop”, is the main part of the code that
iterates the Monte Carlo steps. The variable nitermeans the number of iterations.
By

double x = (double)rand()/RAND_MAX;
double y = (double)rand()/RAND_MAX;

the uniform random numbers x and y in the interval [0, 1] are generated. (Note that
rand() returns an integer between 0 and RAND_MAX.) Then, in the if statement,
1 is added to n_in if x2 + y2 < 1 holds. The the probability that x2 + y2 < 1 was
satisfied is (double)n_in/iter.

In Fig. 2.5, the probability that x2 + y2 < 1was satisfied is shown. The horizontal
axis is the number of trials K , which is iter in the code.We generated 100 different
sequences of random numbers and plotted 5 typical results. The error bar is the
standard deviation obtained from 100 sequences. We can see a gradual convergence
to the analytic value π

4 . From a theoretical consideration, we expect that the error
decreases as 1√

K
.3 To confirm such a K -dependence, in the right panel of Fig. 2.5, we

plotted the average of 100 sequences and the standard deviation by taking 1√
K
as the

horizontal axis. As expected, the standard deviation shrinks, namely the deviation

3 The reason can be understood from the property of the random walk, which is explained in
Sect. 3.1. It is a good exercise, please try.
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Fig. 2.5 [Left] The probability that x2 + y2 < 1 was satisfied. The horizontal axis is the number
of pairs of random numbers (x, y) used for the calculation. The error bar shown in green is the
variance obtained from 100 different sequences of random numbers, obtained by using different
seeds. The purple lines are the plots of typical results. We can see the convergence to π

4 � 0.785.

[Right] The behavior of the error, as a function of 1/
√
K . We can see that the error is proportional

to 1/
√
K

from the analytic value π
4 decreases, as 1√

K
. In this way, we could see that a naive

Monte Carlo method works well for this simple task.

2.2.2 Integral with Uniform Random Numbers

Next let us consider an integral
∫ b
a dx f (x). If we literally follow the definition of the

integral, we would divide the domain of integration into small pieces as in Fig. 1.1
and approximate the integral by the sum of the areas of the rectangles. Instead, if we
use random numbers, we can calculate the integral as follows.

Let x be a uniform random number between a and b.4 If we randomly pick up
only one x and calculate f (x), we just get a random value. But what if we use a lot
of random numbers? If K is sufficiently large, K random numbers x (1), x (2), ..., x (K )

should be uniformly distributed between a and b. Then the average 1
K

∑K
k=1 f (x (k))

is a good approximation of 1
b−a

∫ b
a dx f (x). In particular, in the limit K → ∞, the

exact value should be obtained. Namely,

lim
K→∞

1

K

K∑

k=1

f (x (k)) = 1

b − a

∫ b

a
dx f (x). (2.3)

As an example, let us consider a = 0, b = 1, f (x) = √
1 − x2. This is the same

as the previous example—the area of the fan-shaped region in Fig. 2.4—and hence,
we should get π

4 . The result is shown in Fig. 2.6. Just as in Fig. 2.5, the purple lines

4 It can be obtained from the uniform random number between 0 and 1, which we denote by x ′, as
x = a + (b − a)x ′.
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in the left panels are the results of 5 typical simulations, and the error bar (green) is
the standard deviation obtained from 100 different sequences of random numbers. In
the right panel, the average value of 100 sequences and the standard deviations are
plotted by taking the horizontal axis to be 1√

K
, so that the large-K behavior of the

error bars becomes clearer. We can see that the answer obtained from each sequence
converges to the analytic value π

4 , and the error is proportional to 1√
K
. In this case,

again, a naive Monte Carlo is working well.
Let us see a sample code written in C. It is almost identical to the previous one:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

int main(void){
int niter=1000; //Specify the number of samples.
srand((unsigned)time(NULL)); //Set the seed of random
number generator.

double sum_y=0e0;
/*************/
/* Main loop */
/*************/
for(int iter=1;iter<niter+1;iter++){

double x = (double)rand()/RAND_MAX;
//Generate random numbers x in [0,1].
double y=sqrt(1e0-x*x);
sum_y=sum_y+y;
printf(""%d %.10f\n",iter,sum_y/iter);} //Output
the average of y.

}

Uniform random number x in the interval [0, 1] is generated, then y = √
1 − x2

is calculated, the sum of y’s is saved as sum_y, and by dividing it by the number of
trials iter the average is obtained.

2.2.3 The Importance of the Importance Sampling

So far, we have seen a few examples that can be solved efficiently via a naive Monte
Carlomethod. Next, let us see examples towhich a naiveMonteCarlo is not effective.

The simplest example is the Gaussian function 1√
2π
e− x2

2 . This function is obtained
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Fig. 2.6 The integral
∫ 1
0 dx

√
1 − x2 is estimated by generating the uniform random numbers x in

[0, 1] and taking the average of √
1 − x2. [Left] The same calculations are performed 100 times by

using different sequences of random numbers, and the error bar (standard deviation) is estimated.
Purple lines are 5 typical runs. The convergence to π

4 � 0.785 can be seen. [Right] The error bar

versus 1/
√
K . We can see that the error is proportional to 1/

√
K

by setting σ = 1 and μ = 0 in (2.2). It is normalized such that the integral from −∞
to +∞ is 1.

Naive Monte Carlo is Not Efficient

Let us integrate this function between −a and a. By generating uniform random

number in the interval [−a, a], the average of 1√
2π
e− x2

2 in this range can be estimated.

By multiplying 2a to the average, the value of the integral
∫ a
−a

dx√
2π
e− x2

2 is obtained.
In Fig. 2.7, the values obtained in this way are shown for a = 2, 10, 100, 1000,

10000. In the left panel, the horizontal axis K is the number of random numbers
used for the calculation. In the right panel, the errors estimated from 100 different
sequences of random numbers are shown. The horizontal axis is taken to be 1√

K
.

What can we see from these plots?
Firstly, for any a, the average converges if wewait patiently. The value obtained in

this way is guaranteed to be the right one. This is the same as the previous examples.
However, as we can easily see, especially from the right panel, the convergence
becomes slower as a becomes larger. Furthermore, for a = 1000 and 10000, the
lines are not smooth and there are many jumps. Why?

To understand the reason, let us consider the case of a = 10000. From Fig. 2.2,
we can see that the Gaussian function approaches zero very quickly as x becomes
large. For this reason, unless x is small, the contribution to the integral is almost neg-

ligible. Indeed,
∫ 2
−2

dx√
2π
e− x2

2 � 0.95,
∫ 3
−3

dx√
2π
e− x2

2 � 0.997,
∫ 4
−4

dx√
2π
e− x2

2 � 0.9999,

and
∫ 5
−5

dx√
2π
e− x2

2 � 0.999999. On the other hand, if we generate uniform random
numbers between −10000 and +10000, the probability that |x | > 2 is obtained is
99.98%. Therefore, among K samples, more than 99.9% have almost no contribution
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Fig. 2.7 The integral
∫ a
−a

dx√
2π
e− x2

2 is estimated by using uniform random number in the interval

[−a, a]. [Left] The average values versus the number of random numbers used for the estimate are
denoted by K . [Right] The error is estimated from 100 different sequences of random numbers and
plotted against 1/

√
K . The dotted lines are the fit results in the large-K region, with the ansatz

error ∝ 1/
√
K

to the integral. In other words, effectively we only have K
10000 samples or so. More

than 99.9% of the resources are wasted on meaningless computation! The lines are
not smooth because, only once in several thousand or tens of thousands of times, a
sufficiently small x appears and gives a large contribution to the integral that looks
like a sudden jump.

Even if we waste more than 99.9% of the resources, it will not take a long time for
such a simple calculation, so we may not have to worry too much. However, when
there are many integration variables, we do have to worry.

As a simple example, let us consider the integral of the multivariate Gaussian

function f (x1, . . . , xn) = e− x21+···x2n
2 at 0 ≤ r ≤ 10000 (r =

√
x21 + · · · + x2n ). Even

when the number of variables n is large, we can repeat the same procedure: generate
(x1, . . . , xn) many times in a uniform and random manner, calculate f (x1, . . . , xn),
take the average, and multiply the volume of the domain of integration. Essentially,
this is a higher dimensional version of Fig. 1.1. Just as in the case of the univariate
integration, the large-x region does not contribute much to the integral, and the
resources used for the large-x region are wasted. As the dimension becomes higher,
such an irrelevant region occupies a larger and larger fraction of the total domain of the
integration. For n = 1 and n = 10, the probabilities that r is larger than 2 is 99.98%
and 99.999996%, respectively. For n = 100, the probability that 9000 < r < 10000
is 99.997%. Needless to say, this region does not contribute to the integral at all. If
the waste is this much, the time needed for the convergence to the right value is very
long, and hence, a naive Monte Carlo approach does not work.

Turning Difficulty to Advantage: Importance Sampling

Let us slightly change the viewpoint. Thatmost of the domain of the integration does
not contribute to the integral can be rephrased that only a tiny fraction of the domain of
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integration contributes to the integral. Would it mean that, if we generate the random
numbers only in this tiny region, we can calculate the integral very efficiently? As a
simple implementation of this idea, suppose that the random numbers are generated
only in a region that significantly contributes to the integral, and the rest of the domain
of integration is neglected. This method works well to some extent; in the case of the
multivariate Gaussian integral, by restricting the domain of integration at somewhere
around x21 + · · · x2n < 3, a reasonable approximation is achieved. In order to handle
the error more precisely, we can prepare random numbers in R1 ≤ x21 + · · · x2n < R2;
we first study (R1, R2) = (0, 1), then (R1, R2) = (1, 2), then (R1, R2) = (2, 3) and
so on, and we can stop the calculation when the addition of a new region does not
change the answer any more.

There are two problems with this method. Firstly, when the integrand is a compli-
cated function, it is hard to estimate the error precisely. Secondly and more seriously,
when there are many variables, it is difficult to find the “important” region of the
domain of integration. For one or two variables, we can plot a graph and identify the
important regions by our eyeballs, but with three or more variables, it is difficult to
find the important region unless the integrand is a simple function.

As we will see in later sections, the Markov Chain Monte Carlo methods resolve
these problems [2]. Even ifwe do not knowwhere is the important region contributing
to the integral, most of the computational resources are automatically used for the
calculation in the important region. This is called the importance sampling. (Of
course, it is better if you knowwhere the important region is.) The “irrelevant” regions
are not completely ignored, their contributions are also picked up appropriately.
Therefore, we are guaranteed to get a more and more accurate answer if we continue
the computation longer. In the previous examples, it was not crucial to use random
numbers because, whether we use random numbers or divide the integral domain
into meshes, a difficult calculation was difficult and an easy calculation was easy.
However, in Markov Chain Monte Carlo, the use of random numbers is crucial.

We wish we could move on to Markov Chain Monte Carlo immediately, but we
need one more preparation: the notions of probability distribution and expectation
value.

2.3 Expectation Value and Integral

To get straight to the point, Markov ChainMonte Carlo methods generate probability
distributions. Therefore, the easiest thing to calculate via MCMC is the expectation
value. To understand this point better, it is necessary to see the connection between
probability distribution, expectation value, and integral. (In Sect. 4.5, we will explain
how the integral itself, not the expectation value, can be calculated by using the
MCMC methods.)

Suppose that the probability distribution P(x) is defined at an interval a ≤ x ≤ b.
Being “probability”, two conditions have to be satisfied:
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1. P(x) ≥ 0 everywhere in a ≤ x ≤ b.
2.

∫ b
a dx P(x) = 1.

The former means a probability is not negative and the latter means the sum of the
probabilities for all possibilities is 1. The expectation value of a function f (x), which
is denoted by 〈 f (x)〉, is defined by

〈 f (x)〉 =
∫ b

a
dx f (x)P(x). (2.4)

This is similar to the integral we discussed. Indeed, to calculate the expectation value
by using random numbers, we just have to generate the uniform random number x
between a and b, calculate f (x)P(x) and take the average, and multiply b − a.
(Alternatively, we can generate the probability distribution P(x) via the “rejection
sampling”, by generating many uniform random numbers x and then accepting each
x with probability P(x). The average of f (x) over such a distribution is 〈 f (x)〉.
This is essentially the same as taking the average of f (x)P(x) over uniform random
numbers. When there are many variables, however, such naive approaches are highly
inefficient due to the curse of dimensionality. The MCMC method circumvents this
problem and generates the probability distribution efficiently.)

The definite integral is a special case of the expectation values. To perform the
integral, in Sect. 2.2.2 we used the property that the average of f (x) in this interval is
the definite integral divided by b − a. This average is the expectation value of f (x)
with the uniform probability distribution at a ≤ x ≤ b, that is P(x) = 1

b−a :

〈 f (x)〉 =
∫ b

a
dx f (x)P(x) = 1

b − a

∫ b

a
dx f (x). (2.5)

As a little bit more complicated example, let us integrate a bivariate function
f (x, y) in the fan-shaped region in Fig. 2.4 (x > 0, y > 0, x2 + y2 < 1). The only
difference is that a two-dimensional domain (fan-shaped region) is used instead
of the one-dimensional interval a ≤ x ≤ b. Therefore, the probability distribution
P(x, y) is taken to be uniform in this domain, while outside this region P(x, y)
is set to zero outside. Because the area of the fan-shaped region is π

4 , in order for
∫ 1
0 dx

∫ 1
0 dyP(x, y) = 1 to be satisfied the probability distribution is taken as

P(x, y) =
{

4
π
x2 + y2 < 1

0 x2 + y2 ≥ 1
(2.6)

By using it, the average is expressed as

〈 f (x, y)〉 =
∫ 1

0
dx

∫ 1

0
dy f (x, y)P(x, y). (2.7)
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The simplest way to calculate this is to choose uniform random numbers x, y
between 0 and 1, calculate f (x, y)P(x, y), and take the average. The only difference
from the integral

∫
x2+y2<1 dxdy f (x, y) is whether it is divided by π

4 or not. As in
the univariate integration

∫
dx f (x), a naive Monte Carlo method is good enough for

such a simple calculation.
Even when the shape of the domain of integration is complicated and the area

cannot be calculated analytically, the numerical calculation is straightforward. As an
example let us calculate the volume of a ball defined by x2 + y2 + z2 ≤ 1, which
we denote by V3 (it can analytically be obtained, though). We use a fact that V3

8 is

obtained by integrating the height z = √
1 − x2 − y2 at x > 0, y > 0, x2 + y2 < 1.

Hence,

V3

8
=

〈√
1 − x2 − y2

〉
× π

4
(2.8)

and

V3 = 2π ×
〈√

1 − x2 − y2
〉
. (2.9)

Here is a sample code in C:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

int main(void){
int niter=100000; //Specify the number of samples.
srand((unsigned)time(NULL)); //Set the seed of random
number generator.

double pi=asin(1e0)*2e0; //Calculate pi.
double sum_z=0e0;
int n_in=0; //Initialize the counter.
/*************/
/* Main loop */
/*************/
for(int iter=1;iter<niter+1;iter++){
double x = (double)rand()/RAND_MAX;
double y = (double)rand()/RAND_MAX;
//Generate random numbers x in [0,1].

if(x*x+y*y < 1e0){ //If xˆ2+yˆ2<1.....
n_in=n_in+1; //Add 1 to the counter n_in, and
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double z=sqrt(1e0-x*x-y*y); //calculate z.
sum_z=sum_z+z;

}
printf(""%d %.10f\n",iter,sum_z/n_in*2e0*pi);}
//Output the expectation value.

}

There is almost nothing new in this code. We can define π explicitly as π =
3.14159 . . ., but just to avoid a typo we calculated it as

double pi=asin(1e0)*2e0;

A function asin is arcsin, which is the inverse of sin. Because sin π
2 = 1, we can

easily obtain arcsin 1 = π
2 . In order to calculate the expectation value at x

2 + y2 < 1,
we count the number that x2 + y2 < 1 was recorded, by using a counter n_in. If
you run this code, you can see a convergence to the exact analytic value V3 = 4π

3 .
5

When we try to calculate the expectation values, very often we have headache due
to the curse of dimensionality. It is also common that the probability P is extremely
small in most of the domain of integration. As an easy exercise to get a rough feeling
regarding this problem: suppose the domain of integration is 0 ≤ x1, . . . , xn ≤ 1,
then how big fraction of this domain satisfies x21 + · · · + x2n < 1? The answers for
n = 2, 3, 4, and 10 are about 79%, 52%, 31%, and 0.25%, respectively.6

The idea of the importance sampling can be used to reduce the computational cost
also in this case. As we state repeatedly, the Markov Chain Monte Carlo methods
enable us to do it.

2.4 Calculation of Expectation Value with Gaussian
Random Numbers

Gaussian random numbers play important roles in various applications. Here, let us
see the calculation of the expectation values by using Gaussian random numbers.
As a byproduct, you can get a rough intuition into the Gaussian random numbers
that will be useful later in this book. The starting point is: how can we generate the
Gaussian random numbers?

5 Strictly speaking, that we are dividingsum_z byn_inmeanswe are using the rejection algorithm
here. We could also multiply 4

π and then divide by iter, because n_in/iter converges to π
4 .

6 x21 + · · · + x2n < 1 is satisfied with the probability 2−nVn , where Vn is the volume of the n-

dimensional disk. By using a formula Vn = πn/2

�
(
n+ 1

2

) , which uses the Gamma function �, we obtain

V2 = π, V3 = 4π
3 , V4 = π2

2 , ..., V10 = π5

120 .
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Fig. 2.8 The polar
coordinates system,
(x, y) = (r cos θ, r sin θ)

x

y

2.4.1 Box-Muller Method

Here, we introduce the Box-Muller method [10] that can be used to generate the

Gaussian random numbers x and y with the probability distribution 1√
2π
e− x2

2 and

1√
2π
e− y2

2 . This method is very easy: from the uniform random numbers p and q in
[0, 1], x and y are obtained as

x = √−2 log p cos(2πq), y = √−2 log p sin(2πq). (2.10)

Let us confirm that x and y obtained in this way are indeed Gaussian random. For
that, it is convenient to use the polar coordinates system (r, θ). The polar coordinates
system (r, θ) and the Cartesian coordinates system (x, y) are related as (Fig. 2.8):

x = r cos θ, y = r sin θ. (2.11)

The radial coordinate r runs from 0 to ∞, and the angular coordinate θ runs from 0
to 2π. In the polar coordinates system, the Gaussian distribution is decomposed as

ρ(r) = re− r2

2 and ρ(θ) = 1
2π . From (2.10), we obtain p = e− r2

2 .7 Because the right-
hand side runs from 1 (r = 0) to 0 (r = ∞), it agrees with the range of p (0 ≤ p ≤
1). Furthermore, because |dp| = |d(e− r2

2 )| = re− r2

2 dr , the relation drρ(r) = |dp|
holds, which is consistent with our choice ρ(p) = 1 (the uniform distribution). As
for the angular coordinate, the correspondence is simply θ = 2πq.

7 Because r2 = x2 + y2 = −2 log p(cos2(2πq) + sin2(2πq)) = −2 log p, we obtain log p =
− r2

2 , and hence, p = elog p = e− r2
2 .
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2.4.2 Expectation Values from the Gaussian Distribution

Let us calculate the expectation values from the Gaussian distribution P(x) =
1√
2π
e− x2

2 . For generic function f (x), the expectation value is defined as

〈 f (x)〉 =
∫ ∞

−∞
dx f (x)P(x) = 1√

2π

∫ ∞

−∞
dx f (x)e− x2

2 . (2.12)

The counterpart of Eq. (2.3) for the integration via the uniform random numbers is

lim
K→∞

1

K

K∑

k=1

f (x (k)) = 1√
2π

∫ ∞

−∞
dx f (x)e− x2

2 . (2.13)

Here, it is assumed that x (1), x (2), . . . are Gaussian random numbers (generated by
the Box-Muller method, for example). By actually generating the Gaussian random
numbers, we can easily check 〈x〉 = 0 and 〈x2〉 = 1. It is a good exercise, we recom-
mend you to try it. (We will do the same calculation by using MCMC in Sect. 4.2.)

We can also calculate the usual integral, rather than the expectation value. If you
want to calculate

∫ ∞
−∞ dxg(x), then you can use a simple relation

∫ ∞

−∞
dxg(x) =

∫ ∞

−∞
dx

(
g(x) · √

2πe+ x2

2

) e− x2

2√
2π

=
〈
g(x) · √

2πe+ x2

2

〉
(2.14)

to relate the integral and the expectation value. This is a special version of a powerful
method explained in Sect. 4.5.

2.5 Example in Which Randomness is Essential

In the examples we have seen so far, the use of random numbers might have made
our lives a little bit convenient, but it was not essential. We could solve the problems
without using random numbers.

As an example in which the use of random numbers is essential, let us think about
howwemight be able to makemoney from the stockmarket. It is very hard to predict
how the price p will change as a function of time t , but suppose we are confident
about the trend shown in Fig. 2.9 by the arrow. Of course, there are uncertainties
in any predictions, and the uncertainties become larger in further future. To make
a profit based on the prediction, we can introduce thresholds: if the price becomes
higher than the upper threshold, we sell the stock to realize the gain, and if the price
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Fig. 2.9 A cartoon picture
of the simulation of the stock
price. The vertical and
horizontal axes are price and
time

t

p
利益確定売り

損失確定売り

予想価格

現在価格
lower threshold

upper threshold

     Price   

prediction  

current
  price

becomes lower than the lower threshold, we again sell the stock to avoid further loss.
In Fig. 2.9, the thresholds are shown by the dashed lines. To test this strategy, we
should make a model of the stock price taking into account the randomness, and
then simulate various time evolutions by using different random numbers. Perhaps
we wait for a while and realize the gain, as shown by a blue line; or perhaps we have
to sell the stock immediately to avoid a loss, as shown by a red line. By repeating
numerical experiments many times, we can get a reliable result. Based on such
simulation, we can determine good threshold functions that lead to a large profit
avoiding unnecessary risk. Such modeling is essentially the same as the Brownian
motion in physics. The randomwalk, which we will see later in this book, is a similar
problem as well.

Note that the authors are not finance experts, we nevermade a profit in the financial
market based on numerical simulations. If you want to make money, please ignore
this section. You should prepare well by reading actual finance books or by learning
from experts before diving into the market.
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Chapter 3
General Aspects of Markov Chain Monte
Carlo

In this chapter, we explain general aspects of the Markov Chain Monte Carlo
(MCMC) method. Concrete examples such as the Metropolis algorithm [1, 2] and
the HMC algorithm [3] will be discussed in later chapters. (There are interesting and
conflicting recollections regarding the birth of MCMC by the inventors [4–7].)

Suppose a probability P(x1, x2, . . . , xn) is given as a function of n variables
x1, x2, . . . , xn . Because it is tedious to write n variables every time, we use {x}
meaning x1, x2, . . . , xn , like

P(x1, x2, . . . , xn) = P({x}). (3.1)

By definition, “probability” P has to be non-negative:

P({x}) ≥ 0. (3.2)

A set of variables {x} is often called a “configuration” or a “sample”. Sometimes,
we want to consider a more generic function that can take negative values as well.
We will explain useful techniques for such a case later.

In MCMC, the values of x1, x2, . . . , xn are varied in such a way that the time
spent at point {x} is proportional to P({x}). Then, the average over a sufficiently
many configurations is a good approximation of the statistical average. More con-
cretely, a sequence of configurations {x (0)} → {x (1)} → {x (2)} → · · · → {x (k)} →
{x (k+1)} → · · · is constructed as follows [1, 2]:
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Basic conditions of Markov Chain Monte Carlo� �

• The sequence is a Markov chain. Namely, the probability that {x (k+1)} is
obtained from {x (k)} depends only on {x (k)} and does not depend on the
history {x (0)}, {x (1)}, . . . , {x (k−1)}. This probability is called the transition
probability and denoted by T ({x (k)} → {x (k+1)}).

• Irreducibility. A Markov chain is said to be irreducible if, for any pairs {x}
and {x ′}, a transition between them is possible with a finite number of steps.
In MCMC, an irreducible Markov chain is used.

• Aperiodicity. Suppose that it is possible to start from {x} and come back to
the same {x} after ns steps. There are many possible values of ns , and the
greatest common divisor of all of them is called the period. A given Markov
chain is said to be aperiodic when the period is 1 for any {x}. In MCMC, an
aperiodic Markov chain is used.

• Detailed balance condition is satisfied, i.e., the transition probability T
satisfies

P({x}) · T ({x} → {x ′}) = P({x ′}) · T ({x ′} → {x}). (3.3)

for any {x} and {x ′}.
� �

The initial configuration {x (0)} can be arbitrary.1 If these four conditions are
satisfied, the probability distribution of {x (k)} (k = 1, 2, . . .) converges to P({x}).
By using a sufficiently long chain, we can obtain the right expectation values:

〈 f 〉 =
∫

dx1 · · · dxn f (x1, . . . , xn)P(x1, x2, . . . , xn)

= lim
K→∞

1

K

K∑
k=1

f (x (k)
1 , . . . , x (k)

n ). (3.4)

The most important feature of this method is that the statistically important con-
figurations (i.e., the configurations with larger probability P) are picked up more
frequently. This is the importance sampling, which was mentioned in Sect. 2.2.3. As
we have seen there, for the integrals with many variables, it is often the case that most
of the domain of integration does not contribute to the integral. In the importance
sampling, configurations {x} from such irrelevant regions rarely appear. Therefore,
the computational cost can be reduced drastically, and hard calculations that are out
of reach with other methods can be done.

The four conditions introduced above may look rather abstract. Below, by using
several simple examples, we will explain the meaning of the conditions and why they
are required.

1 The efficiency of the simulation can depend on the initial configuration, as we will see later.
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3.1 Markov Chain

A sequence of configurations {x (0)} → {x (1)} → {x (2)} → · · · → {x (k)} →
{x (k+1)} → · · · is called Markov chain if the probability that {x (k+1)} is obtained
after {x (k)} depends only on {x (k)} and not on {x (0)}, {x (1)}, . . . , {x (k−1)} (Fig. 3.1).

A typical example of Markov chain is random walk: starting with x (0) = 0, add
or subtract 1 with probability 1

2 for each, such that x (k+1) = x (k) + 1 or x (k+1) =
x (k) − 1. If there is a certain pattern such as “after +1, it is more likely to get +1”
or “−1 is more likely after +1”, it is not Markov chain.

Let us see a few more examples:

• Suppose there are five red balls and five white balls in a box. If we do not look
into the box and randomly take out one ball, the chance we get red or white is 50%
for each. We put the ball back in the box immediately, and make a sequence as
follows: we add 1 every time we get red (x (k+1) = x (k) + 1), and subtract 1 every
time we get white (x (k+1) = x (k) − 1). If the initial value is taken to be x (0) = 0,
then x (k) = (number of red during k trials) − (number of white during k trials).
The probability of red or white is always 50% for each, regardless of the history.
Hence, this is nothing but a randomwalk, which is a typical example of theMarkov
chain.

• Suppose we do not return the balls to the box. If we get red, red, and white, then
three red balls and four white balls remain, so the probabilities that we get red
or white at the fourth trial are 3

7 and 4
7 , respectively. But if we get red, red, and

red, then the probabilities for red and white are 2
7 and 5

7 , respectively. Hence, you
would say the probability at the k-th trial depends on the history, and it is not a
Markov chain—wouldn’t you? Well, that is wrong.
The point is that, whether the results of the first three trials were red, red, white,
or red, white, red, or white, red, red, the probabilities that we get red or white at
the fourth trial are 3

7 and 4
7 , respectively; the ordering does not matter. From the

numbers of red and white balls after the k-th trial, which we denote by n(k)
red and

n(k)
white, respectively, the transition probability T ((n(k)

red, n
(k)
white) → (n(k+1)

red , n(k+1)
white ))

Fig. 3.1 Schematic picture of aMarkov chain. The probability that {x (k+1)} is obtained from {x (k)}
does not depend on {x (k−2)}, {x (k−1)}, etc
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is uniquely determined, without relying on the history. Therefore, this is a Markov
chain, too.

• Suppose we went to a restaurant in the US and split the bill evenly. One by one,
each of us pays the bill and tip. Let x (k) be the amount of tip paid by the k-th
person. Howmuch the k-th person tips would depend not only on the total amount
by then or the amount paid by the previous person but also on the history. After
$5, $3, $5, $3, $5, we would think $3 is enough; but after $3, $3, $5, $5, $5, we
would be obliged to pay at least $5, wouldn’t we? Therefore, it is reasonable to
think that x (1) → x (2) → x (3) → · · · is not a Markov chain in this case.

Because the randomwalk is a typical example of Markov chain, it is instructive to
understand its property for later purposes. Let us consider the Japan Series. The Japan
series is the annual baseball championship series in Japan. It is a best-of-seven series
between the winners of the Central League and the Pacific League in a 2-3-2 format.
We take y = +1 (resp. y = −1) when the winner of the Central League (resp. the
Pacific League) wins the Japan Series. We also use C and P to mean y = +1 and
y = −1. The index k attached to y like y(k) stands for the year. By choosing x (k)

such that x (0) = 0 and x (k) = x (k−1) + y(k), x (k) is the Central League’s total winning
record (if it is negative, the losing record). The Japan Series started in 1950, so let us
take y(1) to the result of 1950. The actual historical results are y(1) = −1, y(2) = +1,
y(3) = +1, · · · .

The Japan Series was competed 70 times by 2019, and both Leagues won 35
times. Therefore, naively we would guess that each League wins randomly with a
50% chance each year. In this simplified model, x (k) is a random walk.

Does such a simple model make sense?Wewould naturally think that, if one team
is good in a given year, they are likely to be good in the following year, too. If so, we
would not expect a random walk. Indeed, consecutive wins are observed very often.
In the random walk model, we would expect that +1 and −1 appear alternately,
wouldn’t we?

Let us do a numerical experiment to test this intuition. We generate random num-
bers r between 0 and 1, and choose y = +1 (C) if r ≤ 1

2 . Otherwise, we choose
y = −1 (P). A randomwalk generated this way is shown in Table 3.1. By comparing
it with the actual results of the Japan Series, we can find similar patterns. In actual
history, the Central League won nine seasons in a row from 1965 to 1973. In the
random walk model, the Central League won eight seasons in a row from 1954 to
1961. From 2010 to 2019, both in actual history and randomwalk, the Pacific League
won nine times. In the random-walk model, the total result is the Central League’s 27
wins and 43 losses, which deviates a lot from 35 to 35. This is because the number of
samples is too small and the result fluctuates if we use a different sequence of random
numbers. We tried a few other sequences, which led to 40–30, 37–33, 40–30, 33–37,
and 31–39. After 1000 years, we obtained 485–515, which is roughly half-and-half.2

2 In a random walk, the distance from the origin after K steps is typically
√
K . The sum of

K uniform random numbers shown in Sect. 2.1.2 is similar to random walk, and as we can see
from Fig. 2.3, the Gaussian distribution of the width of order

√
K is obtained. Therefore, in the

random-walk model, the deviation from the 50% win rate scales as 1√
K
.
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Table 3.1 Random Walk (RW) and Japan Series (JS)

Year RW JS Year RW JS Year RW JS Year RW JS

1950 P P 1970 P C 1990 P P 2010 P P

1951 P C 1971 C C 1991 P P 2011 P P

1952 P C 1972 C C 1992 P P 2012 P C

1953 P C 1973 P C 1993 P C 2013 P P

1954 C C 1974 P P 1994 P C 2014 P P

1955 C C 1975 P P 1995 P C 2015 C P

1956 C P 1976 C P 1996 C P 2016 P P

1957 C P 1977 C P 1997 P C 2017 P P

1958 C P 1978 C C 1998 C C 2018 P P

1959 C P 1979 P C 1999 P P 2019 P P

1960 C C 1980 P C 2000 P C

1961 C C 1981 P C 2001 C C

1962 P P 1982 P P 2002 C C

1963 C C 1983 P P 2003 P P

1964 C P 1984 C C 2004 P P

1965 P C 1985 P C 2005 P P

1966 C C 1986 P P 2006 P P

1967 P C 1987 P P 2007 C C

1968 P C 1988 C P 2008 C P

1969 C C 1989 P C 2009 C C

While further analyses can be performed, the honest answer would be that we
cannot extract a definite conclusion from such limited data as of 2019. It would be
nice if the readers several hundred years from now could add more data after 2020
and make better analyses.

Similar subtleties are therewhenwe discuss whether we can estimate the true abil-
ity of batters from the batting records, or whether such a thing as a team’s “momen-
tum” really exists. We recommend Ref. [8] if you are interested.

From this experiment, we learned that the naive expectation (“+1 and −1 appear
alternately in random walk”) is wrong. We can understand this via simple calcu-
lations, too. Let us choose four consecutive years and estimate the probability that
+1 and −1 appear alternately. There are 24 = 16 possible outcomes, among which
only two of them—+1,−1,+1,−1 and −1,+1,−1,+1—are like that. Therefore,
the chance is only 12.5%. Still, if we do not specify the time frame and consider the
probability that+1 and−1 appear alternately starting some year, then the probability
is much higher. Indeed, we can see such a pattern a few times in Table 3.1. For the
same reason, eight consecutive wins or nine consecutive wins are very rare if we
specify the starting point, but over a long history, such rare events have to happen at
some point. In this way, seemingly non-random events happen in random walk. This
is a very important feature.
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3.2 Irreducibility

AMarkov chain is said to be irreducible when any pair of {x} and {x ′} is connected by
a finite number of steps. It should be easy to understand the importance of this prop-
erty because if it is impossible to reach some points the information on those points
will never be obtained. Below, let us see some examples which are not irreducible.

Suppose x runs through real numbers, and by using a uniform random number r
between −1 and 1 let us define x (k+1) = x (k) × r . It is not irreducible, because the
absolute value of x never increases. In particular, once x becomes zero, it stays there
forever.

As another typical example, suppose that the domain of integration is not con-
nected. Let C1 and C2 be x < 0 and x > 1, respectively, and consider an integral on
C , which is a union of C1 and C2. We can construct a Markov chain by choosing a
uniform random number between −c and +c, which we denote by �x , and setting
x (k+1) as x (k) → x (k+1) = x (k) + �x if x (k) + �x ∈ C and x (k) → x (k+1) = x (k) if
x (k) + �x /∈ C . Then, it is impossible to go back and forth between C1 and C2 when
c ≤ 1. If x (0) < 0, then the chain is trapped in C1; if x (0) > 1, then the chain is
trapped in C2. Hence, such a Markov chain is not irreducible. However, when c > 1,
it is possible to go back and forth between C1 and C2, and the Markov chain is now
irreducible.

A similar issue arises when P(x) becomes zero at x = 0, for example, P(x) ∝
e−1/x2−x2 (Fig. 3.2). In this case, P(x) is almost zero near x = 0, so if we use the
Metropolis algorithm (which will be explained in Chap. 4) with a small value of c,
it takes a very long time to pass through x = 0. In this case, the irreducibility is not
broken in the strict mathematical sense—we just have to wait very very long—but it
is a big problem in practice because we cannot live forever. In short:

Be careful when the probability distribution is split into multiple islands.

3.3 Aperiodicity

Let us consider a transition fromaconfiguration {x} to itself. Suppose such a transition
is possible with ns steps. There can be various ns , and the greatest common divisor
of all possible ns’s is called the period. If the period is 1 for all configurations, the
Markov chain is called aperiodic.

Let us construct a Markov chain as x (k) → x (k+1) = x (k) + �x , where �x is
uniformly random between −1 and 1. (This can be regarded as a random walk,
whose step size is not fixed.) If�x = 0, x (k) = x (k+1) holds, and hence, it is possible
to come back to the same configuration just after one step. It is also possible to
come back to the same point after two steps, for example, as x (k+1) = x (k) + 0.5
and x (k+2) = x (k+1) − 0.5 = x (k). Of course, it is possible to come back after three
steps, e.g., x (k+1) = x (k) + 0.25, x (k+2) = x (k+1) + 0.25 = x (k) + 0.5 and x (k+3) =
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x (k+2) − 0.5 = x (k). It should be clear that ns can be any positive integer. Therefore,
the period is 1. This holds for any x (k), and hence, this Markov chain is aperiodic.

Next, let us consider an example that is not aperiodic. Consider a random walk
with a fixed step size±1. To come back to the same point,+1 and−1 have to appear
the same number of times. Therefore, ns has to be even. Hence, the period is 2, and
this example is not aperiodic.

As another example, suppose x runs over real numbers, and take x (k+1) = x (k) × r .
We take r randomly from negative numbers, e.g., P(r) = 0 for r ≥ 0 and P(r) =
2√
π
e−r2 for r < 0. If x (0) = 0, then x (k) = 0 for any k, and hence the period of x = 0

is 1. However, if x �= 0, the sign flips at each step, and hence it takes an even number
of steps to come back to the same value. It is possible to come back with 2 steps,
for example, x → −x → x . Therefore, the period is 2 for any x �= 0. Hence, this
example is not aperiodic either.

What is the problem if the Markov chain is not aperiodic? As a simple example,
let us consider a Markov chain with period 2, in which x > 0 at even steps and x < 0
at odd steps, like the one discussed above. Then, unless the probability that x > 0
and x < 0 are both 1

2 (in equations,
∫ 0
−∞ dx P(x) = ∫ ∞

0 dx P(x) = 1
2 )—which is

apparently a very special case—the right distribution cannot be obtained.



34 3 General Aspects of Markov Chain Monte Carlo

3.4 Detailed Balance Condition

The detailed balance condition means that the transition probability T satisfies
P({x}) · T ({x} → {x ′}) = P({x ′}) · T ({x ′} → {x}) for any configurations {x} and
{x ′}. To get intuition into this condition, first let us consider the balance condition,
or equivalently, the equilibrium condition.

Consider, as a slightly unrealistic setup, a village consisting of 100 residents,
totally isolated from the outer world. The total assets of all the residents are
$10,000,000, which never changes. There is economic activity inside the village,
and residents pay money to each other. We use x = 1, 2, . . . , 100 to label the people
in the village and k to label the year. On January 1 of year k, resident x has Pk(x)
dollars. By definition,

100∑
x=1

Pk(x) = 10, 000, 000 (3.5)

Let Qk(x → x ′) be the amount of money paid from resident x to resident x ′ during
the year. The carryover can be regarded as payment from resident x to himself/herself,
so let us denote it by Qk(x → x). Then, because all assets of resident x are paid to
somebody including himself/herself,

Pk(x) =
100∑
x ′=1

Qk(x → x ′). (3.6)

Also, resident x’s assets in the next year are obtained from the residents including
himself/herself, so

Pk+1(x) =
100∑
x ′=1

Qk(x
′ → x). (3.7)

That the system is in the equilibriummeans the assets of each resident do not change
over the years,

Pk(x) = Pk+1(x) = Pk+2(x) = · · · . (3.8)

We can also say that the incomes and payments are balanced, namely

100∑
x ′=1

Qk(x → x ′) =
100∑
x ′=1

Qk(x
′ → x). (3.9)

The condition (3.9) is called balance condition or equilibrium condition.
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The detailed balance condition is stronger than the balance condition that requires
the payment from resident x to resident x ′ and the payment from resident x ′ to resident
x are the same for all combinations of (x, x ′):

Qk(x → x ′) = Qk(x
′ → x). (3.10)

Note that the summation
∑

in the balance condition (3.9) has disappeared in the
detailed balance condition (3.10). The detailed balance condition (3.10) is sufficient
for the balance condition (3.9), but not necessary. As an extreme example, by taking

Qk(1 → 2) = 100, 000,

Qk(2 → 3) = 100, 000,

· · ·
Qk(99 → 100) = 100, 000,

Qk(100 → 1) = 100, 000 (3.11)

and setting all other Qk(x → x ′) to be zero, the balance condition (3.9) can be
satisfied. In this case, youmay like the person paying $100,000 to you, while youmay
have a complicated feeling toward the person to whom you have to pay $100,000. On
the other hand, if the detailed balance condition (3.10) is satisfied, the same amount
of money is paid between any two people, so it is less likely to have a sense of
unfairness toward anybody. In Fig. 3.3, the difference between the detailed balance
condition and a mere balance condition is visually explained.

The detailed balance condition (3.3) used in Markov Chain Monte Carlo may
look slightly different from the example above, but they are essentially the same. We
want to interpret P({x}) as the probability that the state is in {x}, so it is the same
as “what percentage of $10,000,000 is owned by resident x”. That the total assets in

Fig. 3.3 [Left] The detailed balance condition. The payment is the same for any pair of residents.
[Right] Amere balance condition. The income and payment of each person are balanced. The size of
the circles indicates the “net worth” P({x}) (the probability that the state is in {x}), and the thickness
of the arrows stands for the “amount of payment” Q({x} → {x ′}) = P({x}) · T ({x} → {x ′})
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the village do not change corresponds to the fact that the probabilities always sum
up to 1. The transition function T ({x} → {x ′}) can be interpreted as the percentage
of resident x’s assets that is paid to resident x ′, and then P({x}) · T ({x} → {x ′}) and
Q(x → x ′) are actually the same thing. Therefore, the balance condition (3.9) can
be rewritten as

∑
{x ′}

P({x}) · T ({x} → {x ′}) =
∑
{x ′}

P({x ′}) · T ({x ′} → {x}). (3.12)

The detailed balance condition (3.10) is, as we have already seen,

P({x}) · T ({x} → {x ′}) = P({x ′}) · T ({x ′} → {x}). (3.13)

As we already mentioned, if the detailed balance condition (3.13) is imposed, the
balance condition (3.12),which isweaker than the detailed balance condition, follows
automatically.

If the balance condition is satisfied, then the probability distribution P({x}) does
not change, as shown in (3.8). The derivation of this from the detailed balance
condition (3.13) is as follows:

∑
{x}

P({x}) · T ({x} → {x ′}) =
∑
{x}

P({x ′}) · T ({x ′} → {x})

= P({x ′}) ·
∑
{x}

T ({x ′} → {x})

= P({x ′}). (3.14)

The detailed balance condition is used in the first line. To go from the second line to
the third line,

∑
{x} T ({x ′} → {x}) = 1 (i.e., the sum of the transition probabilities

is 1) is used.
InMCMC, as the chain {x (0)} → {x (1)} → {x (2)} → · · · → {x (k)} → {x (k+1)} →

· · · becomes longer the probability distribution converges to a certain stationary
distribution P ′({x}). That the distribution is stationary means it is invariant when
it is shifted by one step, namely

∑
{x} P ′({x})T ({x} → {x ′}) = P ′({x ′}). We want

such P ′ to be the target distribution P . For this, the condition (3.14) is required, and
hence, we impose the detailed balance condition on the transition probability.

Strictly speaking, only the balance condition is required for (3.14) to hold, and
we do not necessarily need the detailed balance condition. However, while it is not
so hard to find algorithms satisfying the detailed balance condition, it is not easy to
find an example satisfying only the balance condition and not the detailed balance
condition. Therefore, the detailed balance condition is usually imposed. (There are
algorithms that satisfy the balance condition but not the detailed balance condition,
e.g., the Look-Ahead HMC method [9]. See also Exercise 2 of Chap. 4.)
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3.5 Exercises

1. Let us throw dice, and add the numbers one after another. Is it a Markov chain?
Is it irreducible, and/or aperiodic?

2. Alice and Bob play rock-paper-scissors. Alice repeats the same throw after a win
or draw, and changes after loss so that she can win if Bob repeats the same throw.
Bob always chooses rock, paper, or scissors randomly with 1

3 probability for each.
Is it a Markov chain? Is it irreducible, and/or aperiodic?

3. SupposeBobused the same strategy asAlice. Is it aMarkov chain? Is it irreducible,
and/or aperiodic?

Solutions

1. Let the sum of the first k rolls be x (k). Then x (k+1) can take x (k) + 1, . . . , x (k) + 6
with a probability 1

6 for each. The past history x
(1), . . . , x (k−1) does not matter, so

it is a Markov chain. However, the sum only increases, i.e., x (1) < x (2) < · · · <

x (k) < x (k+1) < · · · , hence this Markov chain is not irreducible. Because it never
comes back to the same value, we cannot define a period. Therefore “whether it
is periodic or not” is not even a well-posed question.

2. Because Alice makes a decision based only on the prior throw and Bod does
not care about the prior throw, it is a Markov chain. Intuitively, the irreducibility
is obvious because Bob’s choice is completely random, but let us confirm it
explicitly.

• When the first throw is draw: If the first throw is (R, R), then the second
throw can be (R, R), (R, S), or (R, P). After (R, R) and (R, S) only the same
options (R, R), (R, S), or (R, P) can follow, but (S, R), (S, S), or (S, P) can
follow after (R, P), and (P, R), (P, S), or (P, P) can follow after (S, R). In this
way, any combinations can be obtained starting with (R, R). The same holds
when the first throw is (S, S) or (P, P).

• When Alice wins the first throw: If the first throw is (R, S), the second throw
can be (R, R) with a probability 1

3 . We already saw any combinations can be
obtained starting from (R, R), so the same is true starting from (R, S). The same
holds when the first throw is (P, R) or (S, P).

• When Bob wins the first throw: If the first throw is (R, P), the second throw
can be (S, S) with a probability 1

3 . We already saw any combinations can be
obtained starting from (S, S), so the same is true starting from (R, P). The same
holds when the first throw is (S, R) or (P, S).

Therefore, this Markov chain is irreducible. Next, let us confirm the aperiodicity.

• When the first throw is draw: If the first throw is (R, R), the second throw
can be (R, R) again, with a probability 1

3 . Therefore the period is 1. The same
holds when the first throw is (S, S) or (P, P).
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• When Alice wins the first throw: If the first throw is (R, S), the second throw
can be (R, S) again, with a probability 1

3 . Therefore the period is 1. The same
holds when the first throw is (P, R) or (S, P).

• When Bob wins the first throw: If the first throw is (R, P), it is possible to
come back to (R, P) as (R, P) → (S, P) → (S, P) → · · · → (S, P) → (S,R) →
(P, S) → (R, P). Here, (S,P) can be repeated arbitrary times. Hence the period
is 1. The same holds when the first throw is (S, R) or (P, S).

Hence, the period is 1 for any combinations, and this Markov chain is aperiodic.
3. Because both Alice and Bob make decisions based only on the prior throw, it is a

Markov chain. However, it is neither irreducible nor aperiodic. If the first throw is
draw, then the same combination continues forever. If the first throw is not draw,
then the following pattern with period 6 repeats forever: (R, S) → (R, P) → (S,
P) → (S, R) → (P, R) → (P, S) → (R, S).
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Chapter 4
Metropolis Algorithm

General aspects of the Markov Chain Monte Carlo algorithms, which we learned in
the previous chapter, may have left you confused. To really understand the subject,
we need concrete examples and implementations. In this chapter, we introduce the
Metropolis algorithm [1, 2], which is the most famous version of MCMC, and use
it to demonstrate how actual simulations are done.

Though MCMC is used for complicated calculations, when we learn how to use
them there is absolutely no need for using complicated examples. In this chapter,
we start with the easiest example: univariate integration. This example tells you all
the essence of the Markov Chain Monte Carlo algorithms. Toward the end of the
chapter, we discuss the multivariate version as well. Hopefully, you will be surprised
in a good sense: the generalization to multivariate integral is very straightforward.

4.1 Metropolis Algorithm

Suppose that a probability distribution P(x) is written as

P(x) = e−S(x)

Z
. (4.1)

In physics, the function S(x) is called the action and the normalization factor Z is
called the partition function. If you are reading this book having the application to
statistics in mind, you can regard S as log-likelihood up to a sign. Below, we assume
that S(x) is a continuous function of a real variable x .1 In the case of the Gaussian

1 An example with discrete variables is the Ising model which will be explained in Sect. 6.2.
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distribution, the action is S(x) = x2

2 and the partition function is Z = √
2π . Usually,

in practical applications, only S(x) is known and Z is unknown.
In the Metropolis algorithm, starting with an initial value x (0), a sequence x (1),

x (2), . . ., x (k), x (k+1), . . . is generated as follows:
Metropolis algorithm� �

1. Choose a real number �x randomly, and propose x ′ = x (k) + �x as a can-
didate for x (k+1). To satisfy the detailed balance condition, we choose the
probability distribution of�x such that�x and−�x appear with the same
probability. (Here, we choose an appropriate c > 0 and use the uniform
random numbers between −c and +c.)

2. Metropolis test: the candidate x ′ is accepted and the value of x is
updated as x (k+1) = x ′ with a probability min(1, eS(x (k))−S(x ′)). (Here
min(1, eS(x (k))−S(x ′)) means the smaller one of 1 and eS(x (k))−S(x ′). ) Other-
wise x ′ is rejected and the value of x remains unchanged, as x (k+1) = x (k).

� �
Note that �x is chosen randomly at each k. For the Metropolis test, a uniform
random number r between 0 and 1 is generated, and the proposal x ′ is accepted if
r < eS(x (k))−S(x ′).

Among the four conditions listed in Chap. 3, we can immediately check three of
them:

• We choose�x randomly without referring to the history, so it is trivially aMarkov
chain.

• Because we are considering a connected domain of integration, any pair of x and
x ′ can be connected with a finite number of steps. Hence, this Markov chain is
irreducible.

• For any ns = 1, 2, . . . and x , there is a path connecting x and itself with ns steps.
(ns = 1 is realized when �x = 0. Except for the maxima of S(x), ns = 1 can be
realized also when the proposed candidate x ′ is rejected at the Metropolis test.)
Hence, the period is 1 for any x , and this Markov chain is aperiodic.

The detailed balance condition is also satisfied. This is a little bit nontrivial, so
let us follow the logic carefully:

• First of all, because we assume −c < �x < c, the transition probability is zero if
|x − x ′| ≥ c:

T (x → x ′) = T (x ′ → x) = 0 if |x − x ′| ≥ c. (4.2)

In this case, the detailed balance condition is trivially satisfied as

P(x) · T (x → x ′) = P(x ′) · T (x ′ → x) = 0. (4.3)

• If |x − x ′| < c,�x = x ′ − x and−�x = x − x ′ appear with the same probability
1
2c . (More precisely, this is the probability density. The probability that x ′ − x <
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�x < x ′ − x + ε is ε/2c.) By multiplying this and the probability of passing the
Metropolis test, we obtain

T (x → x ′) = 1

2c
× min(1, eS(x)−S(x ′)), (4.4)

T (x ′ → x) = 1

2c
× min(1, eS(x ′)−S(x)). (4.5)

Suppose S(x) ≥ S(x ′). Then eS(x)−S(x ′) ≥ 1, and hence, a proposal x → x ′ passes
theMetropolis test with 100%probability, and hence, T (x → x ′) = 1

2c . Therefore,

P(x) · T (x → x ′) = e−S(x)

Z
× 1

2c
. (4.6)

On the other hand, eS(x ′)−S(x) ≤ 1, and hence T (x ′ → x) = eS(x ′)−S(x)

2c . Therefore,

P(x ′) · T (x ′ → x) = e−S(x ′)

Z
· e

S(x ′)−S(x)

2c
= e−S(x)

Z
× 1

2c
. (4.7)

In this way, we could confirm that the detailed balance condition P(x) · T (x →
x ′) = P(x ′) · T (x ′ → x) is satisfied.
When S(x) < S(x ′), we can easily check the detailed balance condition by repeat-
ing the same argument exchanging the roles of x and x ′.

4.2 Calculation of Expectation Value

Let us see a concrete example of the calculation based on the Metropolis algorithm.
As before, we use S(x) = x2

2 . Here is a sample code in C:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

int main(void){
int niter=100; //Collect 100 samples.
double step_size=0.5e0; //Set step size to be 0.5.

srand((unsigned)time(NULL));
//Set the seeds of random numbers by using the system clock.

/*********************************/
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/* Set the initial configuration */
/*********************************/
double x=0e0;
int naccept=0; //Counter for the number of acceptance.
/*************/
/* Main loop */
/*************/
for(int iter=1;iter<niter+1;iter++){
double backup_x=x;
double action_init=0.5e0*x*x;

double dx = (double)rand()/RAND_MAX;
dx=(dx-0.5e0)*step_size*2e0;
x=x+dx;

double action_fin=0.5e0*x*x;
/*******************/
/* Metropolis test */
/*******************/
double metropolis = (double)rand()/RAND_MAX;
if(exp(action_init-action_fin) > metropolis)
/* accept */
naccept=naccept+1;

else
/* reject */
x=backup_x;

/***************/
/* data output */
/***************/
printf("%.10f %f\n",x,(double)naccept/iter);}

}

Let us decipher this sample code line by line. Firstly, we set the seed of the random
number generator:

srand((unsigned)time(NULL));

Here, we are using the default random number generator in the system. It is not a
good habit to use the same sequence of random numbers every time, so we used the
system time as a seed. For more serious, large-scale simulations, we recommend you
use amore sophisticated random number generator such as theMersenne Twister [3].

Next, we set the initial condition. Here we chose x = 0:

double x=0e0;
int naccept=0;

naccept is a counter for the number of acceptances (i.e., howmany times proposals
of the update x → x ′ are accepted).

The following “main loop” is the main part. The variable iter corresponds
to k. (iter means iteration.) An integer niter is the number of iterations, or
equivalently, the number of configurations generated during the simulation. Before
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the Metropolis test, we do not know whether the proposed value will be accepted or
not, so we save the value of x = x (k) in backup_x,

double backup_x=x;

then we calculate the action action init = S(x (k)) as

double action_init=0.5e0*x*x;

Here “init” means initial, namely, this is the ‘initial’ action before the candidate x ′ is
proposed. Next, dx = �x is randomly generated and x ′ = x (k) + �x is calculated:

double dx = (double)rand()/RAND_MAX;
dx=(dx-0.5e0)*step_size*2e0;
x=x+dx;

Note that a random number between 0 and 1 is generated as rand()/RAND MAX,
then it is shifted and rescaled such that a uniform random number between−c and+c
is obtained. By using x ′ obtained in this way, action fin = S(x ′) is calculated
(“fin” means final). Finally, the Metropolis test is performed:

/*******************/
/* Metropolis test */
/*******************/
double metropolis = (double)rand()/RAND_MAX;
if(exp(action_init-action_fin) > metropolis)

/* accept */
naccept=naccept+1;

else
/* reject */
x=backup_x;

metropolis is a uniform random number between 0 and 1, which corresponds to
r . Depending on the outcome of the Metropolis test, the candidate x ′ is accepted or
rejected.

All programs based on Markov Chain Monte Carlo have essentially the same
structure. Depending on the details of the problems, more sophisticated algorithms
may be used, but essentially, any algorithm amounts to the improvement of x →
x ′ = x + �x . Therefore, if you could understand how this program works, you can
understand any complicated programs for MCMC except for technical details.

Let us see a result of an actual simulation. We take the initial configuration to be
x (0) = 0, and use the step size c = 0.5. (As we will see later, this choice of step size
c is not optimal.) In Fig. 4.1, the distribution of x (1), x (2), . . . , x (K ) is shown for K =
103, 105, 107. We can clearly see the convergence to the target distribution P(x) =
e− x2

2√
2π

as K becomes larger. In Fig. 4.2, the expectation values 〈x〉 = 1
K

∑K
k=1 x

(k)

and 〈x2〉 = 1
K

∑K
k=1

(
x (k)

)2
are plotted. As K becomes larger, they converge to the

correct values (i.e., the expectation values under the target distribution) 0 and 1.
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Fig. 4.1 The histogram of x (1), x (2), . . . , x (K ) for K = 103, 105 and 107. It converges to the target

distribution P(x) = e− x2
2√
2π

as K becomes large

Fig. 4.2 〈x〉 = 1
K

∑K
k=1 x

(k) and 〈x2〉 = 1
K

∑K
k=1

(
x (k)

)2
. They approach the correct values 0 and

1 as K increases

The step size c is taken such that the acceptance rate (the probability that the
proposal x → x ′ = x + �x is accepted) is not too large and not too small. If c is
too large, the acceptance rate is very small, and the value of x rarely changes. If c
is too small, the acceptance rate becomes almost 100%, but the change at each step
is too small and hence x stays more or less the same value for a long time. Either
way, compared to the optimal value of c, a lot more steps are needed in order to
approximate the correct statistical distribution. This point is explained in detail in
Sect. 4.3.

Typically, 30%–80% acceptance rate is the sweet spot. However, it depends on
the algorithm and/or the kind of integral under consideration.
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Fig. 4.3 The histogram of
K = 107 configurations
obtained by using the
Metropolis algorithm, with a
wrong choice �x ∈ [− 1

2 , 1
]
.

The dashed line is the target

distribution P(x) = e− x2
2√
2π

.
Because the detailed balance
condition is not satisfied, the
target distribution is not
correctly reproduced
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Example of Incorrect Implementation

People learn from their mistakes. To use theMetropolis algorithm correctly, let us see
an example of a wrong way of using the algorithm. Suppose we chose �x randomly
between − 1

2 and 1. Then the detailed balance condition is not satisfied; it can easily
be seen by noticing that a transition 0 → 1 can happen with a nonzero probability
while 1 → 0 cannot. The distribution of x calculated this way is shown in Fig. 4.3.
Obviously, the target distribution is not correctly reproduced.

4.3 Autocorrelation

In principle, just by following the rules we have seen so far, we can always generate
the target distribution. However, that it is correct in principle does not mean it is
practically useful. Because we cannot live forever, we need to reach the target distri-
bution as quickly as possible. Furthermore, we have to make sure that the samples we
got are “good” ones. For example, even if we got 10,000 samples, if the acceptance
rate is too low and we got only 10 different values, each of them appearing 1000
times, then the value of such “bad” samples is just the same as the value of 10 “good”
samples.

The correlation is an important keyword to understand this issue. In Markov
Chain Monte Carlo, because x (k+1) is obtained by slightly changing x (k), they are
correlated to each other. This correlation is called the autocorrelation. If the step
size is too small or the acceptance rate is too low, the autocorrelation can be very
large. If the autocorrelation is larger, it takes a longer time for the convergence to
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the target probability distribution, and the quality of the samples becomes poorer. In
this section, we will see how the autocorrelation can be estimated, and how it can be
reduced.

4.3.1 Correlation with the Initial Value and Thermalization
(Burn-in)

When we studied the Gaussian distribution P(x) = e− x2
2√
2π

, we took the initial config-

uration to be x (0) = 0. We chose this value because we knew the center of the target
distribution is x = 0.What could happen if we took the initial configuration far away
from the center of the target distribution, say x (0) = 100?

The result of the simulation with x (0) = 100 is shown in Fig. 4.4. We can see
that the value of x stays large for a while, because of a strong correlation with the
initial value x (0) = 100.After some time, the correlationwith the initial configuration
disappears, and the fluctuation about the center of the target distribution (x = 0) sets
in. That the simulation reached the center of the distribution in this way is sometimes
expressed as “the simulation (or the Markov chain) thermalized” or “the simulation
reached thermalization”. It is also said that “the Markov chain has burned in”.

As the word “thermalization” suggests, intuition from physics is useful to under-
stand this phenomenon. Imagine we put a small piece of ice into a cup of water. Until
the ice completelymelts, heatmoves fromwater to ice. This is not a thermalized state,
rather the effect from a particular choice of the initial condition (“put a small piece of
ice into the water”) is still there. However, after some time, the ice completely melts,
temperature becomes uniform everywhere in the cup, and macroscopically we will
not see a change anymore. This is the thermalized state. Each molecule is moving
fast even in the thermalized state, but macroscopically it is just a “typical state”. The
analogous situation in the Markov Chain Monte Carlo simulation is that the corre-

Fig. 4.4 The history of the
simulation of the Gaussian
distribution via the
Metropolis algorithm. The
step size is c = 0.5. Because
we chose the initial value to
be x = 100, which is very
far from the typical values,
the strong correlation with
the initial value remains for a
while, and it took a lot of
steps to reach the typical
values |x | ∼ 1
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Fig. 4.5 The zoom-in of
Fig. 4.4, from k = 1000 to
k = 2000. Strong
correlations survive at least
for 20 or 30 steps

lation with the initial configuration became sufficiently small and the configurations
are moving in the important regions dominating the integral. From this analogy, the
meaning of the word “thermalization” should be clear. (As we will explain shortly,
“thermalization” is used for another meaning as well; be cautious!)

When we calculate the expectation value, (unless the number of samples is
extremely large) a large error arises if we use the non-thermalized configurations,
because of the strong influence from the initial condition. Practically, we have to dis-
card the samples before the thermalization. In Fig. 4.4, the thermalization is achieved
by k ∼ 800, so if we discard k ≤ 1000 it should be more than enough. To make a
more quantitative estimate, we should plot the expectation value calculated by using
k ≥ Kcut as a function of Kcut. At sufficiently large Kcut, the dependence on Kcut

disappears, which means that the effect of the initial condition disappeared.
When we study more complicated probability distributions, often we do not even

know the rough shape of the target distribution. In such cases, we should plot several
quantities, e.g., the energy or pressure if we are solving a physics problem. If they
change monotonically, it is likely that the simulation has not thermalized yet. If
the simulation reached thermalization, they would oscillate around the expectation
values. In Fig. 4.5, at first x monotonically decreases, then it fluctuates about zero.

4.3.2 Autocorrelation

Some care is needed even after the thermalization. In Fig. 4.5, we zoomed in on the
interval 1000 ≤ k < 2000 of Fig. 4.4. We can see the correlation between config-
urations, at least for 20 or 30 steps. This length (number of steps) that is needed
for the autocorrelation to disappear is called the autocorrelation length. (A more
quantitative estimate is given in Sect. 4.3.3.) If we treat correlated configurations as
if they are independent, the statistical error is under-estimated. We cannot call two
configurations independent unless they are separated by at least the autocorrelation
length.
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In order to estimate the expectation values precisely, sufficiently many indepen-
dent configurations are needed. Otherwise, the expectation values fluctuate as the
number of samples grows. The expression “the simulation thermalized” is used also
to mean that sufficiently many independent configurations are collected, and the
expectation values cease to fluctuate too much.

4.3.3 Jackknife Method

The Jackknife method [4–6] is an easy and effective way of estimating the autocor-
relation. Here, for simplicity, we assume that the quantities we want to calculate can
be obtained at each configuration.2 Namely, we consider the quantities that can be
expressed as a function of x as f (x). For more generic cases, see Appendix D.

First we divide the samples into groups consisting of w configurations; the first
group is {x (1), x (2),. . .,x (w)}, the second group is {x (w+1),x (w+2),. . .,x (2w)}, and so on.
Let the number of groups obtained this way be n. The average of f (x) in the l-th
group is

f̃ (l,w) ≡ 1

w

lw∑

j=(l−1)w+1

f (x ( j)). (4.8)

By using f̃ (l,w), the Jackknife error is defined as

�w ≡
√
√
√
√ 1

n(n − 1)

n∑

l=1

(
f̃ (l,w) − f

)2
. (4.9)

Here f̄ is the average of f (x) obtained by using all configurations. Namely, the
Jackknife error is the standard error obtained by treating each of the n groups as an
independent sample and regarding f̃ (l,w) as the value obtained from those indepen-
dent samples.

If there are sufficiently many samples, �w grows gradually with w, and beyond
some point (say at w ≥ wc) �w becomes almost constant. The values of wc and �wc

obtained in this way give a reasonable estimate of the autocorrelation length and the
statistical error, respectively.

In Fig. 4.6, the expectation value of x2 and the Jackknife error �w are shown.
The error bar spreads quickly up to w = 20 or so, but after w = 40 there is almost
no change. Hence w = 50 should be a safe choice. In Fig. 4.7, the values of f̃ (l,w)

calculated with w = 50 are plotted. Almost no autocorrelation is visible, and hence,
we can safely regard each group as an independent sample. The result obtained this

2 Quantities not in this class include the variance of the probability distribution. Another example
is the mass of a composite particle in a physics simulation.
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Fig. 4.6 The expectation
value of x2 and the Jackknife
error
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way was 〈x2〉 = 0.982 ± 0.012, which is in a reasonably good agreement with the
analytic value 〈x2〉 = 1.

Let us calculate a little bit by hand, to understand why the autocorrelation length
can be estimated by using the Jackknife method. We consider two different widths
w and 2w for the grouping. Then, by construction,

f̃ (l,2w) = f̃ (2l−1,w) + f̃ (2l,w)

2
. (4.10)

If n groups are obtained when the width is w, then n
2 groups are obtained when the

width is 2w. Hence the Jackknife error obtained by using the width 2w is
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�2w =
√
√
√
√ 1

n
2

(
n
2 − 1

)

n/2∑

l=1

(
f̃ (l,2w) − f

)2

=

√
√
√
√
√ 4

n(n − 2)

n/2∑

l=1

⎛

⎝

(
f̃ (2l−1,w) − f

)

2
+

(
f̃ (2l,w) − f

)

2

⎞

⎠

2

. (4.11)

If the w is sufficiently large such that f̃ (2l−1,w) − f and f̃ (2l,w) − f can be inter-
preted as independent samples fluctuating about zero, then the products of indepen-

dent quantities,
(
f̃ (2l−1,w) − f

)
·
(
f̃ (2l,w) − f

)
, should be averaged to zero when

summed over l. Therefore, approximately,

�2w ∼
√
√
√
√ 1

n2

n∑

l=1

(
f̃ (l,w) − f

)2 ∼ �w (4.12)

has to hold. (Note that we assumed that n is sufficiently large.) Therefore, when w

is larger than the autocorrelation length, �w is almost constant.

4.3.4 Adjustment of the Step Size

To perform the simulation efficiently, we have to tune the parameters appropriately
such that more independent samples are generated with less cost.3 In the current
case, the step size is the parameter to be tuned.

In the Metropolis algorithm, the candidate of the new configuration is accepted
with the probability min(1, e−�S), where �S is the increment of the action S. Let
us consider the case of the Gaussian integral S(x) = x2

2 again, and suppose that the
transition from x ∼ 0 to x + �x was proposed. Then, if �x � 1, the acceptance
probability is min(1, e−�S) = e−�S  1, namely, the candidate is rejected almost
with 100%probability. In other words, only�x � 1 has a reasonable chance of being
accepted. If the step size c is too large, �x � 1 is obtained only with probability 1

c .
Hence, the acceptance rate becomes very small. Furthermore, even when the value
of x is updated, it just means the change �x was of order 1, regardless of the value
of c. Therefore, the acceptance rate is sacrificed for nothing, and the autocorrelation
length increases proportionally to c. In such a parameter region, the product of the
step size c and the acceptance rate becomes constant. On the other hand, if c becomes
too small, the acceptance rate is almost 100%, but the amount of the change at each
step decreases proportionally to c. Such a process can be regarded as the random

3 Here, we assume that the “cost” is the amount of computation, or equivalently the time or the
electricity bills for the computation. When we use parallel computers, we can save time by paying
more electricity bills, so the notion of “cost” is not trivial.
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Table 4.1 The relation between the step size c and the acceptance rate, measured from 10,000
samples

Step size c Acceptance rate c × acceptance rate

0.5 0.9077 0.454

1.0 0.8098 0.810

2.0 0.6281 1.256

3.0 0.4864 1.459

4.0 0.3911 1.564

6.0 0.2643 1.586

8.0 0.1993 1.594

Fig. 4.8 〈x2〉 = 1
K

∑K
k=1

(
x (k)

)2
with several different choices of the step size c. The simulation

is not efficient when the step size is too big or too small

walk with the step size c. Typically, in the random walk, the change of the value of
x after n steps is c

√
n. For this reason, the autocorrelation length is proportional to

1
c2 . Therefore, the autocorrelation length will be minimized when c is not too large
and not too small.

In Table 4.1, the acceptance rates at several values of c are summarized. The
product of c and the acceptance rate is almost constant at c > 4, which suggests
that c is too large there. At c = 0.5 and c = 1.0 the acceptance rate is high, which
suggests c is too small. Hence, c = 2.0 ∼ 4.0 appears to be the optimal choice.

In Fig. 4.8, we showed how 〈x2〉 converges to 1, for several values of c. With
c = 2.0 or c = 4.0, faster convergence can be seen compared to smaller or larger c.

4.3.5 Box-Muller Method Revisited

The Box-Muller method introduced in Sect. 2.4.1 can be regarded as a special kind
of Markov Chain Monte Carlo. Let us call the Gaussian random numbers generated
by the Box-Muller method as x (0), x (1), x (2), . . .. We can confirm that they satisfy
the conditions for MCMC:
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• It is aMarkov chain, namely, the probability that x (k+1) is obtained does not depend
on x (0), x (1), . . . , x (k−1). This condition is satisfied trivially—in fact x (k+1) does
not even depend on x (k). Expressed as an equation, the transition probability is
T (x → x ′) = P(x ′).

• The irreducibility is also trivially satisfied. Any transition can happen just by one
step.

• It is easy to confirm the aperiodicity as well. Starting from x , there is a chance to
come back to x after any number of steps.

• The detailed balance condition can be confirmed as follows:

P(x) · T (x → x ′) = P(x ′) · T (x ′ → x) = P(x) · P(x ′). (4.13)

In the usualMarkovChainMonteCarlomethods such as theMetropolis algorithm,
x (k+1) is obtained by slightly changing x (k), which inevitably leads to autocorrelation.
In the Box-Muller method, x (k+1) is created without referring to x (k) and hence there
is no autocorrelation. This is the reason that it is called a “random number”. In
this sense, the Box-Muller method is much better than the Metropolis algorithm.
On the other hand, such efficient algorithms are known only for simple probability
distributions. The Metropolis algorithm is very powerful because it can be applied
to any probability distribution.

The Metropolis-Hastings algorithm (Sect. 5.3) and the Gibbs sampling algorithm
(Sect. 5.2) are based on a very simple idea: less autocorrelation leads to higher
efficiency. The Box-Muller method can also be regarded as a special case of these
algorithms.

4.4 Examples Other Than the Gaussian Distribution

So far we have studied only the Gaussian distribution P(x) = e−S(x)

Z = e− x2
2√
2π

. Some
readers may wonder if such a simple method can always work, so let us see a few
other examples.

First, we consider the superposition of two Gaussian distributions,

P(x) = e− (x−3)2

2 + e− (x+3)2

2

2
√
2π

. (4.14)

The action S(x) can be taken as

S(x) = − log
(
e− (x−3)2

2 + e− (x+3)2

2

)
. (4.15)

Hence we only have to rewrite two lines in the sample code, namely, we change

action_init=0.5e0*x*x;
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Fig. 4.9 The histograms of x (1), x (2), . . . , x (K ) with K = 103, 105, 107. The dashed lines are the

target distribution P(x) = e− (x−3)2
2 +e− (x+3)2

2

2
√
2π

. The step size is 0.5 (top) or 5.0 (bottom). When the

step size is 0.5, the deviation from the target distribution is visible even with 107 configurations.
When the step size is 5.0, the convergence to the target distribution is much faster

and

action_fin=0.5e0*x*x;

to

action_init=-log(exp(-0.5e0*(x-3e0)*(x-3e0))+exp(-0.5e0*
(x+3e0)*(x+3e0)));

and

action_fin=-log(exp(-0.5e0*(x-3e0)*(x-3e0))+exp(-0.5e0*
(x+3e0)*(x+3e0)));

Weperformed simulationswith step sizes 0.5 and 5.0, and have shown the histograms
of x in Fig. 4.9. The top and bottom rows are for step size 0.5 and 5.0, respectively.

The target distribution P(x) = e− (x−3)2
2 +e− (x+3)2

2

2
√
2π

is shown with the dashed lines. We
can see the convergence to the target distribution for both cases.When the step size is
5.0, convergence is achieved quickly.However,when the step size is 0.5, convergence
is slower; even with 107 samples, the heights of the two peaks do not completely
agree. What is the reason?

In the importance sampling, the configurations with smaller weights are avoided.
In the current setup with two peaks, a bottleneck near x = 0 consists of low-weight
configurations that are not sampled frequently. Therefore, if the step size is small, it
is difficult to go through this bottleneck and reach the other peak. If the transitions
between the two peaks happen frequently, the heights quickly become the same.
Otherwise,more time is spent at one of the peaks and the heights differ for a long time.
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Fig. 4.10 The probability distribution (4.16) reproduced by using the Metropolis algorithm with
the step size 0.5. The histograms of x (1), x (2), . . . , x (K ) with K = 103, 105, 107 are shown

As explained in Sect. 3.2, such a bottleneck can effectively break the irreducibility.
(Of course, the irreducibility is not completely broken, so if wewait very longwewill
get the right answer. However a “very long time” can often be more than the human
lifespan.) When the step size is 5.0, configurations can jump over the bottleneck
and go directly from one peak to the other, so a quick convergence can be achieved.

In Sect. 4.7.1, we consider a more extreme example, P(x) = e− x2
2 +e− (x−100)2

2

2
√
2π

. Please
think about the optimum step size for that case. (In Sect. 6.3.3, we will introduce the
replica-exchange method, which can be used for more complicated problems.)

As yet another example, let us consider a combination of the semi-circle distri-
bution at x < 0 and the Gaussian distribution at x ≥ 0:

P(x) =

⎧
⎪⎨

⎪⎩

e− x2
2√
2π

(x ≥ 0)
2
π

√
1 − x2 (−1 ≤ x < 0)
0 (x < −1)

(4.16)

The probability is zero at x < −1, hence x ′ < −1 is always rejected. (Equivalently,
we take S(x) = ∞ at x < −1.) The distribution obtained in this way is shown in
Fig. 4.10. As expected, x < 0 is a semi-circle, and x > 0 is Gaussian. In this case,
the choice of the step size is not as important as in the last example because there is
no bottleneck.

4.5 Application to Complicated Integrals

In Markov Chain Monte Carlo, the expectation values can be obtained, but the
partition function Z cannot be calculated directly. In many cases, the partition func-
tion is merely a normalization factor that is not particularly useful. However, some-
times we happen to be interested in the value of Z itself. In such a case, how can we
calculate it?

When there is only one variable, we can plot the probability distribution P(x) =
e−S(x)

Z obtained via MCMC and take the ratio with e−S(x). However, this method does
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not work when there are many variables. Below, we show a method that can easily
be generalized to multivariate distributions.

The action S(x) can be any complicated real-valued function, as long as the
partition function Z = ∫

dxe−S(x) is finite. If the action is a simple function, for
example S0(x) = x2

2 , the partition function can be calculated analytically, as Z0 =
∫
dxe−S0(x) = √

2π . By using such an S0, we can calculate the ratio of Z and Z0 via
MCMC:

Z

Z0
= 1

Z0

∫

dxe−S0 · eS0−S = 〈
eS0−S

〉
0 . (4.17)

Here 〈 · 〉0 is the expectation value calculated by using e−S0 as the weight. If we know
Z0, we can get the value of Z as well.

As an example, let us consider

S(x) =
{− 1

2 log(1 − x2) (−1 < x < 1)
∞ (x < −1, x > 1)

(4.18)

Then the partition function Z has to be the area of the semi-circle, π
2 . If we calculate

the expectation value of eS0(x)−S(x) which is expressed as

eS0(x)−S(x) =
{
e

1
2 x

2√
1 − x2 (−1 < x < 1)
0 (x < −1, x > 1)

(4.19)

we should obtain

Z

Z0
= π

2
· 1√

2π
= 0.6266.... (4.20)

In the left panel of Fig. 4.11, we can see the convergence to this value.
In principle, this method always works. In practice, however, it works only when

the probability distributions P(x) = e−S(x)

Z and P0(x) = e−S0(x)

Z0
have a sufficiently

large overlap. To illuminate this point, let us consider S(x) = (x−α)2

2 . In this case,
P(x) and P0(x) are peaked around x = α and x = 0, respectively. The weight factor
to be calculated via MCMC is

P(x)

P0(x)
= eS0(x)−S(x) = e

x2

2 − (x−α)2

2 . (4.21)

If α is very large, say α = 100, the values of eS0−S appearing in the simulation are
almost always extremely small, e.g., e−5000, because the value of x in the probability
distribution P0 is typically 1. However, once in e+5000 configurations or so, x can
become as large as 100, and then eS0−S takes a large value like e+5000. After taking
the average over infinitely many configurations, we obtain Z

Z0
= 1. However, we

will not see the configurations dominating this average, x ∼ 100, during a realistic
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Fig. 4.11 [Left] The expectation value of (4.19) calculated by using theMetropolis algorithmwith
step size 4. [Right] The expectation value of (4.21) calculated via the Metropolis algorithm with
step size 4. The parameter α is 1, 3, or 5. The horizontal axis is the number of configurations K
used for the calculation of the expectation value

simulation time. Obviously, we cannot get the right answer in any practical sense. In
the right panel of Fig. 4.11, we can see that the convergence is getting significantly
slow already at α = 3. At α = 5, we see a large deviation from the right answer

〈e x2

2 − (x−α)2

2 〉0 = 1 even with 1,000,000 configurations. This issue is called the overlap
problem because it happens due to the lack of overlap between P(x) and P0(x).4

In this example, the overlap problem can be resolved rather easily. Let us be less
ambitious and split the problem into M tasks. We choose a chain of actions S0, S1,
S2, ..., SM = S, in such a way that Sn and Sn+1 are sufficiently close. For example,
we can use Sn = 1

2

(
x − αn

M

)2
, with α

M ∼ 1. Then Zn+1

Zn
(where Zn ≡ ∫

dxe−Sn(x))
can be calculated without suffering from a serious overlap problem. By calculating
Z1
Z0
, Z2

Z1
, . . ., ZM

ZM−1
, we can determine Z = ZM . Similar methods can be used for

more complicated S(x) and Z as well. One of the authors applied this method to a
complicated integral in a physics problem [7].

4.6 Sign Problem

All the arguments above assumed e−S(x) ≥ 0 so that it can be regarded as a probability.
This assumption is not valid inmany important applications in physics, i.e., theweight
e−S(x) can be negative or complex at certain values of x . Then the Markov Chain
Monte Carlomethods are not directly applicable. This is the infamous sign problem.5

For reviews, see e.g., Refs. [8, 9]. The sign problem in physics is one of the biggest
motivations for the quantum computer [10, 11].

4 The negative sign problem, which will be discussed in Sect. 4.6, can be regarded as a version of
the overlap problem.
5 When e−S(x) is complex, it is also called the “phase problem”, but even in that case “sign problem”
is more commonly used.
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There is no generic solution to the sign problem known to date. The sign problem
is a very difficult problem that is related to one of the biggest issues in computer
science and mathematics: the P �= N P conjecture. If there were a generic solution,
it would mean P = N P [12], and hence it is widely believed that a generic solution
cannot exist. However, several case-by-case solutions specific to concrete problems
are known. Also, sometimes we can beat the sign problem by brute force, simply
by investing a lot of computational resources. In this section, we introduce a typical
example of such a brute-force method: the reweighting method.

Suppose e−S(x) is complex.Wewrite it as a product of the absolute value |e−S(x)| =
e−S0(x) and the complex phase eiθ(x):

e−S(x) = e−S0(x) × eiθ(x). (4.22)

It is straightforward to perform MCMC by adopting e−S0 as the weight. (This is
called the phase-quenched simulation.) We use 〈 · 〉0 to denote the expectation value
with this weight. Then

∫

dxe−S(x) = 〈eiθ(x)〉0 ×
∫

dxe−S0(x), (4.23)

and hence, by calculating 〈eiθ(x)〉0 and
∫
dxe−S0(x) we can determine

∫
dxe−S(x).

Note that we can use the method explained in Sect. 4.5 to calculate
∫
dxe−S0(x).

Thismethod is simple in principle, but often eiθ fluctuates very violently and 〈eiθ 〉0
becomes very close to zero. This is often the case when there are many variables in
the integral. In case such large fluctuations appear, we need to determine 〈eiθ 〉0 very
precisely, which makes the simulation harder.

The calculation of the expectation value 〈 f (x)〉 is also simple, by using

〈 f (x)〉 = 〈 f (x)eiθ 〉0
〈eiθ 〉0 . (4.24)

In this case, again, both the numerator and denominator can become very small if
eiθ fluctuates a lot.

The sign problem becomes particularly severe when the presence of the phase
factor affects the configurations dominating the integral.6 In such cases, the sign
problem can be regarded as a version of the overlap problem.

6 In such cases, contributions from dominant configurations in the phase-quenched simulation are
canceled by particularly violent oscillations of eiθ and a new peak emerges from the tail of the
phase-quenched probability distribution.
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4.7 Common Mistakes

In this section, we show a few common mistakes among beginners. These mistakes
are sometimes made by experts, too.

4.7.1 Changing Step Size in the Middle of the Simulation

Imagine there is a bottleneck in the probability distribution, like in Fig. 4.9. As an

extreme example, we can consider S(x) = − log
(
e− x2

2 + e− (x−100)2

2

)
. Then e−S(x)

has two peaks around x = 0 and x = 100, in between e−S(x) is almost zero. In such
cases, it is not easy to sample the entire distribution because it is difficult to go
through the bottleneck. Also, it often happens that the simulation is trapped in a
special configuration surrounded by bottlenecks, gets stuck there for a long time,
and the acceptance rate becomes very low. Then, you might be tempted to change
the step size, say make it smaller so that the acceptance rate goes up. However, if
you do that, you get a wrong result. You must not change the step size in the middle
of the simulation.

Still, it is totally fine to combine multiple step sizes. As long as the conditions
explained in Chap. 3 are not broken, we can do whatever we like. For example,
you can take step size c = 1 for the even steps and c = 100 for the odd steps. With
this choice, at the odd steps, the transition between the peaks around x = 0 and
x = 100 can take place, and hence the entire distribution can be sampled (Fig. 4.12).
Alternatively, we can set the step size by throwing a dice. Namely, at each step,
you can choose the step size to be c = 1, 2, 3, 4, 5 or 6 with probability 1

6 for each
value, without breaking the conditions listed in Chap. 3. We can do whatever, so we
recommend you try various options.

When the configurations are far from thermalization, the simulation often gets
stuck at a special configuration. To avoid this, we can choose a good initial configu-
ration (if we know about basic features of the probability distribution), or we can take
the step size to be small at the beginning and then switch to a larger step size after
thermalization. There is no problem as long as we use the same step size when we
calculate the expectation values. Because the configurations before thermalization
are simply discarded, we can change the step size during the thermalization process.7

7 Another common technique is to skip the Metropolis test at the early stage of the thermalization
process. This technique is particularly powerful when it is combined with the HMC algorithm intro-
duced in Sect. 5.1. Because those configurations are not used for the calculation of the expectation
value, there is no need for the detailed balance condition there.
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Fig. 4.12 The probability distribution P(x) = e− x2
2 +e− (x−100)2
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reproduced by using theMetropolis
algorithm with the step size c = 1 for the even steps and c = 100 for the odd steps. The histogram
of 10,000,000 samples is shown. The target distribution P(x) is also drawn, but it is invisible to the
naked eyes because it agrees well with the histogram

4.7.2 Mixing the Configurations Obtained by Using Different
Step Sizes

This example is similar to the one in Sect. 4.7.1. If several sequences of the configu-
rations are obtained by using different step sizes, the convergence to the right answer
is guaranteed for each step size. However, if the simulations are terminated at finite
numbers of steps and the configurations obtained by using different step sizes are
mixed, the statistical error might become uncontrollable, and unreasonable results
may be obtained. Still, if the autocorrelation length is properly estimated for each
step size, it is possible to take the average by mixing the independent samples.

If several sequences of the configurations are obtained by using the same step
size, there is no problem in using all the configurations for the analyses, as long as
each run is sufficiently well thermalized.

4.7.3 “Random Numbers” Were Not Really Random

As we have mentioned, the “random numbers” used in numerical simulations are
actually pseudorandom. Therefore, we can make unexpected mistakes if we are
not careful enough. For example, what happens if we repeat the same sequence
of pseudorandom numbers every 1000 steps? The outcome is shown in Fig. 4.13.
Obviously, the answer is wrong.
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Fig. 4.13 Wrong example of the Gaussian integral with Metropolis algorithm, step size c = 1. The
same sequence of pseudorandom numbers was repeated every 1000 steps (i.e., “random numbers”

were not really random). In the correct simulation, 〈x2〉 = 1
K

∑K
k=1

(
x (k)

)2
has to converge to 1.

However, in this example, convergence to a wrong value is observed

Such mistakes happen very easily. Suppose we work on a very large-scale simu-
lation that takes several months. Then we have to split the task into small jobs which
can be finished at a short time scale, say one day or an hour. For example, 10 steps
are processed in each job, and we repeat 1000 jobs so that 10000 steps are obtained
in total. Then if we make an error in the setting of the seeds, the same sequence of
pseudorandom numbers would be repeated every 10 steps.

In order to avoid such mistakes, it is better to save both the configuration and the
information regarding the pseudorandom numbers at the end of each job. It is kind
of tedious at first, but once you write a code, you can copy-and-paste the same one.

4.8 Multivariate Metropolis Algorithm

So far, we have only dealt with the univariate distributions. Although all the essence
is there, it is instructive to learn about the cases with many variables that suffer from
the curse of dimensionality. In this section, we generalize the Metropolis algorithm
to multivariate distributions.
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This generalization is very simple. Let the variables be (x1, x2, . . . , xn). Because
there aremultiple variables, there are roughly two possible ways we can update them.
The first one is 〈Update simultaneously〉:

Multivariate Metropolis 〈Update simultaneously〉� �

1. For all i = 1, 2, . . . , n, choose�xi randomly from [−ci ,+ci ], and propose
x ′
i ≡ x (k)

i + �xi as a candidate of x
(k+1)
i . The step sizes c1, c2, . . . , cn can

be different from each other.
2. Metropolis test: the candidate {x ′} is accepted and the value of {x} is updated

as {x (k+1)} = {x ′}with a probability min(1, eS({x (k)})−S({x ′})). Otherwise {x ′}
is rejected and the value of {x} remains unchanged, as {x (k+1)} = {x (k)}.

� �
The other one is 〈Update one by one〉:

Multivariate Metropolis 〈Update one by one〉� �

1. Choose �x1 randomly from [−c1,+c1], and take x ′
1 ≡ x (k)

1 + �x1. Other
variables are left untouched, x ′

i ≡ x (k)
i (i = 2, 3, . . . , n).

2. Metropolis test: the candidate {x ′} is accepted and the value of {x} is updated
as {x (k+1)} = {x ′} with a probability min(1, eS({x (k)})−S({x ′})). Otherwise {x ′}
is rejected and the value of x remains unchanged, as {x (k+1)} = {x (k)}.
(Whether the proposal is accepted or not, x2, x3, . . . , xn are left untouched.)

3. Update x2 in the same manner. (x1, x3, . . . , xn are left untouched.)
4. In the same manner, update x3, . . . , xn one by one.

� �
For the Metropolis test, a uniform random number r between 0 and 1 is generated

and the candidate {x ′} is accepted if r < eS({x (k)})−S({x ′}).
We recommend that the reader check that, either way, the four conditions of

Markov Chain Monte Carlo explained in Chap. 3 are satisfied. (Strictly speaking,
the situation is a little bit subtle in 〈Update one by one〉; see the exercise at the end
of this chapter.)

When there are many variables, 〈Update simultaneously〉 usually forces us to
take the step size ci small, because otherwise the acceptance rate becomes low.
On the contrary, 〈Update one by one〉 allows us to take the step size relatively large.
Furthermore, in case the variable xi interacts with only a few other variables (e.g., the
nearest-neighbor interaction which can be written as S = f (x1, x2) + f (x2, x3) +
. . . f (xn−1, xn)) xi can be updated by calculating only the terms containing xi (in the
example above, f (xi−1, xi ) + f (xi , xi+1)), and hence, the computational cost can
be reduced.

Either way, a different value of step size ci can be used for each variable xi . Please
check that the detailed balance condition is still satisfied, as an instructive exercise. In
case the widths of the probability distribution heavily depend on the variables, (there
can be exceptions, but in many cases) the simulation becomes more efficient if ci is
proportional to the width. When we do not have a good guess regarding the width,
we can try several different step sizes and see how the acceptance rate changes.
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4.8.1 Multivariate Gaussian Distribution

Let us consider the multivariate Gaussian distribution8

S(x1, . . . , xn) = 1

2

n∑

i, j=1

Ai j xi x j (Ai j = A ji ). (4.25)

As an example, we take n = 2. We write x1 = x and x2 = y, and choose the coeffi-
cients to be A11 = 1, A22 = 1, A12 = 1

2 . Then, the action S(x, y) becomes9

S(x, y) = x2 + y2 + xy

2
. (4.26)

The term 1
2 xy in S(x, y) introduces the correlation between x and y. For example,

we can imagine that x and y parametrize a person’s mathematical skills and baseball
skills, respectively. Larger x means better mathematical skills, and larger y means
better baseball skills. Zero is average, and a large negative value means bad skill.

If S(x, y) = x2+y2

2 and P(x, y) ∝ e− x2+y2

2 , the values of x and y are not correlated
at all, which means whether one is good or bad at mathematics is not related to

baseball skills. If S(x, y) = x2+y2+xy
2 and P(x, y) ∝ e− x2+y2+xy

2 , it is unlikely that
one is good both at math and baseball or bad both at math and baseball, rather if
one is good at math or baseball he/she is likely to be bad at the other. It would be a
reasonable assumption because they have to split a finite amount of time to the study
of mathematics and practice of baseball, and also because God usually does not bless
a person twice.

We use the Metropolis algorithm to generate this probability distribution. If the
number of variables is as small as 2, there is no big difference between 〈Update
simultaneously〉 and 〈Update one by one〉. Here we use the former. Below we show
some sample code written in C:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

int main(void){
int niter=10000;
double step_size_x=0.5e0;
double step_size_y=0.5e0;

8 See Appendix B.2 for basic properties.
9 If we consider a slightlymore generic version S(x, y) = x2+y2+2Axy

2 , the same kind of calculation
applies to −1 < A < 1. If A ≥ 1 or A ≤ −1, then P(x, y) ∝ e−S(x,y) does not make sense as a
probability distribution. Why? (Hint: See Sect. 6.1.2.)
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srand((unsigned)time(NULL));
/*********************************/
/* Set the initial configuration */
/*********************************/
double x=0e0;
double y=0e0;
int naccept=0;
/*************/
/* Main loop */
/*************/
for(int iter=1;iter<niter+1;iter++){
double backup_x=x;
double backup_y=y;
double action_init=0.5e0*(x*x+y*y+x*y);

double dx = (double)rand()/RAND_MAX;
double dy = (double)rand()/RAND_MAX;
dx=(dx-0.5e0)*step_size_x*2e0;
dy=(dy-0.5e0)*step_size_y*2e0;
x=x+dx;
y=y+dy;
double action_fin=0.5e0*(x*x+y*y+x*y);
/*******************/
/* Metropolis test */
/*******************/
double metropolis = (double)rand()/RAND_MAX;
if(exp(action_init-action_fin) > metropolis){
/* accept */
naccept=naccept+1;

}else{
/* reject */
x=backup_x;
y=backup_y;}

/***************/
/* data output */
/***************/
// output the results every ten steps.
if(iter%10==0){
printf("%.10f %.10f %f\n",x,y,(double)naccept/
iter);}

}
}

The code is almost identical to the one for S(x) = x2

2 shown in Sect. 4.2. The

only differences are that there is one more variable y and S(x) = x2

2 is replaced

with S(x, y) = x2+y2+xy
2 . The same applies even if there are thousands or millions

of variables, and even if the probability distribution is a very complicated function.
As we have seen, different step sizes can be used for x and y. However, in this

specific example, it is natural to use the same step size because x and y appear in
S(x, y) symmetrically. We used the Metropolis algorithm with the step size c = 0.5,
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Fig. 4.14 A scatter plot of
(x, y) that follows the
bivariate Gaussian
distribution

P(x, y) ∝ e− x2+y2+xy
2 . We

used the Metropolis
algorithm, with the step size
0.5 for both x and y. One
configuration is sampled
every 10 steps, and 10,000
configurations are collected
in total

and output the configuration (x, y) every ten steps.We collected 1,000 configurations
(10,000 steps) and plotted them in Fig. 4.14. (In this case, we know the probability
distribution has the largest weight at x = y = 0. Therefore we set the initial config-
uration to be x = y = 0, to save the time for thermalization.) The dashed diagonal
line is y = −x . The points (x, y) are distributed roughly along this line, and hence,
we can confirm the tendency that “if x is a large positive value (good at mathematics)
then y is a large negative value (bad at baseball)” and “if x is a large negative value
(bad at mathematics) then y is a large positive value (good at baseball)”. As a point
(x, y) goes further from the center of the distribution ((x, y) = (0, 0)), the density
becomes lower.

Now we have generated the probability distribution. As an application, let us
design a life plan. Suppose some boys and girls do not know what they are good at,
and they are wondering whether they should become a physicist or a baseball player.
They would want to know the expectation value of their income as one of the factors
for their career choice. For such an estimate, we need “salary functions” sphysics and
sbaseball that relate the math and baseball skills to the salaries as a physicist or baseball
player.

To become a physicist, it is better to be good at mathematics. However, even if
one is not good at mathematics, somehow it is possible to survive and write papers.
In this sense, some income is expected even if x is small. Another crucial fact is that,
even if one is extremely good at mathematics, a physicist’s salary cannot be huge. It
is reasonable to assume that baseball skills do not affect a salary as a physicist, so
we assume the salary function of physicists is a function of math skill x only and
takes the following form:
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Fig. 4.15 Math skills x vs
salary as physicist sphysics(x)
(solid line) and baseball
skills y vs salary as baseball
player sbaseball(y) (dashed
line)
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sphysics(x) = 2 + tanh x

3
. (4.27)

The graph is shown in Fig. 4.15. Overall, this function is very smooth.
We expect that the salary function of baseball players sbaseball is very different.

Unless one is exceptionally good at baseball, namely, unless y is sufficiently large,
one cannot become a professional baseball player. Hence, the salary is zero below
a certain threshold. However, if one actually becomes a professional player, their
salary can be astronomical. Therefore, salary increases quickly beyond the threshold
value of y. Probably, math skills do not affect the salary as a baseball player, so let
us assume that sbaseball is a function of y only, and takes the following form:

sbaseball(y) =
{
0 (y ≤ 2)
y2

2 (y > 2)
(4.28)

The graph is shown in Fig. 4.15, together with sphysics. A discontinuity at y = 2 is an
important feature.

Let us calculate the expectation values 〈sphysics(x)〉 and 〈sbaseball(y)〉 by using the
configurations generated via the Metropolis algorithm.

Let us see 〈sphysics(x)〉 first. Analytically, we can show that 〈sphysics(x)〉 = 2/3 =
0.66 . . .. Can we reproduce this value via MCMC? We repeated the simulation 100
times with different sequences of the pseudorandom numbers, and calculated the
average and standard deviation of 100 streams. The result is shown in Fig. 4.16.
The horizontal axis is the number of samples K used to calculate the expectation
value. We picked up four typical streams and showed them by purple lines. As K
becomes large, the expectation value quickly converges to the exact analytic value.
The convergence is quick because sphysics(x) does not change violently with x (the
difference is at most factor three) and all configurations give similar contributions.
As a result, all configurations are effectively used and values close to the right answer
can be obtained without using too many configurations.
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Fig. 4.16 The expectation value of sphysics(x) is calculated by using the Gaussian distribution

P(x, y) ∝ e− x2+y2+xy
2 . The horizontal axis is the number of configurations K used for the calcula-

tion. 100 independent simulations are performed by using different sequences of random numbers.
The average and the standard deviation of the 100 streams are shown in green. The purple lines are
four typical streams. Quick convergence to the right answer is observed

0.11

0.12

0.13

0.14

0.15

0.16

0 200000 400000 600000 800000 1× 106

sbaseball(y)

K

Fig. 4.17 The expectation value of sbaseball(y) is calculated by using the Gaussian distribution

P(x, y) ∝ e− x2+y2+xy
2 . As in Fig. 4.16, the horizontal axis is the number of configurations K used

for the calculation. 100 independent simulations are performed by using different sequences of the
random numbers. The average and the standard deviation of the 100 streams are shown in green.
The purple lines are four typical streams. Because sbaseball(y) is an extreme function that has a big
jump, the convergence to the right answer is rather slow and many configurations are needed for a
precise estimate

Next, let us calculate 〈sbaseball(y)〉. The answer is 〈sbaseball(y)〉 = 0.1305 . . .. Can
we reproduce this value, as we did for 〈sphysics(x)〉? The result is shown in Fig. 4.17,
by using the same scale as Fig. 4.16. This plot looks very different from that for
〈sphysics(x)〉; even with a fairly large-K , the expectation values from different streams
differ significantly and the convergence to the right value is very slow. This is because
rare configurations (y > 2) have large contributions while the majority of the config-
urations (y ≤ 2) do not contribute at all. In other words, the peak of the probability
distribution P(x, y) and the configurations important for the expectation value do
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not overlap. If we calculate the expectation value in such a situation, wrong answers
may be obtained unless we collect a very large number of configurations. Although,
in the current case, we can increase the number of configurations by brute force, if the
integrand is even more extreme (say, if only y > 10 contribute), or if the simulation
is costly and it is hard to collect many configurations, some improvement is needed.
Below, we will explain a method to solve this problem.

Solving the Overlap Problem

As some of you might have noticed, this is essentially the overlap problem explained
in Sect. 4.5, and hence, can be resolved in the same manner. For example, let us
define a new action by shifting the value of y by α, as

S(x, y;α) = x2 + (y − α)2 + x(y − α)

2
. (4.29)

The partition function associated with S(x, y;α) is defined as

Zα =
∫

dx
∫

dye−S(x,y;α). (4.30)

Then we can express 〈sbaseball(y)〉 in the following manner, by using {αi } (i =
1, . . . , M):

〈sbaseball(y)〉 = 1

Z0

∫

dx
∫

dysbaseball(y)e
−S(x,y;0)

= Zα1

Z0
· Zα2

Zα1

· Zα3

Zα2

· · · ZαM

ZαM−1

· 1

ZαM

∫

dx
∫

dysbaseball(y)e
−S(x,y;0).

(4.31)

Let us denote the expectation value of a function f (x, y) with the weight e−S(x,y;α)

as

〈 f (x, y)〉α = 1

Zα

∫

dx
∫

dy f (x, y)e−S(x,y;α). (4.32)

Then, the partition functions can be written as

Zαi+1 =
∫

dx
∫

dye−S(x,y;αi+1) =
∫

dx
∫

dye−S(x,y;αi+1)+S(x,y;αi )e−S(x,y;αi )

(4.33)
and hence the ratio is

Zαi+1

Zαi

= 〈
e−S(x,y;αi+1)+S(x,y;αi )

〉
αi

≡ 〈
e−�i+1,i

〉
αi

. (4.34)
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Fig. 4.18 The expectation
value of sbaseball(y) is
calculated by using the
reweighting method (4.35).
We took M = 2, α1 = 1.5
and α2 = 3. As expected, the
convergence to the right
answer is fast
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Here we used a shorthand notation �i+1,i ≡ S(x, y;αi+1) − S(x, y;αi ). Therefore,
〈sbaseball(y)〉 written in the form of (4.31) can be expressed as a product of the expec-
tation values with the probability weights e−S(x,y;αi ) (i = 0, . . . , M),

〈sbaseball(y)〉 = 〈
e−�1,0

〉
α0

〈
e−�2,1

〉
α1

· · · 〈e−�M,M−1
〉
αM−1

〈
e−�0,M sbaseball(y)

〉
αM

. (4.35)

Here we set α0 = 0. The key point of this deformation is that, by choosing
{α1, . . . , αM} appropriately, all expectationvalues 〈e−�i+1,i

〉
αi
and

〈
e−�0,M sbaseball(y)

〉
αM

appearing in (4.35) can be calculated without encountering the overlap problem. To
calculate

〈
e−�i+1,i

〉
αi
efficiently, we just have to take αi and αi+1 sufficiently close.

To calculate the last term
〈
e−�0,M sbaseball(y)

〉
αM
, we should take αM to be 2 or 3.

We applied this method with M = 2, α1 = 1.5, and α2 = 3. The result is shown
in Fig. 4.18. Although we divided the task into only three pieces (i = 0, 1, 2), the
convergence to the correct value became much quicker than the naive approach
(Fig. 4.17). This is evidence that the overlap problem was resolved. It may not be
a very sophisticated method, but that we use MCMC would mean we focus on the
practical utility rather than the beauty, so we should not mind!

Nowwe could design a life plan. The expectation value of the salary as a physicist
is about 0.667, while as a baseball player about 0.131 is expected. If the talent is
unknown, the probability distribution used here and the salary functions are reason-
able, and the salary is an important factor in life, then one should become a physicist
rather than a baseball player. Note however that, for people who seriously care about
salary, there are better jobs than a physicist.

Distributions with Many Variables

Even if there are a lot more variables, say n = 100, the same method can be used. It
is better to update the variables one by one because the acceptance rate can become
very small otherwise, unless the step size is very small.
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When xa is varied to xa + �xa , the change of S(x1, . . . , xn) = 1
2

∑n
i, j=1 Ai j xi x j

can be calculated just by looking at the terms containing xa :

1

2
Aaaxaxa +

∑

i �=a

Aiaxi xa (4.36)

Among n(n+1)
2 terms in S(x1, . . . , xn) (n terms for i = j and n(n−1)

2 terms for i < j ;
no need for considering i > j because Ai j = A ji ), there are only n terms that contain
xa , so the computational cost can be reduced drastically.

4.9 Exercises

1. In themain text,when x ′ = x (k) + �x is proposed as a candidate of x (k+1),�x was
taken from the uniform random number. Actually, other kinds of random numbers
can also be fine. Show that �x can be chosen from the Gaussian random number.
Show that, more generally, the detailed balance condition can be preserved as
long as �x and −�x appear with the same probability.

2. Show that�x canbe chosen from theuniformdistributionswith the step size c = 1
and c = 100 at the even and odd steps, respectively, as mentioned in Sect. 4.7.1.
Is the detailed balance condition preserved?

3. Show that the step size can be chosen randomly from c = 1, 2, 3, 4, 5 or 6, with
the probability 1

6 at each step. (see Sect. 4.7.1.)
4. What if the variable is discrete? For example, if x takes only integer values, how

should we choose �x?
5. How can we estimate the error bar of the histogram of the probability distribution

P(x) obtained via the Markov Chain Monte Carlo simulation?
6. If the integral of e−S(x) is not finite, what happens in MCMC?
7. When we showed the detailed balance condition, we implicitly used the fact that

the Jacobian is 1. (If a transformation x → x ′ maps [x, x + ε] to [x ′, x ′,+ε′], the
Jacobian is the ratio of the width, ε′

ε
.) In the examples considered in this book, we

can easily see that Jacobian is 1, unless otherwise stated. (For a little bit nontrivial
case, see the HMC algorithm explained in Sect. 5.1.) What could be a problem if
the Jacobian were not 1?

8. Show that both 〈Update simultaneously〉 and 〈Update one by one〉 are legitimate
procedures.

9. Show that a different step size ci can be used for each variable xi .
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Solutions

1. We generate �x with the Gaussian weight e
− (�x)2

2σ2√
2πσ

. Then the transition probability
T (x → x ′) is

T (x → x ′) = e− (x−x ′)2
2σ2√

2πσ
× min

(
1, eS(x)−S(x ′)

)
. (4.37)

This is obtained by replacing 1
2c in (4.4) with e

− (x−x ′)2
2σ2√
2πσ

. The Eqs. (4.6) and (4.7)
change in a similar manner. When S(x) ≥ S(x ′), we have

P(x) · T (x → x ′) = e−S(x)

Z
× e− (x−x ′)2

2σ2√
2πσ

(4.38)

P(x ′) · T (x ′ → x) = e−S(x ′)

Z
× e− (x ′−x)2

2σ2√
2πσ

× eS(x ′)−S(x) = e−S(x)

Z
× e− (x−x ′)2

2σ2√
2πσ

.

(4.39)

In this way, we can show the detailed balance condition P(x) · T (x → x ′) =
P(x ′) · T (x ′ → x).
More generally, let f (�x) be the probability distribution of f (�x). Then, if
S(x) ≥ S(x ′),

P(x) · T (x → x ′) = e−S(x)

Z
× f (x ′ − x) (4.40)

P(x ′) · T (x ′ → x) = e−S(x ′)

Z
× f (x − x ′) × eS(x ′)−S(x) = e−S(x)

Z
× f (x − x ′).

(4.41)

Therefore, the detailed balance condition is satisfied as long as f (x ′ − x) =
f (x − x ′).

2. Because the step size alternates between c = 1 and c = 100, two different transi-
tion probabilities appear at even and odd steps. Therefore, to define the transition
probability, we need a label to distinguish even and odd steps. Hence, let us intro-
duce a variable y that takes two values, y = 0 (even) or y = 1 (odd), and specify
the state by a pair (x, y). Then,

T ((x, 0) → (x ′, 1)) = Tc=1(x → x ′), T ((x, 1) → (x ′, 0)) = Tc=100(x → x ′).
(4.42)
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It is easy to check that it is an irreducible Markov chain. However the value of y
alternates as 0, 1, 0, 1, . . ., and hence the period is 2. Furthermore, the detailed
balance does not hold; if we forget about y, then the following equalities hold:

P(x)Tc=1(x → x ′) = P(x ′)Tc=1(x
′ → x),

P(x)Tc=100(x → x ′) = P(x ′)Tc=100(x
′ → x). (4.43)

However, if we take y into account then the actual relations are

P(x)T ((x, 0) → (x ′, 1)) = P(x ′)((x ′, 0) → (x, 1)),

P(x)T ((x, 1) → (x ′, 0)) = P(x ′)((x ′, 1) → (x, 0)), (4.44)

which are slightly different from the detailed balance condition.
If we combine two steps y = 0 → 1 → 0 and regard it as one step, it is an
irreducible, aperiodic Markov chain. Still, the combined transition function

T (x → x ′′) =
∫

dx ′Tc=1(x → x ′)Tc=100(x
′ → x ′′) (4.45)

does not satisfy the detailed balance condition, i.e.,

P(x)T (x → x ′) �= P(x ′)T (x ′ → x). (4.46)

If we use a different transition probability

T̃ (x → x ′′) =
∫

dx ′Tc=100(x → x ′)Tc=1(x
′ → x ′′), (4.47)

then

P(x)T (x → x ′) = P(x ′)T̃ (x ′ → x) (4.48)

holds, but it is slightly different from the detailed balance condition.
That the detailed balance condition is not satisfied is not necessarily a bad news,
because the detailed balance condition is just a sufficient condition for MCMC to
work. What we really need is the equilibrium condition

P(x) =
∫

dx ′P(x ′)T (x ′ → x), (4.49)

namely, there is no problem as long as P(x) is stationary. This relation can be
confirmed as follows. From (4.43), we can show that P(x) is a stationary under
the transition Tc(x ′ → x):
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P(x) =
∫

dx ′P(x ′)Tc(x ′ → x). (4.50)

By using it twice, we can show that P(x) is a stationary under the transition
T (x ′ → x):

∫

dx ′P(x ′)T (x ′ → x) =
∫

dx ′P(x ′)
∫

dx ′′Tc=1(x
′ → x ′′)Tc=100(x

′′ → x)

=
∫

dx ′′
(∫

dx ′P(x ′)Tc=1(x
′ → x ′′)

)

Tc=100(x
′′ → x)

=
∫

dx ′′P(x ′′)Tc=100(x
′′ → x)

= P(x). (4.51)

Therefore, the distribution of (x, y = 0) converges to P(x). The same holds for
(x, y = 1) as well.
This is just a small technical issue that depends on the details of the setup. For
example, if the step size changes as c = 1, 1, 100, 1, 1, 100, . . ., then by com-
bining three steps c = 1, c = 100, c = 1 and regarding it as one step, all four
conditions including the detailed balance can be satisfied.

3. We can easily show that �x and −�x appear with the same probability; e.g., the
probability of �x = ±0.5 is 1

6

∑6
c=1

1
2c , that of �x = ±1.41 is 1

6

∑6
c=2

1
2c , and

so on. Hence we can use the result of Exercise 1 without modification. Unlike
Exercise 2, there is no subtlety in this case, and the detailed balance condition is
satisfied almost trivially.

4. We only have to make �x discrete.
5. We can use the Jackknife method. Tomake a histogram from K samples x (1), x (2),

. . ., x (K ), we divide x to bins with width dx , count the number of samples in each
bin, and normalize such that the integral becomes 1. If the number of samples in
the i-th bin is ni , the height of the histogram is ρi = ni

K ·dx .
Let us divide the samples into n groups consisting of w samples. Let ρ̃(l,w)

i be the
histogram calculated from the l-th group of samples. Then the Jackknife error at

each bin is �w,i =
√

1
n(n−1)

∑n
l=1

(
ρ̃

(l,w)
i − ρi

)2
.

6. Because the “probability” and “expectation value” cannot be defined, MCMC
is not applicable. Let us consider S(x) = −x2 as an example. Because S(x) is
smaller when |x | is larger, x diverges to +∞ or −∞.

7. To obtain a probability from a probability density, we have tomultiply thewidth of
an infinitesimal interval. Therefore, strictly speaking, we needed to multiply ε, ε′,
etc, in the expressions appeared in a proof of the detailed balance condition. We
did not include them because, if Jacobian is 1, they are the same overall factor and
could be ignored. When the Jacobian is not 1, we cannot ignore them. Depending
on the choice of �x , the detailed balance condition could be broken.
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8. For the 〈Update simultaneously〉, we can easily show that it is aMarkov chain that
satisfies the irreducibility (unless the domain of integration splits into multiple
islands), aperiodicity, and the detailed balance condition. The proof is almost
identical to the one for the case of one variable.
〈Update one by one〉 is similar to the setup in Exercise 2. There were two kinds
of transitions in Exercise 2, but now there are n of them. It is straightforward
to see it is an irreducible Markov chain. If we update x j when k is j modulo n
( j = 1, 2, . . . , n), then by regarding j = 1 → j = 2 → · · · → j = n → j = 1
as one step, such aMarkov chain is aperiodic. The detailed balance does not hold,
but the equilibrium condition is still satisfied, which is enough for our purpose.
If we change the method slightly such that one of n variables x1, . . . , xn is chosen
randomly with a probability 1

n and updated, then all conditions hold including the
aperiodicity and detailed balance.

9. There is no problem as long as �x and −�x appear with the same probability.
This condition is kept trivially even if we take different step sizes ci for different
variables.
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Chapter 5
Other Useful Algorithms

In Chap. 4, we learned about the Metropolis algorithm. In this chapter, we will
introduce a few other useful algorithms. They might look complicated, but all of
them are simply dealing with the same problem,

How can we reduce the autocorrelation and generate configurations more
efficiently?,

by taking various approaches. Except for technical details, there is no difference from
the Metropolis algorithm. Of course, technical details are important because they
enable us to solve hard problems that cannot be solved via the Metropolis algorithm.
However,with a proper understanding of the basic points of theMetropolis algorithm,
it is not difficult to understand the essence of other algorithms.

5.1 The HMC Algorithm

In this section, we explain the HMC algorithm (Hybrid Monte Carlo algorithm, or
Hamiltonian Monte Carlo algorithm). The original reference is Ref. [1]. A good
review can be found in Ref. [2].

A large contribution to the integral comes from the region where the action S(x)
is small. If we identify S(x) with elevation, we can say

Important configurations = Bottom of the valley.

Roughly speaking, Markov Chain Monte Carlo is like rolling a ball by hitting it in
random directions. If we hit the ball toward the top of the mountain it does not move
much, so the ball moves along the bottom of the valley most of the time. To perform
the integral efficiently, we should avoid hitting the ball upward; instead, we should
push the ball along the bottom of the valley.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
M. Hanada and S. Matsuura, MCMC from Scratch,
https://doi.org/10.1007/978-981-19-2715-7_5
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Fig. 5.1 The difference between the Metropolis algorithm and the HMC algorithm. The elevation
corresponds to S({x}). [Left] In the Metropolis algorithm, if the configuration is pushed uphill the
acceptance probability becomes very low. [Right] In the HMC algorithm, even if the configuration
is pushed uphill, it comes back down

Onemight imagine a three-dimensionalmap, but that is true only for two variables.
When there are more variables, we have to imagine a higher dimensional space
parametrized by x1, x2, x3, . . .. In such a higher dimensional space, the bottom of the
valley is very limited, and if the ball is hit completely randomly as in the Metropolis
algorithm, it is almost always pushed upward (the left panel of Fig. 5.1). Therefore,
the acceptance rate is very small unless the step size is taken to be very small, and
even if the acceptance rate becomes large by sacrificing the step size, the ball almost
rarely moves along the bottom of the valley. As a result, the autocorrelation becomes
very large.

TheHMCalgorithm is designed such that this problem is resolved cleverly and the
configurations move efficiently near the bottom of the valley. The origin of the name
HMC is “Hybrid Monte Carlo”, which means the hybrid of two different methods
(Metropolis and Molecular dynamics simulation). It is also called the “Hamiltonian
Monte Carlo” because Hamiltonian dynamics in physics plays an important role.
Either way, the abbreviation is the “HMC”.

In the real world, even if you throw a ball upward such that it rolls up the slope,
after some time it comes back due to gravity. The HMC utilizes this property. In a
literal sense, the identification “small S = low elevation” is made, and a mechanism
is realized such that the ball is pushed back toward the small-S region, by closely
mimicking a basic equation in physics (the right panel of Fig. 5.1).1 To propose a
candidate x ′ that results from mimicking classical mechanics, we introduce a ficti-
tious time τ and momentum p. We choose the momentum randomly and calculate
the “time evolution” with respect to τ .

In the HMC algorithm, the configurations {x (k)} (k = 0, 1, 2, . . .) are generated in
the following manner. As usual, {x (0)} can be arbitrary. When {x (k)} is given, {x (k+1)}
is generated as follows:

1 TheHMCalgorithmwas invented by physicists.When physicistswork on abstractmath problems,
they often think about concrete examples in physics and rely on the intuition from physics to find
good approaches.



5.1 The HMC Algorithm 77

The HMC algorithm� �

1. Generate the momentum pi conjugate to xi randomly with the Gaussian
weight 1√

2π
e−p2i /2. (To generate the Gaussian random number, the Box-

Muller method (Sect. 2.4.1) can be used.)
2. Molecular dynamics evolution: we calculate the “time evolution” and deter-

mine xi (τ ) and pi (τ ) by using the leapfrog method (Sect. 5.1.2). The
fictitious time τ runs from 0 to τfin. The initial condition is taken to
be xi (τ = 0) = x (k)

i and pi (τ = 0) = pi . The Hamiltonian used in the
leapfrog methods is defined by

H({x}, {p}) = S({x}) + 1

2

∑

i

p2i . (5.1)

The final configuration at τ = τfin is the candidate for the update.
3. Calculate the initial and final values of the Hamiltonian, which we denote

by Hinit and Hfin, at τ = 0 and τfin.
4. Metropolis test: the proposal is acceptedwith a probabilitymin(1, eHinit−Hfin)

and the value of x is updated as x (k+1)
i = xi (τfin). Otherwise, the proposal

is rejected and the value of x remains unchanged, as x (k+1)
i = x (k)

i .
� �

For the Metropolis test, a uniform random number r between 0 and 1 is generated
and the proposal is accepted if r < eHinit−Hfin .

5.1.1 Intuition from Physics

Before looking into the details of the HMC algorithm, let us understand the essence
without using mathematics. At the first glance, HMC would look very complicated
compared to the Metropolis algorithm.Why are we making things (seemingly) com-
plicated? The keys to understanding the advantage are the equation of motion (the
Hamilton equation) and the energy conservation.

Just like in the Metropolis algorithm, there is a randomness in the generation of
new configurations, because the momentum pi is chosen randomly. As far as the
change in the action is concerned, it may be as large as in the Metropolis algorithm.
However, in the HMC algorithm, the change in the Hamiltonian is used for the
Metropolis test. (The reason will be explained later. At this moment please accept
this fact and proceed.) Hence, if the change of the Hamiltonian can be made small,
the acceptance rate becomes large.

As is explained shortly, time evolution via the leapfrog method is a discretization
of the continuum time evolution in classical mechanics. The Hamiltonian is the same
thing as the energy, whose value does not change with time. Therefore, by making
the discretization error smaller, i.e., by sending the step size �τ and the number
of steps Nτ to zero and infinity, respectively, while keeping τfin = Nτ�τ fixed, the
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energy conservation becomes better and better, and the change of the Hamiltonian
�H = Hfin − Hinit vanishes. Then the acceptance rate becomes 100%.

In the HMC algorithm, the momentum pi (∼ the direction and the speed of the
ball) at τ = 0 is chosen randomly, and the candidate {x ′} is obtained by solving
the equation of motion. After a long time, the ball can go far, so the difference
between {x (k)} and {x ′} can be large. Because we want to collect many independent
samples, we should take τfin = Nτ�τ large such that the configuration can change
a lot during the leapfrog time evolution. As we have seen, the acceptance rate for
fixed τfin can be made large by taking Nτ sufficiently large and�τ sufficiently small.
However, the computational cost increases linearly with Nτ , so if Nτ is taken too
large the simulation will not end by the end of our lives. Ideally, we should choose
appropriate values of Nτ and �τ by checking the efficiency of the simulations in
turn by measuring the autocorrelation length.

By the way, the Hamiltonian contains 1
2

∑
i p

2
i in addition to the action S. The

Hamiltonian is conserved during the time evolution, but if 1
2

∑
i p

2
i changes signifi-

cantly, then the change of the action is large as well. Hence one might be worried that
the basic idea—“move around the bottom of the valley”—is not realized. However,
a very nice trick is hidden in the HMC algorithm so that the action does not become
too large even when τfin = Nτ�τ is large and the configuration changes drastically.
People familiar with physics would notice that 1

2

∑
i p

2
i and S correspond to the

kinetic energy and potential energy, respectively. If you imagine gravity, you can
read off the following correspondence:

S is large = Potential energy is large = High elevation

The Hamilton equation describes the time evolution of such a classical system. Even
if you roll the ball upward, it cannot go up forever; it comes back eventually and
moves around by oscillating between the bottom of the valley and some limited
elevation. You do not have to know the equation of motion in order to understand
this; this is what we see in our daily lives. The same holds for the HMC algorithm.
Because the same rule is adopted for the time evolution, even if the initial momentum
is upward, the ball is pushed back and moves near the bottom of the valley. Just by
taking τfin = Nτ�τ to be large, we can move the configuration significantly along
the valley, while avoiding going uphill. Therefore, as we had hoped, the important
configurations are collected efficiently.

5.1.2 Leapfrog Method

Before the discretization, the Hamilton equation is given by

dpi
dτ

= −∂H

∂xi
= − ∂S

∂xi
,

dxi
dτ

= ∂H

∂ pi
= pi . (5.2)
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As we mentioned already a few times, the Hamilton equation describes the time
evolution of the system with the potential energy S({x}) with respect to time τ .
In Appendix. C, we summarized a few important points regarding the Hamilton
equation. You do not have to know the connection to physics in order to use the HMC
algorithm though; practically, the only thing you need is the conservation of energy,
i.e., the value of H does not change with time τ . This follows from the property
that the energy during the infinitesimal time evolution τ → τ + �τ vanishes at the
linear order in �τ :

�H =
∑

i

(
∂H

∂xi
�xi + ∂H

∂ pi
�pi

)

=
∑

i

(
∂H

∂xi

dxi
dτ

�τ + ∂H

∂ pi

dpi
dτ

�τ

)

=
∑

i

(
∂H

∂xi

∂H

∂ pi
− ∂H

∂ pi

∂H

∂xi

)
�τ

= 0. (5.3)

See Exercise 3 at the end of this chapter for more details of the discretization error.
The leapfrog discretization is defined as follows. Please be careful about the

factors 1
2 at the beginning and the end. They are crucial for the reversibility of the

leapfrog time evolution and the detailed balance condition.
The HMC algorithm� �

1. First step
xi (�τ/2) = xi (0) + pi (0) · �τ

2
2. Repeat the following for n = 1, 2, Nτ − 1:

pi (n�τ ) = pi ((n − 1)�τ ) − ∂S
∂xi

((n − 1/2)�τ ) · �τ
xi ((n + 1/2)�τ ) = xi ((n − 1/2)�τ ) + pi (n�τ ) · �τ

3. Final steps
pi (Nτ�τ ) = pi ((Nτ − 1)�τ ) − ∂S

∂xi
((Nτ − 1/2)�τ ) · �τ

xi (Nτ�τ ) = xi ((Nτ − 1/2)�τ ) + pi (Nτ�τ ) · �τ
2

� �
Figure 5.2 shows the case of Nτ = 5. There are 2Nτ + 1 = 11 steps of the dis-

cretized time evolution. It is just like two kids—x and p—are playing the leapfrog. If
Nτ is sent to larger values fixing Nτ · �τ , the change of the Hamiltonian Hfin − Hinit

decreases proportionally to N−2
τ . (See an exercise at the end of this chapter.) By using

a more complicated improved method, Hfin − Hinit can be made even smaller.

Reversibility of the Leapfrog Time Evolution

In the leapfrog method, a half-a-step shift between x and p is of crucial importance.
This is because the reversibility of the time evolution is guaranteed due to this half-



80 5 Other Useful Algorithms

Fig. 5.2 Leapfrog method
with Nτ = 5. The discrete
time evolutions of x and p
are half-a-step shifted

a-step shift. As we will see in Sect. 5.1.3, the reversibility of the time evolution
is necessary for the detailed balance condition to hold in the HMC algorithm. To
understand the relationship between reversibility and half-a-step shift, let us see
what happens if we do not perform the half-a-step shift.

Suppose that we did not use the half-a-step shift prescription and defined the n-th
step as

xi ((n − 1)�τ ) → xi (n�τ ) = xi ((n − 1)�τ ) + pi ((n − 1)�τ ) · �τ ,

pi ((n − 1)�τ ) → pi (n�τ ) = pi ((n − 1)�τ ) − ∂S

∂xi
((n − 1)�τ ) · �τ . (5.4)

Then, by repeating it we could define the time evolution as

{x(0), p(0)} → {x(�t), p(�t)} → · · · → {x(Nτ�τ ), p(Nτ�τ )}. (5.5)

The final step would be

xi ((Nτ − 1)�τ ) → xi (Nτ�τ ) = xi ((Nτ − 1)�τ ) + pi ((Nτ − 1)�τ ) · �τ ,

pi ((Nτ − 1)�τ ) → pi (Nτ�τ ) = pi ((Nτ − 1)�τ ) − ∂S

∂xi
((Nτ − 1)�τ ) · �τ ,

(5.6)

and hence,

xi ((Nτ − 1)�τ ) = xi (Nτ�τ ) − pi ((Nτ − 1)�τ ) · �τ ,

pi ((Nτ − 1)�τ ) = pi (Nτ�τ ) + ∂S

∂xi
((Nτ − 1)�τ ) · �τ . (5.7)

Let us reverse the time. We start with {x ′(0), p′(0)} ≡ {x(Nτ�τ ),−p(Nτ�τ )}.
With the same prescription without the half-a-step shift, the first step would be

x ′
i (0) → x ′

i (�τ ) = x ′
i (0) + p′

i (0) · �τ = xi (Nτ�τ ) − pi (Nτ�τ ) · �τ ,

p′
i (0) → p′

i (�τ ) = p′
i (0) − ∂S

∂x ′
i

(0) · �τ = −pi (Nτ�τ ) − ∂S

∂xi
(Nτ�τ ) · �τ .

(5.8)
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By comparing it with (5.7), we obtain

x ′
i (�τ ) �= xi ((Nτ − 1)�τ ), p′

i (�τ ) �= −pi ((Nτ − 1)�τ ). (5.9)

This is because, in general,

pi (Nτ�τ ) �= pi ((Nτ − 1)�τ ),
∂S

∂xi
(Nτ�τ ) �= ∂S

∂xi
((Nτ − 1)�τ ). (5.10)

Therefore, a naive discretization (5.4) breaks the reversibility of the time evolution.
If such a non-reversible discretization is used, the detailed balance condition is not
satisfied.

The reversibility of the leapfrog time evolution can be confirmed by following the
steps one by one. Let us write the final few steps explicitly:

xi

((
Nτ − 1

2

)
�τ

)
= xi

((
Nτ − 3

2

)
�τ

)
+ pi ((Nτ − 1)�τ ) · �τ ,

pi (Nτ�τ ) = pi ((Nτ − 1)�τ ) − ∂S

∂xi
((Nτ − 1/2) �τ ) · �τ ,

xi (Nτ�τ ) = xi

((
Nτ − 1

2

)
�τ

)
+ pi (Nτ�τ ) · �τ

2
. (5.11)

By rewriting them a little bit, we obtain

xi

((
Nτ − 1

2

)
�τ

)
= xi (Nτ�τ ) − pi (Nτ�τ ) · �τ

2
, (5.12)

pi ((Nτ − 1)�τ ) = pi (Nτ�τ ) + ∂S

∂xi

((
Nτ − 1

2

)
�τ

)
· �τ , (5.13)

xi

((
Nτ − 3

2

)
�τ

)
= xi

((
Nτ − 1

2

)
�τ

)
− pi ((Nτ − 1)�τ ) · �τ . (5.14)

We want to confirm that this is the same as the time-reversed process starting with
{x ′(0), p′(0)} ≡ {x(Nτ�τ ),−p(Nτ�τ )}. The first step of the time-reversed process
is

x ′
i

(
1

2
�τ

)
= x ′(0) + p′

i (0) · �τ

2

= xi (Nτ�τ ) − pi (Nτ�τ ) · �τ

2

= xi

((
Nτ − 1

2

)
�τ

)
. (5.15)
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To get the last line, we used (5.12). So far so good! The second step is

p′
i (�τ ) = p′

i (0) − ∂S

∂x ′
i

(
1

2
�τ

)
· �τ

= −pi (Nτ�τ ) − ∂S

∂xi

((
Nτ − 1

2

)
�τ

)
· �τ

= −pi ((Nτ − 1)�τ ). (5.16)

In the second step, we used ∂S
∂x ′

i

(
1
2�τ

) = ∂S
∂xi

((
Nτ − 1

2

)
�τ

)
which holds because of

(5.15). At the last step, we used (5.13). We can still see the agreement! Just repeating
the same kind of calculations, we can see that the agreement can be seen all the
way to the final step and that {x ′(Nτ�τ ), p′(Nτ�τ )} = {x(0),−p(0)} is obtained.
Hence, the leapfrog time evolution is reversible indeed.

Above, our prescription was that x goes half a step forward at the beginning.
We could also let p go half a step forward at the beginning; the leapfrog time evo-
lution could be reversible anyways. In large-scale simulations in physics, most of
the computational effort is spent on the calculation of ∂S

∂xi
, and hence, by using our

prescription we could save the calculation of ∂S
∂xi

once, and hence, it is slightly more
economical.

5.1.3 Checking the Conditions for MCMC

Several steps are needed to confirm the detailed balance condition e−S({x})T ({x} →
{x ′}) = e−S({x ′})T ({x ′} → {x}). Each step is very easy.

• First of all, note that the leapfrog time evolution is reversible. Namely, by taking
the initial configuration and momentum to be x(τfin) and −p(τfin), we obtain x(0)
and −p(0) as the final configuration and momentum.

• Let the time evolution including the momentum be {x, p} → {x ′, p′}. The proba-
bility that p is chosen is

∏
i

(
e−p2i /2√

2π

)
. By multiplying this factor to the acceptance

probability min(1, eH−H ′
), the transition probability T ({x} → {x ′}) is obtained.

Here, H and H ′ are the values of the Hamiltonian calculated from {x, p} and
{x ′, p′}, respectively.

• Let us consider the time-reversed process {x ′,−p′} → {x,−p}. The momentum

−p′ is chosen with the probability
∏

i

(
e−p′2i /2√

2π

)
. By multiplying the acceptance

probability (which ismin(1, eH
′−H ) this time), the transition probability T ({x ′} →

{x}) is obtained.
• Suppose that H ≥ H ′. Then the acceptance probabilities for {x, p} → {x ′, p′}
and {x ′,−p′} → {x,−p} are min(1, eH−H ′

) = 1 and min(1, eH
′−H ) = eH

′−H ,
respectively. The transition probabilities are
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T ({x} → {x ′}) =
∏

i

(
e−p2i /2√

2π

)
× 1 =

∏

i

(
e−p2i /2√

2π

)
(5.17)

and

T ({x ′} → {x}) =
∏

i

(
e−p′2

i /2

√
2π

)
× eS({x ′})+∑

i p
′2
i /2−S({x})−∑

i p
2
i /2

= e−S({x})+S({x ′}) ∏

i

(
e−p2i /2√

2π

)
. (5.18)

Therefore,

e−S({x})T ({x} → {x ′}) = e−S({x ′})T ({x ′} → {x}) = e−S({x}) ∏

i

(
e−p2i /2√

2π

)
.

(5.19)

In this way, we could confirm that the detailed balance condition is satisfied.
• In the case that H < H ′, essentially the same argument can be repeated, and the
detailed balance condition can be confirmed.

In the above, we implicitly used the fact that the Jacobian associatedwith the leapfrog
time evolution is 1. (seeExercise 7 inChap. 4 andExercise 5 at the end of this chapter.)
In addition, we assumed that only one set of {p} gives transition from {x} to {x ′}. It
is an easy exercise to remove this assumption.

Let us check the other conditions as well.

• The sequence of {x (k)}’s is a Markov chain because the momentum {p} is chosen
randomly at each step.

• Whether this Markov chain is irreducible or not depends on the detail of the
target probability distribution and the range of the variables. This is the same as
in the Metropolis algorithm. When the probability distribution splits into multiple
islands, we have to be careful.
The HMC algorithm is like playing catch. The momentum {p} specifies the direc-
tion and speed of the ball. The force acting on the ball (e.g., gravity) is determined
by the action S({x}).
Suppose we want to send a ball from point A to point D in the left panel of Fig. 5.3.
To make the argument as simple as possible, suppose that the force coming from
S({x}) is not so strong and the ball goes more or less straight. Then, it is impossible
to send a ball directly fromA to D. However, because the domain of the integration
(grey region) is connected, it is possible to send a ball from A to B, then from B
to C, and then from C to D.
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A

B

C D

Metropolis

HMC HMC

Fig. 5.3 Irreducibility in HMC: [Left] If the domain of integration is not split into multiple islands,
two points can be connected by a finite number of steps, and hence the chain is irreducible. [Right]
If there are multiple islands, it is impossible to go to other islands, and hence the chain is not
irreducible. Some sort of care, e.g., the combination with the Metropolis algorithm with a large step
size, is needed

However, because x changes continuously in the HMC algorithm,2 it does not
function properly if the domain of the integration splits into two islands as shown
in the right panel of Fig. 5.3. In such cases, we have to use our brains a little bit
more. For example, the combination of the Metropolis algorithm with a large step
size and the HMC algorithm might work. See the discussion around Fig. 4.12 and
Sect. 5.4.

• Regarding the aperiodicity: if a ball goes straight, it is possible to come back to
the same point with various numbers of steps, as in the left panel of Fig. 5.4,
e.g., A → B → A and A → B → C → A. Depending on the way the force acts
on the ball, it is possible to throw a ball upward such that the ball comes back to
the original point after one step, as in the right panel of Fig. 5.4. If we play catch
literally, the ball comes back after two steps. Except for pathological situations,
the greatest common divisor of the number of steps to come back to the same point
should be 1.3

2 Strictly speaking, the change is discrete because of the leapfrog discretization. Note however that
the crucial point of the HMC algorithm is to make the leapfrog time evolution almost continuous
so that the Hamiltonian is conserved with good precision.
3 S(x) = x2,�τ = 1, x(0) = 0 is a pathological example. Regardless of the value of p(0), the
leapfrog time evolution is a regular oscillation x( 12�τ ) = 1

2 p(0), p(�τ ) = 0, x( 32�τ ) = 1
2 p(0),

p(2�τ ) = −p(0), x( 52�τ ) = − 1
2 p(0), p(3�τ ) = 0, · · · .
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A B

C

D

Fig. 5.4 Aperiodicity in HMC: except for pathological cases, the greatest common divisor of the
periods is 1

5.1.4 Univariate HMC

Because we are learning a new algorithm, let us consider the simplest case of the
Gaussian integral again. (This is a stupid example because we need to use the Gaus-
sian random number in the HMC algorithm. Still, it is an instructive example to
understand the essence of the algorithm.) Let us see some sample code written in
C++:

#include <iostream>
#include <cmath>
#include<fstream>
const int niter=10000; // Collect 10000 samples.
const int ntau=40; // number of steps for leapfrog
const double dtau=1e0; // step size for leapfrog
/******************************************************************/
/*** Gaussian Random Number Generator with Box Muller Algorithm ***/
/******************************************************************/
int BoxMuller(double& p, double& q){

double pi=2e0*asin(1e0);
//uniform random numbers between 0 and 1
double r = (double)rand()/RAND_MAX;
double s = (double)rand()/RAND_MAX;
//Gaussian random numbers,
//with weights proportional to eˆ{-pˆ2/2} and eˆ{-qˆ2/2}
p=sqrt(-2e0*log(r))*sin(2e0*pi*s);
q=sqrt(-2e0*log(r))*cos(2e0*pi*s);

return 0;
}
/*********************************/
/*** Calculation of the action ***/



86 5 Other Useful Algorithms

/*********************************/
// When you change this part, you have to change "calc_delh" as well.
double calc_action(const double x){

double action=0.5e0*x*x;

return action;
}
/**************************************/
/*** Calculation of the Hamiltonian ***/
/**************************************/
double calc_hamiltonian(const double x,const double p){

double ham=calc_action(x); // Calculate the action (potential energy)

ham=ham+0.5e0*p*p; // add kinetic energy

return ham;
}
/****************************/
/*** Calculation of dH/dx ***/
/****************************/
// Derivative of the Hamiltonian with respect to x,
// which is equivalent to the derivative of the action.
// When you change "calc_action", you have to change this part as well.
double calc_delh(const double x){

double delh=x;

return delh;
}
/***************************/
/*** Molecular evolution ***/
/***************************/
// Leapfrog time evolution
int Molecular_Dynamics(double& x,double& ham_init,double& ham_fin){

double r1,r2;
BoxMuller(r1,r2);
double p=r1; //generate momentum p as the Gaussian random number.

//*** calculate Hamiltonian ***
ham_init=calc_hamiltonian(x,p);
//*** first step of leapfrog; be careful about 0.5. ***
x=x+p*0.5e0*dtau;
//*** 2nd, ..., Ntau-th steps ***
for(int step=1; step!=ntau; step++){

double delh=calc_delh(x);
p=p-delh*dtau;
x=x+p*dtau;

}
//*** last step of leapfrog; be careful about 0.5. ***
double delh=calc_delh(x);
p=p-delh*dtau;
x=x+p*0.5e0*dtau;
//*** calculate Hamiltonian again ***
ham_fin=calc_hamiltonian(x,p);
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return 0;
}

int main()
{
srand((unsigned)time(NULL));
/*********************************/
/* Set the initial configuration */
/*********************************/
double x=0e0;
/*****************/
/*** Main part ***/
/*****************/
std::ofstream outputfile("output.txt"); // prepare the output file.
int naccept=0; // counter for the number of acceptance.
// sum of xˆ2, which is used for the calculation of <xˆ2>.
double sum_xx=0e0;

for(int iter=0; iter!=niter; iter++){

double backup_x=x;
double ham_init,ham_fin;
Molecular_Dynamics(x,ham_init,ham_fin); // Leapfrog time evolution
double metropolis = (double)rand()/RAND_MAX;
if(exp(ham_init-ham_fin) > metropolis){ // Metropolis test
naccept=naccept+1; // accept, or

}else{
//reject
x=backup_x; // reject

}
/*******************/
/*** data output ***/
/*******************/
sum_xx=sum_xx+x*x;

// output x, <xˆ2>, acceptance

std::cout << std::fixed << std::setprecision(6)
<< x << " "
<< sum_xx/((double)(iter+1)) << " "
<< ((double)naccept)/((double)iter+1)
<< std::endl;

outputfile << std::fixed << std::setprecision(6)
<< x << " "
<< sum_xx/((double)(iter+1)) << " "
<< ((double)naccept)/((double)iter+1)
<< std::endl;

} // The end of the simulation

outputfile.close(); // close the output file

return 0;
}
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The values of several parameters are set at the beginning of the code. niter is
the number of configurations generated in the simulation. ntau and dtaumean Nτ

and �τ , respectively.
Next, several routines and functions are defined:

• BoxMuller generates theGaussian randomnumbers via theBox-Mullermethod.
When you use the Gaussian random numbers, be careful about the width σ.
Depending on the type of variables (real or complex) and the normalization of
the p2-term, the appropriate value of σ should be used.

• calc action calculates the value of the action S(x). In the current example
of the Gaussian integral, we use S(x) = x2

2 . This routine is used in
calc hamiltonian.

• calc hamiltonian calculates the value of the Hamiltonian by adding p2

2 to
the value of the action. This routine is called in Molecular Dynamics.

• calc delh is used to calculate the derivative of the Hamiltonian with
respect to x , which is dH

dx = dS
dx = x in this case. This routine is called in

Molecular Dynamics as well.
• Molecular Dynamics performs the leapfrog time evolution. It returns the
value of x after the time evolution and the values of theHamiltonian before and after
the evolution. (For a historical reason, it is called molecular dynamics evolution.)

Inmain, the only differences from theMetropolis algorithm are that the value of x
is varied by using Molecular Dynamics rather than just adding a random num-
ber, and�H is used for the Metropolis test instead of�S. Even when S(x) is a more
complicated function, we only have to rewrite calc action and calc delh.

5.1.5 Multivariate HMC

Let us generate multivariate probability distributions by using the HMC algorithm.

Multivariate Gaussian Distribution

Let us consider the multivariate Gaussian distribution,

S(x1, . . . , xn) = 1

2

n∑

i, j=1

Ai j xi x j (Ai j = A ji ). (5.20)

The Hamilton equation (5.2) becomes

dpi
dτ

= −
n∑

j=1

Ai j x j ,
dxi
dτ

= pi . (5.21)

Here is a sample code:
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#include <iostream>

#include <cmath>

#include<fstream>

const int niter=1000;

const int ntau=20;

const double dtau=0.5e0;

const int ndim=3; // Number of variables

/******************************************************************/

/*** Gaussian Random Number Generator with Box Muller Algorithm ***/

/******************************************************************/

int BoxMuller(double& p, double& q){

double pi=2e0*asin(1e0);

//uniform random numbers between 0 and 1

double r = (double)rand()/RAND_MAX;

double s = (double)rand()/RAND_MAX;

//Gaussian random numbers,

//with weights proportional to eˆ{-pˆ2/2} and eˆ{-qˆ2/2}

p=sqrt(-2e0*log(r))*sin(2e0*pi*s);

q=sqrt(-2e0*log(r))*cos(2e0*pi*s);

return 0;

}

/*********************************/

/*** Calculation of the action ***/

/*********************************/

// When you change this part, you have to change "calc_delh" as well.

double calc_action(const double x[ndim],const double A[ndim][ndim]){

double action=0e0;

for(int idim=0; idim!=ndim; idim++){

for(int jdim=0; jdim!=idim; jdim++){

action=action+x[idim]*A[idim][jdim]*x[jdim];

}

action=action+0.5e0*x[idim]*A[idim][idim]*x[idim];

}

return action;

}

/**************************************/

/*** Calculation of the Hamiltonian ***/

/**************************************/

double calc_hamiltonian(const double x[ndim], const double p[ndim],

const double A[ndim][ndim]){

double ham=calc_action(x,A);

for(int idim=0; idim!=ndim; idim++){

ham=ham+0.5e0*p[idim]*p[idim];

}

return ham;

}

/****************************/

/*** Calculation of dH/dx ***/

/****************************/

// Derivative of the Hamiltonian with respect to x,

// which is equivalent to the derivative of the action.

// When you change "calc_action", you have to change this part as well.

int calc_delh(const double x[ndim],const double A[ndim][ndim],

double (&delh)[ndim]){
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for(int idim=0; idim!=ndim; idim++){

delh[idim]=0e0;

}

for(int idim=0; idim!=ndim; idim++){

for(int jdim=0; jdim!=ndim; jdim++){

delh[idim]=delh[idim]+A[idim][jdim]*x[jdim];

}

}

return 0;

}

/***************************/

/*** Molecular evolution ***/

/***************************/

// Leapfrog time evolution

int Molecular_Dynamics(double (&x)[ndim],const double A[ndim][ndim],

double& ham_init,double& ham_fin){

double p[ndim];

double delh[ndim];

double r1,r2;

for(int idim=0; idim!=ndim; idim++){

BoxMuller(r1,r2);

p[idim]=r1; //generate momentum p as the Gaussian random number.

}

//*** calculate Hamiltonian ***

ham_init=calc_hamiltonian(x,p,A);

//*** first step of leapfrog; be careful about 0.5. ***

for(int idim=0; idim!=ndim; idim++){

x[idim]=x[idim]+p[idim]*0.5e0*dtau;

}

//*** 2nd, ..., Ntau-th steps ***

for(int step=1; step!=ntau; step++){

calc_delh(x,A,delh);

for(int idim=0; idim!=ndim; idim++){

p[idim]=p[idim]-delh[idim]*dtau;

}

for(int idim=0; idim!=ndim; idim++){

x[idim]=x[idim]+p[idim]*dtau;

}

}

//*** last step of leapfrog; be careful about 0.5. ***

calc_delh(x,A,delh);

for(int idim=0; idim!=ndim; idim++){

p[idim]=p[idim]-delh[idim]*dtau;

}

for(int idim=0; idim!=ndim; idim++){

x[idim]=x[idim]+p[idim]*0.5e0*dtau;

}

//*** calculate Hamiltonian again ***

ham_fin=calc_hamiltonian(x,p,A);

return 0;

}

int main()

{

double x[ndim];

double A[ndim][ndim];

A[0][0]=1e0;A[1][1]=2e0;A[2][2]=2e0;

A[0][1]=1e0;A[0][2]=1e0;A[1][2]=1e0;

for(int idim=1; idim!=ndim; idim++){
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for(int jdim=0; jdim!=idim; jdim++){

A[idim][jdim]=A[jdim][idim];

}

}

srand((unsigned)time(NULL));

/*********************************/

/* Set the initial configuration */

/*********************************/

for(int idim=0; idim!=ndim; idim++){

x[idim]=0e0;

}

/*****************/

/*** Main part ***/

/*****************/

std::ofstream outputfile("output.txt"); // prepare the output file.

int naccept=0; // counter for the number of acceptance.

for(int iter=0; iter!=niter; iter++){

double backup_x[ndim];

for(int idim=0; idim!=ndim; idim++){

backup_x[idim]=x[idim];

}

double ham_init,ham_fin;

Molecular_Dynamics(x,A,ham_init,ham_fin); // Leapfrog time evolution

double metropolis = (double)rand()/RAND_MAX;

if(exp(ham_init-ham_fin) > metropolis){ // Metropolis test

naccept=naccept+1; // accept, or

}else{

for(int idim=0; idim!=ndim; idim++){

x[idim]=backup_x[idim]; // reject

}

}

/*******************/

/*** data output ***/

/*******************/

if((iter+1)%10 == 0){

std::cout << std::fixed << std::setprecision(6)

<< x[0] << " "

<< x[1] << " "

<< x[2] << " "

<< ((double)naccept)/((double)iter+1)

<< std::endl;

outputfile << std::fixed << std::setprecision(6)

<< x[0] << " "

<< x[1] << " "

<< x[2] << " "

<< ((double)naccept)/((double)iter+1)

<< std::endl;

}

}

outputfile.close();

return 0;

}

At the beginning of the code, the parameters are defined. The only difference
compared to the single-parameter case is that the number of variables n = ndim is
added. The routines and functions are also very similar to those for the univariate
version:

• calc_action calculates the value of the action S(x1, . . . , xn). This routine is
used in calc hamiltonian.

• calc hamiltonian calculates the valueof theHamiltonian, by adding
∑n

i=1
p2i
2

to the action. This routine is called in Molecular Dynamics.
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• calc delh calculates the derivative of the Hamiltonian with respect to x , which
is ∂H

∂xi
= ∂S

∂xi
= ∑n

j=1 Ai j x j . This routine is used in Molecular Dynamics.
• Molecular Dynamics performs the leapfrog time evolution. The values of
x1, . . . , xn after the time evolution and the values of the Hamiltonian before and
after the evolution are obtained.

• The values of Ai j are defined in main.

In Sect. 5.2, we generate the same probability distribution by using another algo-
rithm (the Gibbs sampling algorithm). The distribution obtained by using the HMC
algorithm will be shown there, together with the distribution obtained by using the
Gibbs sampling algorithm (Fig. 5.8).

Matrix Integrals

The next example is a kind of calculation common in particle physics and superstring
theory. Let φ be an N × N Hermitian matrix. We consider the action of the form

S(φ) = NTr

(
1

2
φ2 + 1

4
φ4

)
. (5.22)

Similar integrals appear very often in interesting problems such as the internal struc-
ture of nuclei and the quantum mechanical properties of a black hole. In most cases,
they are not analytically solvable. The great thing about Markov Chain Monte Carlo
is that if normal guys like us continue the simulation patiently, we can do very compli-
cated calculations which even genius people cannot do by hand. The only necessary
talent is patience.

It is not straightforward to apply the Gibbs sampling algorithm, which will be
introduced later, to such a probability distribution. The Metropolis algorithm is not
suitable for this problem either. If we vary the variable as φi j → φ′

i j = φi j + �φi j ,
the action changes as

�S = NTr
((

φ + φ3
)
�φ

) + O((�φ)2), (5.23)

but this �S becomes larger and larger as N goes up. Hence, if we vary all matrix
entries simultaneously, the acceptance probability becomes too small unless a very
small step size is used. You may think this problem can be avoided by changing one
matrix entry at each time, but still, a large autocorrelation is inevitable.

When we use the HMC algorithm, the Hamilton equation is

dpi j
dτ

= − ∂S

∂φ j i
= −Nφi j − N

(
φ3

)
i j ,

dφi j

dτ
= pi j . (5.24)

(Here, the conjugate of φi j is taken to be p ji .) The simulation code is very similar
to the one used for the multivariate Gaussian distribution; we only have to change
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Table 5.1 The HMC simulation was performed with the action (5.22), and the acceptance rate of
the Metropolis test was measured for various values of Nτ . The matrix size is N = 100, and Nτ�τ
was fixed to 0.1. We collected 10,000 configurations starting with a well-thermalized configuration

Nτ Acceptance rate (Acceptance rate)/Nτ

4 0.0633 0.01583

6 0.3418 0.05697

8 0.6023 0.07529

10 0.7393 0.07393

12 0.8169 0.06808

14 0.8645 0.06175

16 0.8963 0.05602

the action to (5.22) and the derivative of the action to (5.24). This is always the case,
whatever complicated distribution we study.

Originally, theHMCalgorithmwas invented for large-scale simulations in particle
physics. By now, the HMC algorithm and its improved version, the RHMC algorithm
(Rational Hybrid Monte Carlo algorithm) [3, 4], are indispensable tools. As we
will explain in Sect. 6.4, the mass of the proton and neutron can be calculated by
solving the complicated dynamics of the standard model of particle physics [5, 6],
or the properties of the black hole predicted by Hawking can be checked based on
superstring theory [7, 8]. It is impossible to carry out such computations with other
methods.

5.1.6 Tuning the Simulation Parameters

From here on, we will consider the practical issues necessary for actual simulations
via the HMC algorithm. The first issue is the choice of Nτ and �τ .

As an example, we consider the matrix integral with the action (5.22). For the
matrix size N = 100, we fixed Nτ�τ to be 0.1, and calculated the acceptance rate
for various choices of Nτ . The result is shown in Table 5.1. As we mentioned in
Sect. 5.1.1, as Nτ becomes large and�τ becomes small, the time evolution becomes
closer to the continuum limit, the conservation of the Hamiltonian becomes better
(i.e., �H becomes closer to zero), and hence the acceptance rate goes up. We can
confirm this trend in Table 5.1.

We can read off the optimal Nτ from this table. Firstly note that the compu-
tational cost is approximately proportional to Nτ . Note also that, because we are
fixing Nτ�τ now, the change of the matrix φ before and after the time evolution
does not depend much on Nτ . Then, because the configuration is not updated unless
the proposed configuration passes the Metropolis test, the amount of the change
of φ should be proportional to the acceptance rate, roughly speaking. Therefore,
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Fig. 5.5 By using the samples used for Table 5.1, we calculated the expectation value of the action
(5.22), 〈S/N 2〉 = 1

K N2

∑K
k=1 S(φ(k)), and estimated the Jackknife error. The horizontal and vertical

axes are the bin size w and Jackknife error �w , respectively. With Nτ ≥ 12, the autocorrelation
length is almost 1, and hence there is no point in taking Nτ larger

the amount of the change per computational cost should be approximately propor-
tional to (acceptance rate)/Nτ . Therefore, we should tune Nτ and �τ such that
(acceptance rate)/Nτ is maximized. From Table 5.1, we can conclude that some-
where around Nτ = 8 or Nτ = 10 is optimal.

Just in case, let us estimate the autocorrelation length, which is the number of
steps necessary to obtain independent configurations. As explained in Sect. 4.3.3, the
autocorrelation length can be read off from the behavior of the Jackknife error. From
the configurations used to make Table 5.1, we calculated the expectation value of
the action (5.22), 〈S/N 2〉 = 1

K N 2

∑K
k=1 S(φ(k)), and estimated the Jackknife error;

see Fig. 5.5. At Nτ ≥ 12, the Jackknife error is saturated quickly, and hence, the
autocorrelation length is almost 1. This means independent samples are obtained
at each step, and hence, there is no point in increasing Nτ further adding more
computational cost. From this, we can see that Nτ = 8 or Nτ = 10 is optimal.

Note that the high acceptance rate does not always mean small autocorrelation.
For complicated integrals, very long autocorrelation can appear. In such a case, it is
necessary to estimate the autocorrelation and the cost for each step precisely. Note
also that, ideally, we should vary Nτ�τ as well. Clearly, it is not good if Nτ�τ is
too small. Too large Nτ�τ can also be bad, in that the change can be unnecessarily
large such that the cost increases while the number of independent samples does not
change. As always, the important point is to obtain as many independent samples as
possible, with a smaller computational cost.
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5.1.7 Using Different Step Sizes for Different Variables

Let us consider the bivariate distribution, with the action

S(x, y) = f (x) + g(y) + xy. (5.25)

Suppose that the distribution of x is relatively wide, say f (x) = x2, while the dis-
tribution of y is extremely narrow, say g(y) = 1000000000000y2.4 In this case, it is
not efficient if we use the same step size for x and y. If there were only x rather high
acceptance rate could be achieved with a large step size, but because the distribution
of y is sharply peaked the step size has to be taken very small.

As we have seen in Sect. 4.8, in the Metropolis algorithm, it is standard to use
different step sizes for different variables. The same is true for the HMC algorithm:
different step sizes �τx and �τy can be used for x and y, respectively. As long as
the conditions listed in Chap. 3 are satisfied, any step size is fine. Furthermore, it is
straightforward to check that the conservation of the Hamiltonian is not affected. In
large-scale simulations in physics, it is of crucial importance to adjust the step size
for each variable and improve efficiency.

5.1.8 Useful Tips for Debugging

Utilizing the Conservation of the Hamiltonian

The conservation of the Hamiltonian does not just make the HMC very efficient. It
provides us with a big bonus: the debugging becomes easier. In HMC, both the action
S(x) and its derivative ∂S

∂x are needed. If both of them are calculated correctly, then
the Hamiltonian is conserved in the continuum limit (�τ → 0, Nτ → ∞, Nτ�τ
fixed). Human beings never stop making bugs in their code, but it would be very rare
that the errors in the calculations of S(x) and ∂S

∂x cancel precisely. Practically, we can
assume that the Hamiltonian is not conserved unless both S(x) and ∂S

∂x are calculated
correctly. This feature is convenient for debugging; see Fig. 5.6.

As we have seen in Sect. 5.1.7, it is common to introduce different step sizes
for different variables. Imagine there are two variables x and y, and the program is
written such that the step sizes �τx and �τy can be chosen independently. Then, by
setting �τy = 0, we can check if the time evolution of x is calculated correctly. By
extracting a part of the program in this way, we can debug the code more efficiently.

4 In physics, it would mean the particle x is light and can be moved easily, while the particle y is
extremely heavy and it is almost impossible to move it.
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Fig. 5.6 This plot shows how �H = Hfin − Hinit approaches zero when Nτ�τ is fixed to 0.1 and
Nτ is increased. Both axes are on the logarithmic scale. The action is (5.22) with N = 100. We
prepared a well-thermalized configuration {φ} and randomly generated momentum {pφ}, and used
the same {φ, pφ} for all Nτ . We observed �H � 18.5N−2

τ for sufficiently large Nτ . When the
conservation of the Hamiltonian is confirmed, the debugging is more or less done. Time for beer

Normalization of the Momentum

When we generate the momentum p for the HMC simulation, we have to be careful
about normalization. In this book, we choose p with the probability distribution

is e− p2
2√
2π

because we used a normalization such that the momentum appears in the

Hamiltonian as p2

2 . If this part is modified, say to p2 or 100p2, then the equation
of motion and the width of the Gaussian distribution have to be modified. Such a
modification is nothing but a redefinition of momentum variables. The expressions
become messy but the final result does not change at all.

When the variable x is a complex number or a matrix, the conjugate momentum
p becomes complex or a matrix as well. There are various kinds of matrices—real
matrix, complexmatrix, symmetric matrix, Hermitianmatrix, ....—which sometimes
makes the normalization a little bit complicated. We do not go into the details here,
please have a look at references such as Ref. [9] when necessary.

When the normalization of the momentum is wrong, the result of the simulation
is wrong. Whether the normalization of the momentum is correct cannot be checked
by using the conservation of the Hamiltonian, so one has to be cautious regarding
this point.

The Factor 1
2 at the Beginning and the End of the Leapfrog

In the leapfrog time evolution, it is important to change x and p alternately. Further-
more, the factor 1

2 at the beginning and the end is mandatory. The Hamiltonian is
conserved even if we forgot this factor 1

2 , so we have to pay extra attention here.



5.2 Gibbs Sampling Algorithm (Heat Bath Algorithm) 97

Fig. 5.7 An example of
wrong simulation. The factor
1
2 at the end of the leapfrog
time evolution is dropped.
The expectation value
〈S〉
N2 = 1

K

∑K
k=1

S(φ(k))

N2 at
N = 10 is calculated for
various different pairs of Nτ

and �τ . [Top] Nτ�τ is fixed
to 0.1; [Bottom] Nτ is fixed
to 10. The right answer is
obtained only when Nτ�τ is
fixed and Nτ is sent to
infinity
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Let us drop the factor 1
2 at the end of the leapfrog5 and see the outcomes. We

consider the matrix integral defined by the action (5.22) as an example. The outcome
is a disaster; as shown in Fig. 5.7, different Nτ and �τ lead to completely different
answers. The right answer is obtained only when Nτ�τ is fixed and Nτ is sent to
infinity.

5.2 Gibbs Sampling Algorithm (Heat Bath Algorithm)

The Metropolis algorithm and the HMC algorithm can be applied to practically any
problemwe can imagine. The range of applicability of the Gibbs sampling algorithm
(which is also called the heat bath algorithm in the physics community; see Refs. [10,
11]) is smaller, but when it is applicable, it is often efficient. It is usually applicable
to relatively simple probability distributions such as the ones commonly used in
Bayesian statistics. Later in this book,wewill apply it to the Isingmodel in Sect. 6.2.2.

5 This is the bug that one of the authors actually made in his first HMC code.
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In this section, we explain this algorithm by taking the Gaussian distribution as an
example.

When the probability distribution of P(x, y) is constructed via the Metropolis
algorithm, two procedures, “fix y and vary x a little bit” and “fix x and vary y a little
bit”, can be combined, as we have already seen. Although the Metropolis algorithm
can be applied to any problem, it often suffers from strong autocorrelation because
x and y are varied little by little. In order to reduce the autocorrelation, we should
combine “fix y and vary x a lot” and “fix x and vary y a lot”, in case we can. The
Gibbs sampling algorithm (see Refs. [12, 13] for earliest applications for Bayesian
inference) is based on this almost trivial idea.

5.2.1 Bivariate Gaussian Distribution

Let us consider an action

S(x, y) = x2 + y2

2
. (5.26)

In this case, x and y are independent, and the probability distribution is the product
of two Gaussian distributions:

P(x, y) = P(x) · P(y) = e− x2

2√
2π

· e
− y2

2√
2π

. (5.27)

Therefore, we only have to prepare the distributions for x and y, which are denoted
by P(x) and P(y), independently. We can use the Box-Muller algorithm for this
purpose.

Next, let us change the action slightly:

S(x, y) = x2 + y2 + xy

2
. (5.28)

We studied the same example in Sect. 4.8. We will generate this distribution by using
the Gibbs sampling algorithm.6

The conditional probability P(x |y) is the probability distribution of x when the
value of y is fixed. In the same manner, P(y|x) is the probability distribution of y
when the value of x is fixed. More concretely, they are

6 In fact, by changing the variables, we can rewrite this distribution in such a way that the Box-
Muller algorithm can be applied. Here, we use this example merely to explain the Gibbs sampling
algorithm.
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P(x |y) = e− 1
2 (x+ y

2 )
2

√
2π

(5.29)

and

P(y|x) = e− 1
2 (y+ x

2 )
2

√
2π

. (5.30)

As we will see in Sect. 5.2.3, these distributions can easily be obtained by shifting
the Gaussian distribution generated by the Box-Muller method by − y

2 or − x
2 . These

conditional probabilities are utilized in the Gibbs sampling algorithm. The concrete
steps are as follows:

Gibbs sampling for two variables x, y� �

1. Suppose that (x (k), y(k)) are already obtained. Then, x (k+1) is generated fol-
lowing the probability distribution P(x (k+1)|y(k)).

2. Next y(k+1) is generated following the probability distribution
P(y(k+1)|x (k+1)).

3. Repeat the same procedure.
� �
The important point is that, instead of changing x (k) a little bit to obtain x (k+1), (under
the condition that y(k) is fixed) x (k+1) is generated without referring to x (k) at all.
Such update is possible only when the conditional probability is simple, and hence,
the Gibbs sampling algorithm is not applicable to complicated distributions unlike
the Metropolis algorithm or the HMC algorithm. However, when it is applicable,
the autocorrelation can be small, and as a bonus, there is no need for tuning the
parameters such as the step size.

Let us confirm that the conditions for Markov Chain Monte Carlo are satisfied.
Let us regard the combination of “fix y and update x” and “fix x and update y” as one
step. That the sequence is the Markov chain, the irreducibility and the aperiodicity
are almost trivial, so let us focus on the detailed balance condition. Suppose that y
is fixed and x is updated to x ′. Because of

T ((x, y) → (x ′, y)) = P(x ′|y), T ((x ′, y) → (x, y)) = P(x |y), (5.31)

we obtain

P(x, y) · T ((x, y) → (x ′, y)) = P(x, y) · P(x ′|y),
P(x ′, y) · T ((x ′, y) → (x, y)) = P(x ′, y) · P(x |y). (5.32)

By using the definition of the conditional probability

P(x, y) = P(x |y) · P(y), P(x ′, y) = P(x ′|y) · P(y), (5.33)
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we can see the detailed balance at fixed y:

P(x, y) · T ((x, y) → (x ′, y)) = P(x |y) · P(x ′|y)P(y)

= P(x ′, y) · T ((x ′, y) → (x, y)). (5.34)

In the same manner, when x is fixed and y is updated, we obtain

P(x, y) · T ((x, y) → (x, y′)) = P(x, y′) · T ((x, y′) → (x, y)). (5.35)

When (x, y) → (x ′, y) → (x ′, y′) is regarded as one step, the detailed balance
does not hold,7 but it is not a problem in the following sense. If a Markov chain is
irreducible and aperiodic, it converges to a stationary distribution (if such a thing
exists). We imposed the detailed balance condition because we wanted this station-
ary distribution to be the target distribution P(x, y). In the construction here, both
(x, y) → (x ′, y) and (x ′, y) → (x ′, y′) separately satisfy the detailed balance condi-
tion, and hence, P(x, y) is stationary under both. When (x, y) → (x ′, y) → (x ′, y′)
is regarded as one step, the detailed balance condition does not hold but P(x, y) is
still the stationary distribution. The situation is almost the same as the one consid-
ered in Exercise 2 in Chap. 4. If you are interested in the details, see the solution to
Exercise 2 in Chap. 4.

5.2.2 Multivariate Gibbs Sampling Algorithm

For n variables, the Gibbs sampling algorithm works in the following manner.
Gibbs sampling algorithm for n variables� �

1. Suppose (x (k)
1 , x (k)

2 , . . . , x (k)
n ) is given. Then, x (k+1)

1 is generated following
the probability distribution P(x (k+1)

1 |x (k)
2 , . . . , x (k)

n ).
2. Next, x (k+1)

2 is generated following the probability distribution
P(x (k+1)

2 |x (k+1)
1 , x (k)

3 , . . . , x (k)
n ).

3. For i = 3, 4, . . . , n − 1, x (k+1)
i is generated following the probability distri-

bution P(x (k+1)
i |x (k+1)

1 , . . . , x (k+1)
i−1 , x (k)

i+1, . . . , x
(k)
n ).

4. x (k+1)
n is generated following the probability distribution
P(x (k+1)

n |x (k+1)
1 , x (k+1)

2 , . . . , x (k+1)
n−1 ).

Now (x (k)
1 , x (k)

2 , . . . , x (k)
n ) has been updated to (x (k+1)

1 , x (k+1)
2 , . . . , x (k+1)

n ).
5. Repeat the same procedure many many times.

� �

7 Note that, if the convention is such that x is updated first, then (x ′, y′) → (x ′, y) → (x, y) is
not allowed as an inverse of (x, y) → (x ′, y) → (x ′, y′); we are forced to update in the order of
(x ′, y′) → (x, y′) → (x, y).
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Just in case you find the notation a bit complicated, let us show the case of three
variables.We use the notation x1 = x , x2 = y, x3 = z. Then the Gibbs sampling goes
as follows:

Trivariate Gibbs sampling algorithm� �

1. Suppose (x (k), y(k), z(k)) are given.
Then, x (k+1) is generated following the probability distribution
P(x (k+1)|y(k), z(k)).

2. Next, y(k+1) is generated following the probability distribution
P(y(k+1)|x (k+1), z(k)).

3. Finally, z(k+1) is generated following the probability distribution
P(z(k+1)|x (k+1), y(k+1)).
Now (x (k), y(k), z(k)) has been updated to (x (k+1), y(k+1), z(k+1)).

4. Repeat the same procedure many many times.
� �

For the action of the form8

S(x1, . . . , xn) = 1

2

n∑

i, j=1

Ai j xi x j (Ai j = A ji ), (5.36)

the conditional probability distributions are as follows:

P(x |y, z) = e
− A11

2

(
x+ A12

A11
y+ A13

A11
z
)2

√
2π/A11

,

P(y|z, x) = e
− A22

2

(
y+ A21

A22
x+ A23

A22
z
)2

√
2π/A22

,

P(z|x, y) = e
− A33

2

(
z+ A31

A33
x+ A32

A33
y
)2

√
2π/A33

. (5.37)

5.2.3 Gibbs Sampling Simulation

We already learned how to obtain the Gaussian distribution with the mean 0 and

width 1, i.e., P(x) = 1√
2π
e− x2

2 , by using the Box-Muller algorithm. Let us multiply
σ to x , and then add μ:

x ′ = σx + μ. (5.38)

8 What would be the condition which Ai j should satisfy for a legitimate probability distribution to
be obtained?
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Then the Gaussian distribution with the width σ and mean μ is obtained, i.e.,

P(x ′;σ,μ) = 1√
2πσ

e− (x ′−μ)2

2σ2 . (5.39)

In the case of three variables that we have just seen, we can obtain the conditional
probability P(x |y, z) by setting σ = 1√

A11
, μ = − A12

A11
y − A13

A11
z. The other distribu-

tions P(y|x, z) and P(z|x, y) are obtained in the same manner.
Below,we showa sampleprogram inC++, for S(x, y, z) = x2+2y2+2z2+2xy+2yz+2zx

2 .
We show only main. Other than this part, we only need BoxMuller which was
used also for the HMC algorithm.

int main()
{
double A[3][3];
A[0][0]=1e0;A[1][1]=2e0;A[2][2]=2e0;
A[0][1]=1e0;A[0][2]=1e0;A[1][2]=1e0;
A[1][0]=A[0][1];A[2][0]=A[0][2];A[2][1]=A[1][2];

srand((unsigned)time(NULL)); // set the seed of the random number
double x=0e0;double y=0e0;double z=0e0; // set the initial configuration
// Main part
for(int iter=0; iter!=niter; iter++){

double sigma,mu;
double r1,r2;
// update x
sigma=1e0/sqrt(A[0][0]);
mu=-A[0][1]/A[0][0]*y-A[0][2]/A[0][0]*z;
BoxMuller(r1,r2);
x=sigma*r1+mu;
// update y
sigma=1e0/sqrt(A[1][1]);
mu=-A[1][0]/A[1][1]*x-A[1][2]/A[1][1]*z;
BoxMuller(r1,r2);
y=sigma*r1+mu;
// update z
sigma=1e0/sqrt(A[2][2]);
mu=-A[2][0]/A[2][2]*x-A[2][1]/A[2][2]*y;
BoxMuller(r1,r2);
z=sigma*r1+mu;
// output the values of x,y,z (every 10 steps)
if((iter+1)%10==0){
std::cout
<< x << " "
<< y << " "
<< z << std::endl;
}

}
return 0;

}
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Note that the Metropolis test is not needed because the configuration is always
updated with 100% possibility.

In Sect. 5.1.5, the same probability distribution was studied by using the HMC
algorithm. As a sanity check, let us compare the configurations obtained via HMC
andGibbs sampling. Both in HMC andGibbs sampling, we collected 1 configuration
every 10 steps. We had 100,000 steps, hence 10,000 configurations in total. For the
HMC simulation, we used Nτ = 20, �τ = 0.5. Figure 5.8 shows two-dimensional
scatter plots for x-vs-y, x-vs-z, and y-vs-z. The left and right panels are results
obtained via HMC and Gibbs sampling, respectively. We can see almost the same
distributions.

In Fig. 5.9, the distributions of the product xy from HMC and Gibbs samplings
are compared, by increasing the number of configurations to 1,000,000. A very good
agreement can be seen.

5.3 Metropolis-Hastings Algorithm (MH Algorithm)

Next, we introduce the Metropolis-Hastings algorithm (MH algorithm) [14], which
is a conceptual foundation of convenient algorithms such as Gibbs sampling and
HMC.

In the Metropolis algorithm, the transition probability T ({x} → {x ′}) is

T (x → x ′) = (
probability that �x = x ′ − x

) × min

(
1,

e−S(x ′)

e−S(x)

)
. (5.40)

We also impose

(
probability that �x = x ′ − x

) = (
probability that �x = x − x ′) . (5.41)

Then the detailed balance condition is satisfied.
What if the second condition is not satisfied? For example, if

(probability that �x > 0) = (probability that �x < 0) × 2, (5.42)

what happens? Of course, if we do not do anything, then the detailed balance condi-
tion does not hold anymore. However, if the acceptance probability of the proposed

configuration, which ismin
(
1, e−S(x ′)

e−S(x)

)
in theMetropolis algorithm, is properlymodi-

fied, then the detailed balance condition can be restored. In the current example, if we
set the acceptance probability to be half of the one for theMetropolis algorithmwhen
�x > 0, the detailed balance condition can be satisfied. In the Metropolis-Hastings
algorithm, we use a cleverer prescription.

More generally, let us assume that the probability that �x = x ′ − x is obtained
can depend on x and x ′ in a complicated manner, as f (x → x ′). We assume that if
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Fig. 5.8 For S(x, y, z) = x2+2y2+2z2+2xy+2yz+2zx
2 , the two-dimensional scatter plots of the pairs

(x, y), (x, z) and (y, z) are shown. The left and right panels are obtained via the HMC algorithm
and the Gibbs sampling algorithm, respectively
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Fig. 5.9 For S(x, y, z) =
x2+2y2+2z2+2xy+2yz+2zx

2 , the
histogram of the product xy
was generated by using the
Gibbs sampling algorithm
and the HMC algorithm
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f (x → x ′) > 0 then f (x ′ → x) > 0 holds as well. (Also, if f (x → x ′) = 0, then
f (x ′ → x) = 0 as well.) Then, even if f (x → x ′) �= f (x ′ → x), by modifying the
acceptance probability for x → x ′ as

min

(
1,

e−S(x ′) f (x ′ → x)

e−S(x) f (x → x ′)

)
(5.43)

we can keep the detailed balance condition e−S(x) · T (x → x ′) = e−S(x ′) · T (x ′ →
x) to be valid.

We can confirm the detailed balance condition as follows:

• If f (x → x ′) = f (x ′ → x) = 0, then the transition probability is T (x → x ′) =
T (x ′ → x) = 0, and hence e−S(x) · T (x → x ′) = e−S(x ′) · T (x ′ → x) holds triv-
ially.

• Below,we focus on the case of f (x → x ′) > 0 and f (x ′ → x) > 0. The transition
probability is

T (x → x ′) = f (x → x ′) × min

(
1,

e−S(x ′) f (x ′ → x)

e−S(x) f (x → x ′)

)
, (5.44)

and

T (x ′ → x) = f (x ′ → x) × min

(
1,

e−S(x) f (x → x ′)
e−S(x ′) f (x ′ → x)

)
. (5.45)

• If e−S(x ′) f (x ′ → x) ≥ e−S(x) f (x → x ′), we have

e−S(x)T (x → x ′) = e−S(x) f (x → x ′) × 1, (5.46)

and
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e−S(x ′)T (x ′ → x) = e−S(x ′) f (x ′ → x) × e−S(x) f (x → x ′)
e−S(x ′) f (x ′ → x)

. (5.47)

Therefore,

e−S(x)T (x → x ′) = e−S(x ′)T (x ′ → x) = e−S(x) f (x → x ′), (5.48)

and the detailed balance condition is satisfied.
• Wecan repeat the sameargument for the case of e−S(x ′) f (x ′ → x) < e−S(x) f (x →
x ′) as well, just exchanging x and x ′.

The expressions above are written as if there is only one variable, but the same
argument applies to the multivariate distributions.

This method is called the Metropolis-Hastings algorithm (MH algorithm). If
f ({x} → {x ′}) = f ({x ′} → {x}), the Metropolis-Hastings algorithm is the same as
the Metropolis algorithm.

Metropolis-Hastings algorithm (MH algorithm)� �

1. Suppose a transition {x} → {x ′} is proposed with a probability f ({x} →
{x ′}). We assume that if f ({x} → {x ′}) > 0 then f ({x ′} → {x}) > 0, and
if f ({x} → {x ′}) = 0 then f ({x ′} → {x}) = 0. By using this probability
f ({x} → {x ′}), from {x} = {x (k)}, the candidate of {x (k+1)} denoted by {x ′}
is proposed.

2. Metropolis test: the proposal is accepted, i.e., {x (k+1)} = {x ′}, with

probability min
(
1, e−S({x ′ }) f ({x ′}→{x})

e−S({x}) f ({x}→{x ′})
)
. Otherwise the proposal is rejected,

i.e., {x (k+1)} = {x (k)} = {x}.
� �

5.3.1 Advantage over the Metropolis Algorithm

The acceptance probability in the Metropolis algorithm is

min

(
1,

e−S({x ′})

e−S({x})

)
, (5.49)

while in the MH algorithm it is

min

(
1,

e−S({x ′}) f ({x ′} → {x})
e−S({x}) f ({x} → {x ′})

)
. (5.50)

While S({x}) is given and we cannot change it, we can choose whatever f ({x} →
{x ′}) we like. Therefore, by choosing f ({x} → {x ′}) appropriately, the acceptance
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rate can be made closer to 1. Of course, it is not easy to find such f ({x} → {x ′}) in
general. Aswewill see shortly, theGibbs sampling algorithmand theHMCalgorithm
can be regarded as the MH algorithm with very clever choices of f ({x} → {x ′}).
The Wolff algorithm, which will be introduced in Sect. 6.2.4, is also a version of the
MH algorithm.

If we just wanted to recover the detailed balance condition, then other acceptance

probabilities such asmin(1, eS({x})−S({x ′})) × min
(
1, f ({x ′}→{x})

f ({x}→{x ′})
)
could be fine.How-

ever, the acceptance rate does not go up with such a choice.

5.3.2 Gibbs Sampling is Metropolis-Hastings

In the Gibbs sampling algorithm, y, z, . . . are fixed and x is updated with the relative
weight e−S(x ′;y,z,...). Therefore,

f (x ′ → x)

f (x → x ′)
= e−S(x;y,z,...)

e−S(x ′;y,z,...) , (5.51)

and hence,

e−S(x ′;y,z,...) f (x ′ → x)

e−S(x;y,z,...) f (x → x ′)
= 1. (5.52)

Therefore, the Gibbs sampling is a version of theMH algorithm in which f (x → x ′)
is chosen in a clever manner such that the acceptance rate becomes 100%.

5.3.3 HMC is Metropolis-Hastings

In the HMC algorithm, the auxiliary momentum p is introduced and the time evolu-
tion (x, p) → (x ′, p′) is considered.Hence, the probability that the transition x → x ′

is proposed is f (x → x ′) ∝ e− p2

2 . The probability that inverse process x ′ → x is

proposed is f (x ′ → x) ∝ e− p′2
2 . Therefore,

e−S(x ′) f (x ′ → x)

e−S(x) f (x → x ′)
= e−H(x ′,p′)

e−H(x,p)
. (5.53)

This is the same as eHinit−Hfin that is used for theMetropolis test in theHMCalgorithm.
Therefore, the HMC algorithm is a version of theMH algorithm in which f (x → x ′)
is chosen cleverly.
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5.3.4 More Elementary Example

As a more elementary example, let us consider a slight deformation of the Gaussian
distribution,

S(x) = 1

2
x2 + 1

4
x4. (5.54)

By mimicking the Gibbs sampling algorithm, let us generate x ′ with the probability
e− 1

2 x ′2√
2π

, regardless of x . Then f (x → x ′) = e− 1
2 x ′2√
2π

and hence

e−S(x ′) f (x ′ → x)

e−S(x) f (x → x ′)
= e− 1

4 x
′4

e− 1
4 x

4
. (5.55)

As we can see from Fig. 5.10, the function e− 1
4 x

4
is rather flat, and hence, the

acceptance rate is higher.

5.4 Combination of Different Algorithms

We can use different algorithms for different variables. This is a common and impor-
tant technique in large-scale simulations in high-energy physics.

As an example, we consider

S(x, y) = y2

2
f (x) + g(x), (5.56)
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where f (x) and g(x) are some complicated functions. In this case, we can divide the
simulation into two steps:

• Fix y and update x .
• Fix x and update y.

When x is fixed, y follows the Gaussian distribution. Therefore, we can use the
Gibbs sampling algorithm in the following manner:

• Fix y and update x by using the Metropolis algorithm or the HMC algorithm.
• Fix x and update y by using the Gibbs sampling algorithm. Specifically, we gen-
erate the Gaussian random number z with variance 1 and take y to be y = z√

f (x)
.

5.5 Exercises

1. In the HMC algorithm, neither the detailed balance condition nor the (approxi-
mate) conservation of the Hamiltonian is violated even if different step sizes are
used for different variables. Why?

2. In the HMC algorithm, the detailed balance condition is not broken even if we
use different actions S(x) for the leapfrog time evolution and the Metropolis test.
(The distribution obtained in this way is determined by the action S(x) used in
the Metropolis test.) Why?What is the advantage and disadvantage of using such
a trick?

3. In theHMCalgorithm,when thenumber of leapfrog steps Nτ becomes large,while
Nτ�τ is fixed, the difference of the Hamiltonian before and after the leapfrog
time evolution scales as �H ∝ N−2

τ at sufficiently large Nτ (Fig. 5.6). Why?
This property is useful for the debugging and the adjustment of the simulation
parameters.

4. For the HMC algorithm, we learned how to optimize Nτ and �τ when τfin =
Nτ�τ is fixed. How can we estimate the optimal value of τfin as well?

5. Show that the Jacobian is 1 for the leapfrog time evolution.
6. The Gibbs sampling algorithm is useful for the Gaussian distribution because the

Gaussian random numbers can be generated directly without autocorrelation by
using the Box-Muller algorithm. The Gibbs sampling algorithm can be powerful
for other kinds of distributions if the associated random numbers can be generated
without autocorrelation. Having this in mind, how canwe generate the probability
distribution ρ(x) = e−x (0 ≤ x < ∞) from the uniform random number?
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Solutions

1. Let the step size for xi , pi be �τ × ci . When we showed the detailed balance in
the HMC algorithm in Sect. 5.1.3, the reversibility of the leapfrog time evolution
was the key. The reversibility is preserved even if we use different ci for different
i . It can be confirmed straightforwardly; we recommend checking it. Once the
reversibility is established, the argument in Sect. 5.1.3 can be repeated without
change.
In theHMCalgorithm, the conservation of theHamiltonian in the limit of�τ → 0
is very important. This property is also preserved, as we can see in the following
manner. Firstly, the Hamilton equation is modified to

dpi
dτ

= −ci
∂H

∂xi
,

dxi
dτ

= ci
∂H

∂ pi
. (5.57)

By using it, we can immediately see that

dH

dτ
=

∑

i

(
dxi
dτ

∂H

∂xi
+ dpi

dτ

∂H

∂ pi

)

=
∑

i

ci

(
∂H

∂ pi

∂H

∂xi
− ∂H

∂xi

∂H

∂ pi

)
= 0. (5.58)

Therefore, the Hamiltonian is still conserved.
2. As we mentioned above, we only need the reversibility of the leapfrog time

evolution for the detailed balance condition to be satisfied. Therefore, we can
use different S(x) for the time evolution and the Metropolis test.
If we use different S(x), the Hamiltonian is not conserved, and hence, the accep-
tance rate goes down. This is an obvious disadvantage.
To see a potential advantage, let us consider a probability distribution P(x) ∝
e−1/x2−x2 , S(x) = 1

x2 + x2. We considered this distribution in Sect. 3.2. If we
apply the HMC algorithm to this target distribution naively, the simulation is
trapped in x > 0 or x < 0, because P(0) = 0 at x = 0.However, if we use S(x) =

1
x2+ε

+ x2, where ε is a small positive number, for the leapfrog time evolution, then
P(0) becomes nonzero, and hence both x > 0 and x < 0 can be sampled. In this
way, if the action S(x) is singular at some points (S(x = 0) = ∞ in the example
we have just seen), we might be able to improve the efficiency of the simulation
by slightly modifying the action for leapfrog and removing the singularity.

3. Because Nτ�τ is fixed, �τ is proportional to N−1
τ . Therefore, if the error at each

step is of order (�τ )3 ∝ N−3
τ , the contribution from all steps sum up to N−2

τ .
To confirm that the error at each step is of order (�τ )3, let us expand the discretized
Hamiltonian time evolution in powers of �τ . Then we obtain
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x(τ + �τ ) = x(τ ) + �τ · dx
dτ

(τ ) + (�τ )2

2
· d

2x

dτ 2
(τ ) + O((�τ )3)

= x(τ ) + �τ · p(τ ) + (�τ )2

2
· dp
dτ

(τ ) + O((�τ )3)

= x(τ ) + �τ ·
(
p(τ ) + �τ

2
· dp
dτ

(τ )

)
+ O((�τ )3)

= x(τ ) + �τ ·
(
p

(
τ + �τ

2

)
+ O((�τ )2)

)
+ O((�τ )3)

= x(τ ) + �τ · p
(

τ + �τ

2

)
+ O((�τ )3). (5.59)

Therefore, the leapfrog time evolution x(τ ) + �τ · p (
τ + �τ

2

)
approximates the

exact time evolution x(τ + �τ ) up to the error of order O((�τ )3). We can repeat
a similar calculation for the time evolution of p(τ ) and easily check that the error
is O((�τ )3).

4. For each Nτ and τfin, we can calculate the autocorrelation w(Nτ , τfin). The cost
for one independent configuration is proportional to Nτ × w(Nτ , τfin). Hence we
should find the values of Nτ and τfin that minimize Nτ × w(Nτ , τfin).

5. For simplicity, let us consider the case of one variable. The generalization to the
multivariate version is straightforward.
The Jacobian J associated with a transformation (x, p) → (x ′, p′) is the follow-
ing determinant:

J = det

(
∂x ′
∂x

∂ p′
∂x

∂x ′
∂ p

∂ p′
∂ p

)
= ∂x ′

∂x

∂ p′

∂ p
− ∂ p′

∂x

∂x ′

∂ p
. (5.60)

We can easily see that such a determinant is 1 at each step of leapfrog. Indeed,
it is J = 1 · 1 − 0 · �τ = 1 for (x, p) → (x ′, p′) = (x + p · �τ , p) and J =
1 · 1 + ∂2S

∂x2 �τ · 0 = 1 for (x, p) → (x ′, p′) = (x, p − ∂S
∂x · �τ ). The Jacobian

associated with the entire leapfrog evolution is the product of these determinants,
and hence, it is also 1.

6. We can generate the uniform random number 0 ≤ y ≤ 1, and then change the
variable as x = − log y.
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Chapter 6
Applications of Markov Chain Monte
Carlo

TheMarkov ChainMonte Carlo methods have a wide range of applicability. Because
each application has its own characteristics, we have to use a suitable algorithm
depending on the problem under consideration. For that purpose, it is important to
understand what are the basic features common to all applications of MCMC and
what are the problem-specific details. In this section, we will show a few concrete
examples of the applications of the MCMC methods.

In Sect. 6.1, we will see the applications to statistics including the Bayesian anal-
yses. We focus on basic materials that illuminate the relationship between statistics
and the kind of calculations we have already done in previous chapters. We also
explain the basic ideas of Bayesian statistics.

In Sect. 6.2, we will study a classic material in university physics courses: the
Isingmodel. Hopefully, it is a familiar example for readerswith a science or engineer-
ing background. Examples from physics lead us to better intuitive understandings
because they are directly connected to natural phenomena. In systems that exhibit the
second-order phase transition such as the Ising model, the autocorrelation becomes
stronger near the transition point. Such a phenomenon is called the critical slowing
down. We will introduce the cluster algorithm, with which we can avoid the critical
slowing down in the Ising model.

In Sect. 6.3, we apply theMCMCmethods to the combinatorial optimization prob-
lems, taking the traveling salesman problem as an example. Naive approaches often
fail due to the existence of the local optimal solutions. To circumvent the problem
associated with the local optimal solutions, we will introduce the simulated anneal-
ing algorithm that is (sometimes) effective, and its improved version, the replica
exchange algorithm that is also called the parallel tempering algorithm.

The applications to high-energy physics are reviewed in Sect. 6.4. Various fancy
techniques are used and large-scale simulations on supercomputers are routinely
performed, but the basic points are just the same as much simpler cases discussed in
previous sections. In this section, we will explain the RHMC (rational hybrid Monte
Carlo) algorithm that was introduced to deal with the inverse of gigantic matrices.
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6.1 Likelihood and Bayesian Statistics

In this section, we apply MCMC to statistics. For standard textbooks on statistics,
see e.g., Refs. [1–3].

6.1.1 Defining the “Likelihood” Quantitatively

When the Markov Chain Monte Carlo methods are applied to statistics, a confusing
point for beginners is the distinction between variables and parameters. Let us get
down to the basics and build a firm footing.

Let us consider the coin toss. Usually, every time the coin is tossed, the most
natural assumption is that the head and tail appearwith the same probability. Suppose,
however, that head appeared 9 times out of 10 tosses. Then youwould think somebody
manipulated the coin. There can be 210 = 1024 outcomes when the coin is tossed
ten times, among them only 10 outcomes are head 9—tail 1. If the head and tail
appear with the same probability, there is only about a 1% chance that such an event
can happen. It may be a bit too early to conclude that it is cheating, but it is worth
considering such a possibility. So let us estimate the probability of heads p at each
toss from this outcome. Intuitively, p = 9

10 sounds likely. It is indeed “likely”, but can
we justify our intuition by defining the “likelihood” quantitatively? Let us construct
a theoretical framework to answer this question.

Now we are assuming that the probability of a head is p at each coin toss. Hence,
the probability that the head appears 9 times out of 10 tosses is

10p9(1 − p). (6.1)

By plotting this as a function of p, we obtain Fig. 6.1. This function takes the
maximum value (about 0.39) at p = 9

10 . Hence, it seems to be reasonable, at least to
someextent, to conclude that p = 9

10 .On the other hand, if p = 1
2 , such an event (head

9—tail 1) can happen only with the probability 0.01, that is, not really “likely”. But
we cannot immediately conclude p = 0.9, because 10p9(1 − p) is large in a finite
range, say between p = 0.8 and p = 0.95, and hence the values of p around that
range are reasonably “likely”.

Therefore, we adopt the value 10p9(1 − p), which is “the probability that the
observed outcome (head 9—tail 1) can happen when the probability of a head at each
toss is p”, as a quantitative index characterizing the likelihood that the probability
of a head is actually p. We call this quantity likelihood.

More generally, the probability that the head appears k times among 10 tosses is1

1 The number of ways that the head appears k times among n tosses is
(n
k

) = n!
(n−k)!k! .
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Fig. 6.1 10p9(1 − p),
which is the probability that
the head appears 9 times out
of 10 tosses when the
probability of head at each
toss is p
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P(k|p) =
(
10

k

)
· pk(1 − p)10−k = 10!

k!(10 − k)! · pk(1 − p)10−k (6.2)

when the ordering is not specified, and

P(k|p) = pk(1 − p)10−k (6.3)

when the ordering is specified. The factor
(10
k

)
does not depend on p and hence does

not play any important roles later in this book. We thus use (6.3) in the following. To
emphasize the assumption (“the probability of a head is p”), we used the notation
P(k|p). This quantity P(k|p) is the likelihood, given the observed outcome that the
head appeared k times out of 10 tosses. In the maximum likelihood method, we infer
that the value of p that maximizes the likelihood is most natural and hence the right
value.

In this way, the likelihood is defined as the probability that a certain event happens,
when such an event is observed. The difference from usual probability is that the
quantity characterizing the event (in this case, p) is regarded as the variable. “Prob-
ability” and “likelihood” are the same function, but the interpretations are different:

• If the probability of head p is given, then P(k|p) is the “probability” that the head
appears k times.

• If the outcome (the head appeared k times) is given and we try to estimate the
value of p from the given outcome, P(k|p) is the “likelihood” that the value is
actually p.

If you find it confusing, it would be better to use different notations, say P(k|p) for
the probability and L(p|k) for the likelihood.2 In this book, we use only P(k|p).

The same idea can be applied to other probability distributions. Consider the
Gaussian distribution

2 P(p|k) means something different from P(k|p); see Eq. (6.23).
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ρ(x |μ,σ) = e− 1
2

(x−μ)2

σ2√
2πσ2

. (6.4)

For later convenience, we use the notation ρ(x |μ,σ), emphasizing that the mean
μ and the width σ are specified. If we generate n random numbers following this
distribution, the probability that x1, x2, . . . , xn are obtained is

P(x1, . . . , xn|μ,σ) = ρ(x1|μ,σ) × ρ(x2|μ,σ) × · · · × ρ(xn|μ,σ)

=
n∏

i=1

ρ(xi |μ,σ). (6.5)

Suppose you have a black-box routine that creates the Gaussian random number,
but you do not know the values of σ and μ. You used this routine n times and obtained
x1, . . . , xn . From such an observed outcome, you want to make a good guess on the
values of σ and μ. Then, by interpreting P(x1, . . . , xn|μ,σ) as a function of μ and
σ, we can think such (μ,σ) that makes P(x1, . . . , xn|μ,σ) larger is more likely.
Therefore, P(x1, . . . , xn|μ,σ) can be interpreted as the likelihood as well.

In traditional statistics, it is assumed that parameters such as p for the coin toss
and μ,σ for the Gaussian distribution are (even if you do not know the actual val-
ues, in principle) already uniquely determined. The values of those parameters are
determined by using the maximum likelihood method. As we will see in Sect. 6.1.3,
in Bayesian statistics, the notion of “probability distribution of p” is admitted. Then,
by combining the likelihood and Bayes’ theorem, the probability distribution of p is
estimated.

So farwe have assumed that the functional forms of the likelihood function P(k|p)
or P(x1, . . . , xn|μ,σ) are known. In actual applications, even if the data like k or {xi }
are given, usuallywe do not know the form of the likelihood functions, andwe have to
find reasonable likelihood functions. The methods we will explain below (especially
the Metropolis algorithm and the HMC algorithm) can be applied to complicated
likelihood functions, so we should try various functions and find a reasonable one
that returns a sufficiently large value of the likelihood.

The Least Squares Method

The least squares method, which is used for the fit of the experimental data very
often, is a version of the maximum likelihood method.

Imagine a theory parametrized by �x . In the case of the Ising model (Sect. 6.2),
the size of the lattice n, temperature T , the coupling constant J , and the external
magnetic field h correspond to �x . Suppose that a physical quantity (say the energy E)
is measured at different points in the parameter space, �x1, . . . , �xK , and as the results
y1, . . . , yK are obtained.Wefit the data by using a function y = f (�x;μ1,μ2, . . .). For
the Ising model, you can imagine something like E = μ1T μ2 . The fitting parameters
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are μ1,μ2, . . .. The least squares method gives us a guideline for the fit. In the least
squares method, μ1,μ2, . . . are chosen such that

K∑

k=1

(yk − f (�xk;μ1,μ2, . . .))
2 (6.6)

is minimized.
As we have seen in Sect. 2.1.2, the errors in the experiments often follow the

Gaussian distribution. So, let us assume it here. It is natural to identify thewidth of the
Gaussian distribution at each point �xk with the error bar associated with themeasured
value yk , which we denote by σk . We can estimate them by using the Jackknife
method. Then, when the fitting parameters μ1,μ2, . . . are fixed, the outcome would
be y1, . . . , yK with the following probability:

P(y1, . . . , yK |μ1,μ2, . . .) =
K∏

k=1

ρσk ,�xk (yk |μ1,μ2, . . .), (6.7)

ρσk ,�xk (yk |μ1,μ2, . . .) ≡ 1√
2πσk

e
− (yk− f (�xk ;μ1 ,μ2 ,...))2

2σ2k . (6.8)

We interpret this P as the likelihood function. In the maximum likelihood method,
μ1,μ2, . . . are chosen such that the likelihood is maximized or, equivalently, such
that

K∑

k=1

(yk − f (�xk;μ1,μ2, . . .))
2

σ2
k

(6.9)

is minimized.
If we do not know the variance σ2

k , let us just assume that σ1 = · · · = σK = σ.
Then, regardless of the value of σ, the minimization of (6.9) reduces to the mini-
mization of (6.6). In this sense, the least squares method is a version of the maximum
likelihood method. The minimization of (6.9) is called the weighted least squares
method.

6.1.2 Calculation of Likelihood

Now we calculate the likelihood via MCMC. As usual, we consider the Gaussian
distribution as a concrete example.
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One Variable

We start with the simplest case with just one variable. Suppose random numbers
x1, x2, . . . , xn are given and we know or we assume that these random numbers were
obtained from theGaussian distribution ρ(x |μ,σ) but we do not know the parameters
of the distribution μ and σ. Our mission is to estimate the values of μ and σ from
x1, x2, . . . , xn . The probability that these n numbers are obtained from the Gaussian
distribution with the mean μ and width σ is given by (6.5). We regard it as a function
of μ and σ, and interpret it as the likelihood of the assumption that the parameters
are those values.

In order to use MCMC, we define the action S(x1, . . . , xn|μ,σ) by P(x1, . . . ,
xn|μ,σ) ∝ e−S(x1,...,xn |μ,σ). In the current example,

S(x1, · · · , xn|μ,σ) =
n∑

i=1

(xi − μ)2

2σ2
+ n logσ

= n

2σ2
μ2 −

∑n
i=1 xi
σ2

μ +
∑n

i=1 x
2
i

2σ2
+ n logσ

= n

(
1

2σ2
(μ − x)2 + 1

2σ2

(
x2 − x2

)
+ logσ

)
. (6.10)

Here x ≡ 1
n

∑n
i=1 xi and x

2 ≡ 1
n

∑n
i=1 x

2
i are the averages of xi and x

2
i , respectively.

The term n logσ comes from the normalization factor (2πσ2)−n/2.
We can get some amount of information already from this expression. Because

of the overall factor n in the final line, only the minimum contributes to the limit

of infinite n. Therefore, we obtain μ = x and σ =
√
x2 − x2 when n = ∞.3 It is

a natural result: when the number of samples n is infinite, the set of the samples
describes the probability distribution precisely, and hence the mean and the variance
of the samples are exactly the same as those of the probability distribution we want to
find. When n is finite, the distributions of μ and σ have widths of order 1√

n
. Roughly

speaking, these widths are the statistical errors.
Once the action is given, we can immediately calculate the likelihood viaMCMC.

For the Gaussian distribution, we can apply the Metropolis algorithm, the HMC
algorithm, or the Gibbs sampling algorithm straightforwardly.

The Metropolis and HMC algorithms can be applied to more complicated distri-
butions as well, and furthermore, we can write a code without using our brain too
much. The Metropolis algorithm is especially easy, we can just use the algorithm
explained in Sect. 4.1 without any modifications. To use the HMC algorithm, we
have to calculate the derivative of S(x1, · · · , xn|μ,σ) with respect to μ and σ:

3 When S is minimum, ∂S
∂μ = ∂S

∂σ = 0 holds. Therefore, we should find such μ and σ that make the
right-hand side of (6.11) zero.
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∂S

∂μ
= n(μ − x)

σ2
,

∂S

∂σ
= n

(
− 1

σ3
(μ − x)2 − 1

σ3

(
x2 − x2

)
+ 1

σ

)
. (6.11)

Then, we can just repeat the procedures explained in Sect. 5.1. A disadvantage of
the Metropolis and HMC algorithms is that we need to adjust the parameters for the
simulations. This is not difficult but tedious.

If we use the Gibbs sampling, the coding is more involved, but there is no need
for parameter tuning. When you have to solve similar problems many times, or if
somebody already wrote a program for you, it would be better to use the Gibbs
sampling algorithm. In the current example, μ follows the Gaussian distribution.
Therefore, as explained in Sect. 5.2, the Box-Muller method can be used when σ
is fixed and μ is updated. The update of σ is a bit complicated, but we can use the
Metropolis or HMC algorithm; note that, as we have learned in Sect. 5.4, we can
combine different algorithms.

Multiple Variables

The same argument goes through for the case of multiple variables. Let us consider
the d-variate version of the Gaussian distribution,

ρ(x1, · · · , xd |A,μ) =
√

det A

(2π)d
· exp

⎛

⎝−1

2

d∑

i, j=1

Ai j (xi − μi )(x j − μ j )

⎞

⎠ . (6.12)

When n sets of data {x (k)} = (x (k)
1 , . . . , x (k)

d ) (k = 1, 2, . . . , n) are given, the likeli-
hood function is

P({x (1)}, . . . , {x (n)}|A,μ)

=
n∏

k=1

ρ(x (k)
1 , . . . , x (k)

d |A,μ)

=
(
det A

(2π)d

)n/2

exp

⎛

⎝−1

2

n∑

k=1

d∑

i, j=1

Ai j (x
(k)
i − μi )(x

(k)
j − μ j )

⎞

⎠ . (6.13)

The action defined by P({x (1)}, . . . , {x (n)}|A,μ) ∝ e−S({x (1)},...,{x (n)}|A,μ) can be sim-
plified in the following manner:
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S({x (1)}, . . . , {x (n)}|A,μ)

= 1

2

n∑

k=1

d∑

i, j=1

Ai j (x
(k)
i − μi )(x

(k)
j − μ j ) − n

2
log det A

= n

2

d∑

i, j=1

Ai jμiμ j −
n∑

k=1

d∑

i, j=1

Ai j x
(k)
i μ j + 1

2

n∑

k=1

d∑

i, j=1

Ai j x
(k)
i x (k)

j − n

2
log det A

= n

2

d∑

i, j=1

Ai j
(
μiμ j − 2xiμ j + xi x j

)− n

2
log det A

= n

2

⎧
⎨

⎩

d∑

i, j=1

Ai j (μi − xi )
(
μ j − x j

)+
d∑

i, j=1

Ai j
(
xi x j − xi x j

)− log det A

⎫
⎬

⎭
.

(6.14)

By throwing this expression into one of the algorithms we have already seen, we can
calculate the likelihood.

Here we adopt the HMC algorithm. We use

log det A = Tr log A (6.15)

and

∂Tr log A

∂Ai j
= (A−1

)
j i . (6.16)

(see Appendix B for derivations.) By using these formulas, we obtain4

∂S

∂Ai j
= n

2

{(
μiμ j − xiμ j − x jμi + xi x j

)− (A−1)i j
}

(6.17)

and

∂S

∂μi
= n

d∑

j=1

Ai j
(
μ j − x j

)
. (6.18)

We calculate the right-hand side of these equations numerically for the leapfrog time
evolution. The hardest part is the calculation of the inverse matrix A−1. If d is not
so large, the inverse matrix can be calculated easily. For example, for d = 2, we can
use the formula

4 We showed the expressions by treating Ai j and A ji as independent variables. Strictly speaking,
because we are assuming Ai j = A ji , the factor 2 should be multiplied when i �= j . The same factor
2 appears also for p(A), and hence this factor does not affect the Hamilton equation used in the
HMC simulation.
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A−1 = 1

A11A22 − A12A21

(
A22 −A12

−A21 A11

)
. (6.19)

Algorithms for calculating the inverse are known for d ≥ 3 as well, so you can
implement one of them by yourself, or you can use a package for linear-algebra
calculations such as LAPACK.

The remaining steps are essentially the same as in Sect. 5.1. We introduce the
“momenta” p(A)

i j and p(μ)

i that correspond to the variables Ai j and μi , respectively.

Because Ai j is a real symmetric matrix, p(A)
i j is also a real symmetric matrix. The

Hamiltonian is defined as

H(p(A), p(μ), A,μ) = 1

2

d∑

i, j=1

(p(A)
i j )2 + 1

2

d∑

i=1

(p(μ)

i )2 + S(A,μ). (6.20)

Note that 1
2

∑
i, j (p

(A)
i j )2 = 1

2

∑
i (p

(A)
i i )2 +∑i< j (p

(A)
i j )2, because p(A)

i j = p(A)
j i . From

this it follows that, for i �= j , the momentum p(A)
i j = p(A)

j i has to be the Gaussian

random number with the width 1√
2
. The width for other components p(A)

i i and p(μ)

i

is 1 as before. Except that we have to be careful about the normalization of the
momenta, there is no difference from the computations that appeared in Sect. 5.1.
The Hamilton equation is

dp(A)
i j

dτ
= −n

2

{(
μiμ j − xiμ j − x jμi + xi x j

)− (A−1)i j
}
,

d Ai j

dτ
= p(A)

i j ,

(6.21)

dp(μ)

i

dτ
= −n

d∑

j=1

Ai j
(
μ j − x j

)
,

dμi

dτ
= p(μ)

i . (6.22)

For the Gaussian distribution to make sense, the matrix Ai j has to be positive
definite (i.e., all eigenvalues are positive). But we did not impose such a condition
in the HMC algorithm; we just let the value of Ai j change following the Hamilton
equation. Then the meaningless configurations with negative eigenvalues would also
be sampled, wouldn’t they?

It is a good point, but, in fact, such meaningless configurations rarely appear.
If we set the matrix Ai j in the initial configuration to be positive definite, mean-
ingless configurations can appear only when the simulation goes through a region
where det A = 0. However, when det A = 0, the action is infinite and hence such a
region does not appear in the simulation. It is like an infinitely high wall is blocking
us. Because the HMC algorithm mimics the time evolution in classical mechanics,
there is almost no chance that the configuration moves toward det A = 0; even if
it happened it would not go beyond the infinitely high wall at det A = 0. Hence,
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the positive definiteness is rarely violated. Here we said “rarely” because there is a
negligibly small but mathematically nonzero probability of a violation: because the
time evolution is discretized, the configuration can go beyond det A = 0 due to an
unexpected combination of coincidences if the step size is large. If you want to use
a large step size, it would be better to check the positive definiteness of the matrix
Ai j after every update.

When the size of thematrix Ai j (denoted by d here) is large, the calculations of the
inverse and determinant are costly, and hence some sort of improvement is needed. If
the matrix size is a few hundred, we would only have to use linear-algebra packages
such as LAPACK. Even if you have to use even bigger matrices, if thematrices can be
made sparse (i.e., many components are zero) by using problem-specific properties
or by performing appropriate preprocessing to the data, the computational cost can
be reduced substantially. In high-energy physics (Sect. 6.4), it is necessary to deal
with the inverse of a gigantic matrix, and various techniques are invented in order
to reduce the simulation cost. When such techniques can be useful, you should not
hesitate to adopt them.

6.1.3 Bayesian Statistics

So far, we argued that our assumption is more likely to be true if the likelihood
function takes a larger value. But such an argument may be too naive. In the example
considered in Sect. 6.1.1 (tossed a coin ten times and observed the head nine times),
the likelihood function is maximumwhen p = 9

10 , where p is the probability of head
at each coin toss. But honestly, p = 9

10 is an unrealistic value. It is too big, isn’t
it? If the authors manipulate the coin, we would set p a bit closer to 1

2 , because
somebody would find out the cheating otherwise. Usually, before tossing a coin,
people assume the head and tail are equally likely. Even if the head appeared 9
times, it would not be reasonable to reject the original assumption immediately and
jump to an extreme conclusion, p = 9

10 . It would be more reasonable to think like “I
assumed that the head and tail are equally likely, but given that the head appeared so
many times, it would be better to change my assumption a little bit”. To put such an
idea into a mathematical setting, let us introduce the probability distribution of p or,
equivalently, the probability that the probability of a head is p, which we denote by
P(p). In Bayesian statistics, such “probability of probability” is inferred by using
Bayes’ theorem.

Suppose we have a reasonable guess about P(p) before we observe the head 9
times out of 10. This is the distribution of p before tossing the coin, so we call it
the prior probability distribution or simply the prior. We can imagine various prior
probability distributions, for example:

• P(p) ∝ e−M(p− 1
2 )

2

(Fig. 6.2, top-left). Thedistributionpeaks around p = 1/2, and
the peak becomes sharper as M becomes larger. In the top-left panel of Fig. 6.2,
M = 100 is used. This prior describes a rather common assumption that probably
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nobody is cheating, and even if somebody is cheating they will not set p too far
away from 1

2 . The value of M corresponds to the level of trust. When M = ∞
(i.e., 100% trust), the distribution completely localizes to 1

2 and becomes Dirac’s
delta function δ

(
p − 1

2

)
.

• P(p) = 1 (Fig. 6.2, top-middle). This means any value of p is equally likely; we
can see some distrust.

• P(p) ∝ (p − 1
2

)2
(Fig. 6.2, top-right). Because P(p) = 0 at p = 1

2 , some degree
of cheating is assumed with 100% possibility. Hence, this prior distribution means
a strong distrust.

Suppose we tossed a coin 10 times, and the head appeared k times (not necessarily
9 times).Basedon this outcome,wewould like to improveour guess. For that purpose,
let us recall the definition of the likelihood function P(k|p). It is the same as the
conditional probability that the head appears k times given that the probability of
head at each toss is p. Before we tossed a coin, we assumed that “the probability of
the probability” is the prior P(p). Therefore, it appears to be natural to think that,
given the condition that the outcome was k heads and 10 − k tails, “the probability
of the probability” is the product of the likelihood function and the prior probability
distribution.5 Hence, we denote the normalization factor by P(k) and define the
posterior probability distribution P(p|k) or simply the posterior as

P(p|k) = P(k|p) · P(p)

P(k)
. (6.23)

This is the improved guess after knowing the outcome. The normalization factor
P(k) is defined by P(k) = ∫ dpP(k|p) · P(p). (A “mathematical” justification of
Eq. (6.23) will be given in Sect. 6.1.4.) In this way, by using the outcome of the trials
(or experiments) we can improve our guess and get a more plausible probability
distribution. Such a procedure is called the Bayesian updating.

For the previous example regarding P(p), let us calculate the posterior distribu-
tions P(p|k) for the cases of k = 9 and k = 5.

• The first example is P(p) ∝ e−M(p− 1
2 )

2

(M = 100). For k = 9, the center of the
distribution moves to the right slightly (Fig. 6.2, middle-left). However, it is not
very far from 1

2 , which means the trust has not been affected much. For k = 5
(Fig. 6.2, bottom-left), it may be difficult to see the difference between P(p) and
P(p|k); the center does not move, but the width becomes slightly narrower, which
would mean a slightly stronger trust. If M is infinity (i.e., 100% trust), no outcome
can affect the trust; the posterior is also Dirac’s delta function, P(p|k) = P(p) =
δ
(
p − 1

2

)
.

• If P(p) = 1, the posterior probability distribution is P(p|k) = P(k|p)
P(k) . Because

P(k) is merely a normalization constant, P(p|k) ∝ P(k|p) (Fig. 6.2, the middle
of the second third columns). As a prior, we assumed that any value of p is

5 As we will see later, we can interpret it as an immediate consequence of the definition of the
conditional probability, P(A|B) = P(A,B)

P(B)
.
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Fig. 6.2 Examples of the prior probability distribution (top row) and the posterior probability
distribution (middle row (k = 9) and bottom row (k = 5)). From the left to right, the prior probability

distributions P(p) ∝ e
−100

(
x− 1

2

)2

, P(p) = 1, and P(p) ∝ (p − 1
2

)2

equally likely. Hence, the posterior is the same as the likelihood function up to
normalization.

• The final example is P(p) ∝ (p − 1
2

)2
. The posterior for k = 9 resembles the one

with another choice of the prior P(p) = 1 at first glance, but the distribution is
slightly tilted toward the right reflecting the stronger distrust in the prior (Fig. 6.2,
middle-right).
Note that, regardless of the value of k, the posterior is always zero at p = 1

2 , i.e.,
P(p = 1

2 |k) = 0. If one assumed the manipulation without a doubt (P(p = 1
2 ) =

0), then even if a reasonable result suggesting the absence of manipulation (k = 5)
is obtained, one would think “they are trying to hide the cheating, so they are
pretending a fair result” or something. Still, the posterior is more centered, which
would mean a decrease in the level of distrust.

We could obtain the posterior distribution P(p|k) by improving the prior distri-
bution based on the outcome of the experiment. By using the posterior distribution,
we can do various calculations. For example, the probability that the head appears
twice in a row was estimated as
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∫ 1

0
dpP(p) × p2 (6.24)

before the experiment, but after the experiment it is estimated as

∫ 1

0
dpP(p|k) × p2. (6.25)

By repeating the experiments, we can improve the precision of the inference
further. If we toss the coin 10 more times and get the head k ′ times, then we can
re-interpret P(p|k) as the prior distribution and derive a new posterior distribution
P(p|k ′, k) as

P(p|k ′, k) = P(k ′|p) · P(p|k)/(normalization factor). (6.26)

We can repeat the same procedure to obtain P(p|k ′′, k ′, k), P(p|k ′′′, k ′′, k ′, k), and
so on.

As almost the same example, let us repeat the comparison of the Japan series and
random walk (Sect. 3.1). In this case, “the coin is manipulated” should be rephrased
as “either the Central League or the Pacific League is stronger”. The outcome was
as follows:

Random Walk Japan Series
1950 − 1959 C6 − P4 C5 − P5
1960 − 1969 C6 − P4 C8 − P2
1970 − 1979 C5 − P5 C6 − P4
1980 − 1989 C2 − P8 C5 − P5
1990 − 1999 C2 − P8 C5 − P5
2000 − 2009 C5 − P5 C5 − P5
2010 − 2019 C1 − P9 C1 − P9

1950 − 2019 C27 − P43 C35 − P35

(6.27)

We take the prior to be P(p) = 1. If the Central League wins k times within n years,
the likelihood function is P(p|n, k) = pk(1 − p)n−k . Here p is the probability that
the Central League wins each year, i.e., their strength. Based on the actual historical
data from 1950 to 1959, we can obtain the posterior as of 1959 as

P1959(p) ∝ p5(1 − p)5. (6.28)

The historical data from 1960 to 1969 (C8−P2) gives the likelihood function
P(p|10, 8) = p8(1 − p)2, and hence

P1969(p) ∝ p5(1 − p)5 × p8(1 − p)2 = p13(1 − p)7. (6.29)
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Abovewe treat 10 years as one batch, butwe can use other units, say 20 years. Then
the result from 1950 to 1969 (C13−P7) gives the likelihood function P(p|20, 13) =
p13(1 − p)7. By multiplying it to the prior distribution P(p) = 1, we obtain the
same result as above. In a simple example considered here

P(p|n, k) · P(p|n′, k ′) ∝ pk(1 − p)n−k · pk ′
(1 − p)n

′−k ′

= pk+k ′
(1 − p)(n+n′)−(k+k ′)

∝ P(p|n + n′, k + k ′), (6.30)

and hence the result does not change whether we update at once or with multiple
steps. It is a desirable feature because we do not want the result to depend on artificial
factors, e.g., whether one batch consists of 10 or 20 years. As a result, the posterior
distribution obtained from all the data for 70 years is P(p|k) ∝ p35(1 − p)35. The
center of the distribution is p = 1/2.

Can we conclude that the Central League and the Pacific League are equally com-
petitive, based on this result? In other words, how precisely can we estimate the
value of p? To find the answer to this question, we used the results of the random-
walk experiment (C27−P43) and the actual results of the Japan series (C35−P35) to
calculate the posterior distributions, assuming the prior distribution P(p) = 1; see
Fig. 6.3. The peaks of the posterior distributions obtained from the actual result and
random-walk experiment are at p = 35/70 = 1/2 and p = 27/70 
 0.39, respec-
tively. From this result, one may have the impression that the estimated value of p
from the experimental data (p 
 0.39) is far from the true value used for the exper-
iment (p = 1/2), but it is not a bad estimate because the distribution is rather wide.
This is a typical example that a sharp estimate cannot be made due to the lack of
statistics. For the same reason, we cannot immediately conclude that the Central
League and the Pacific League are equally competitive, even though the peak of the
posterior obtained from the actual result is at p = 1/2. Needless to say, if we collect
more statistics in the random-walk experiment, the location of the peak goes close to
p = 1

2 and the width of the distribution becomes narrower. We repeated the random-
walk experiment 1,000 times and obtained C485−P515. The posterior obtained by
using this result is also shown in Fig. 6.3. We can clearly see that p is at least very
close to 1

2 . It is easy to perform the same numerical experiment with different values
of p. If you try, you can get intuition into the relationship between statistics and error.

The same idea can be applied to more generic probability distributions. For the
Gaussian distribution,

P(μ,σ|x1, . . . , xn) = P(x1, . . . , xn|μ,σ) · P(μ,σ)

P(x1, . . . , xn)
. (6.31)

Again, in this case, due to a relation P(x1, . . . , xn|μ,σ) =∏n
i=1 ρ(xi |μ,σ), whether

we perform the Bayesian updating at once or with multiple steps does not affect the
final result.
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Fig. 6.3 The posterior
probability distributions
obtained from the actual
result of the Japan series
(C35−P35; Nippon
Professional Baseball, NPB)
and random-walk
experiments (C27−P43,
C485−P515). As the prior
probability distribution,
P(p) = 1 was used
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6.1.4 Bayes’ Theorem

Equation (6.23), which is crucial for the calculation of the posterior probability
distribution, can be derived “mathematically”. This relation is calledBayes’ theorem.
Here we put the quotation mark on “mathematically” because we have to specify
the meaning of probability properly. To determine the probability of a head p, we
can repeat the coin toss many times and count how many times the head is obtained,
and then take the limit of the infinite number of trials.6 Because such a probability
is based on the frequency of the events, it is often called frequentist probability or
frequentist inference. Bayes’ theorem (6.23) can be proven naturally in the context
of the frequentist inference.

With such a definition of probability, the value of p is uniquely determined.
Therefore, for each given coin “the probability that p is 1

2 ” (probability of probability)
is 0 or 1, and hence, generic probability distribution P(p) cannot be defined. On the
other hand, in the Bayesian approach, the subjective probabilities are used and we
think like “because we got the head nine times out of ten, the value of p should be
around here”. Other examples of the subjective probabilities include “the probability
that Alice is the criminal”, “the probability that Bob gets accepted to Cambridge”,
“the probability that Democratic party wins the majority”, and “the probability that
it is snowing the day after tomorrow at noon”. Bayes’ theorem (6.23) is applied
to such subjective probabilities as well. This procedure may appear unnatural to
some people, but it is usually possible to relate the subjective probability to the
frequentist probability, at least at a conceptual level, as “collect many cases with
similar sets of evidence, and check how many times the person like Alice was the
criminal”, “check howmany students with comparable grades to Bob got accepted to

6 Such a “definition” can drive mathematicians mad because it implicitly assumes the convergence
to a certain well-defined limit. A more precise statement is “if there is such a thing as probability,
it can be determined by repeating infinitely many trials”.
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Cambridge”, or “given the meteorological conditions that are indistinguishable with
current observation accuracy, check how often it is snowing two days later at noon”.
Many people around the authors (at least many physicists) understand the subjective
probability in this way. Therefore, even if the theorem proven for the frequentist
probability is applied to the subjective probability, a natural result (or at least a result
that appears to be natural for many people) is obtained. We adopt such a viewpoint,
and we use the frequentist approach to show Bayes’ theorem.

Suppose there are many coins. We can toss each coin many times and determine
the probability of a head, p. We write the value of p obtained in this way to the coin.
By performing such an experiment on all coins, we can determine the probability
distribution P(p). Note that p is uniquely determined for each coin.

Next, we choose one coin randomly from the bunch of coins, toss it 10 times, and
the number of times the head appeared, k. Then we keep (k, p) in a memo. Then
we return the coin to the bunch, take another coin randomly, and repeat the same
experiment. We repeat this procedure many times. Let nk,p be the number of times
a particular set of (k, p) is observed.7 From nk,p, we can determine the probability
that “a coin with a letter p is chosen, and then the head appeared k times”, which
is denoted as P(k, p). Because both k and p are specified, it is called the joint
probability. The explicit formula is

P(k, p) = lim
N→∞

nk,p
N

, N =
∑

k,p

nk,p. (6.32)

We can also define the conditional probability P(k|p) that “when a coin with
the letter p is chosen, the head appeared k times”, by focusing on the coins with a
specific value of p:

P(k|p) = lim
N→∞

nk,p
Np

, Np =
∑

k

nk,p. (6.33)

The normalization factor Np is the number of times that the coins with the letter p
were chosen. In the samemanner, we can focus on the cases where the head appeared
k times and define the conditional probability P(p|k) that “when the head appeared
k times, the letter written on the coin was p”:

P(p|k) = lim
N→∞

nk,p
Nk

, Nk =
∑

p

nk,p. (6.34)

The normalization factor Nk is the number of times that the head appeared k times.
Furthermore, if we look only at k and ignore p, we can get the probability P(k) that
“head appeared k times”, and if we look only at p and ignore k we can get P(p)
defined previously:

7 Here we assumed p is discrete. Essentially the same argument goes throughwhen p is continuous,
just by replacing the sum with the integral.
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P(k) = lim
N→∞

∑
p nk,p

N
= lim

N→∞
Nk

N
, P(p) = lim

N→∞

∑
k nk,p
N

= lim
N→∞

Np

N
.

(6.35)

By using these relations, we can write the joint probability P(k, p) as

P(k, p) = P(p|k)P(k), (6.36)

and also as

P(k, p) = P(k|p)P(p). (6.37)

By combining these two expressions, we obtain

P(k|p)P(p) = P(p|k)P(k), (6.38)

which is equivalent to Eq. (6.23).
Although Bayes’ theorem can be proven mathematically, the opinions regarding

the interpretation are divided among the statisticians. In the Bayesian approach, the
concept of the subjective probability is admitted, and Bayes’ theorem is used as a
tool to improve the inference on the subjective probability. The validity of such an
approach is not something that can be proven or which should be proven. Such an
approach appears natural to many people, and it is very useful when used properly.
However, unless we choose good functional forms for the likelihood function and
the prior distribution, and use reliable data for the Bayesian updating, unreasonable
results may be obtained.

6.1.5 Bayesian Updating via MCMC

The estimate of the posterior distribution P(p|k) or P(μ,σ|x1, . . . , xn) via (6.23)
or (6.31) is a typical task to which Markov Chain Monte Carlo is applicable. We
only have to add the effect from the prior P(p) or P(μ,σ) to the calculation of the
likelihood function explained in Sect. 6.1.2.

Coin Toss via Metropolis

Suppose there is a coin with the prior distribution P(p), where p is the probability
of head. We tossed it n times and got the head k times. Then, to obtain the posterior
distribution, we only have to generate p with the probability proportional to

e−S(p|k) ≡ P(k|p)P(p) = pk(1 − p)n−k P(p). (6.39)
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Note that this expression makes sense only at 0 ≤ p ≤ 1, because p is a probabil-
ity. At p < 0 and p > 1, we should set e−S(p|k) = 0 (equivalently, S(p|k) = ∞) or
P(p) = 0.

Wecanuse theMetropolis algorithm to obtain a sequence · · · → p(i) → p(i+1) →
· · · . A concrete procedure is as follows:

Bayesian updating for coin toss via Metropolis� �

1. Choose a random number�p between−c and+c and propose p′ = p(i) +
�p as a candidate of p(i+1).

2. Reject the proposal if p′ < 0 or p′ > 1. (Then p(i+1) = p(i).)
3. If 0 ≤ p′ ≤ 1, perform theMetropolis test, i.e., generate a randomnumber r

between 0 and 1 and accept the proposal if r < eS(p|k)−S(p′ |k) (p(i+1) = p′),
otherwise reject the proposal (p(i+1) = p(i)).

� �
As a prior distribution, let us use P(p) ∝ e−100(p− 9

10 )
2

. Such a prior would mean
we are assuming very bad cheating. We also assume n = 1000, k = 515. To obtain
the posterior distribution via Metropolis, we use the action S(p|k) defined by

S(p|k) = −k log p − (n − k) log(1 − p) − log P(p)

= −515 log p − 485 log(1 − p) + 100

(
p − 9

10

)2

. (6.40)

In Fig. 6.4, the history of the simulation is shown for two choices of the initial value,
p = 0.9 and p = 0.5. The step size c was chosen to be 0.1. Regardless of the initial
value, the oscillation around p = 0.5 ∼ p = 0.55 can be seen after some time. With
p = 0.9 it takes some time for thermalization, but still, we can obtain a reasonable
result by discarding the first 100 steps or so.

In Fig. 6.5, the distribution of p after thermalization is shown. We can see the
convergence to the right answer as statistics increases.

If we want to know the probability of the head appearing twice in a row,∫ p
0 dpP(p|k) × p2, we calculate the expectation value 〈p2〉 by using thermalized
configurations.

Multivariate Gaussian Distribution via Metropolis

The next example is the Gaussian distribution,

S(x1, . . . , xd) = 1

2

d∑

i, j=1

Ai j (xi − μi )(x j − μ j ) (Ai j = A ji ). (6.41)

We consider the same setup as in Sect. 4.8.1: we choose d = 2, A11 = 1, A22 =
1, A12 = 1

2 ,μ1 = μ2 = 0 and generate n sets of random numbers (x, y). We assume
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Fig. 6.4 Coin toss with the weight factor (6.40), simulated by using the Metropolis algorithm with
step size c = 0.1. The initial values are p = 0.5 (green) and p = 0.9 (purple). The vertical axis
is the value of p and the horizontal axis is the number of steps. To remove the un-thermalized
configurations, it is enough to discard the first 100 steps or so

0
5
10
15
20
25
30

0.4 0.45 0.5 0.55 0.6 0.65
p

0
5
10
15
20
25
30

0.4 0.45 0.5 0.55 0.6 0.65
p

0
5
10
15
20
25
30

0.4 0.45 0.5 0.55 0.6 0.65
p

Fig. 6.5 Coin toss with the weight factor (6.40) via the Metropolis algorithm with step size 0.1.
The initial value is p = 0.5. The first 100 steps are removed to ensure thermalization. From left to
right, 1,000 configurations, 10,000 configurations, and 1,000,000 configurations. The dashed line
is the target distribution

these numbers are described by theGaussian distribution and infer the likely values of
Ai j and μi . As the prior distribution, let us use P({Ai j ,μi }) ∝ e− 1

2

∑
i, j |Ai j |2− 1

2

∑
i |μi |2 .

(If you like, you can use more complicated function.) Then, we only have to use the
product of the likelihood function P({x (1)}, . . . , {x (n)}|A,μ) defined by (6.13) and
the prior P({Ai j ,μi }) as the probability distribution for the MCMC simulation. The
action is the sum of (6.14) and the contribution from the prior�S = 1

2

∑
i, j |Ai j |2 +

1
2

∑
i |μi |2. The determinant det A in (6.14) is det A = A11A22 − A2

12 in the case of
d = 2.

We show the result of the simulation for n = 100, x1 = −0.0930181, x2 =
0.0475899, x1x1 = 1.06614, x2x2 = 1.28152, and x1x2 = −0.504944 in Fig. 6.6.
By regarding the widths of the distribution of Ai j and μi as the error bars, we can
see that the correct values are obtained within errors.
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Fig. 6.6 The inferred values of Ai j and μi for n = 100, x1 = −0.0930181, x2 = 0.0475899,
x1x1 = 1.06614, x2x2 = 1.28152, and x1x2 = −0.504944. The top row, from left to right: A11,
A22 and A12 = A21. The bottom row, from left to right: μ1, μ2

Multivariate Gaussian Distribution via HMC

The HMC algorithm is a convenient method that can be used whenever we can write
down the Hamilton equation. In this example, we add the contribution from the prior
distribution to (6.21) and (6.22):

dp(A)
i j

dτ
= −n

2

{(
μiμ j − xiμ j − x jμi + xi x j

)− (A−1)i j
}− Ai j ,

d Ai j

dτ
= p(A)

i j ,

(6.42)

dp(μ)

i

dτ
= −n

d∑

j=1

Ai j
(
μ j − x j

)− μi ,
dμi

dτ
= p(μ)

i . (6.43)

As in the example in Sect. 6.1.2, the matrices Ai j and pi j are symmetric. For each
Ai j , p

(A)
i j and μi , p

(μ)

i , different step size can be used.

Multivariate Gaussian Distribution via a Combination
of Gibbs Sampling and Metropolis

For simple priors such as the Gaussian distribution, μ can be treated via Gibbs sam-
pling. The action S({x (1)}, . . . , {x (n)}|A,μ) is given by (6.14), and terms containing
μi are written as n

2

∑d
i, j=1 Ai j (μi − xi )

(
μ j − x j

)
. To this, we add the contribution
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from the prior distribution, 1
2

∑d
i=1 μ2

i . Then, for each i , the weight factor can be
written in the Gaussian form,

n

2

d∑

j,k=1

A jk
(
μ j − x j

)
(μk − xk) + 1

2

d∑

j=1

μ2
j

=
⎧
⎨

⎩
1 + nAii

2
μ2
i + n

⎛

⎝
∑

j �=i

Ai j (μ j − x j ) − Aii xi

⎞

⎠μi

⎫
⎬

⎭
+ terms not containing μi

= 1 + nAii

2

⎛

⎝μi + n

1 + nAii

⎛

⎝
∑

j �=i

Ai j (μ j − x j ) − Aii xi

⎞

⎠

⎞

⎠

2

+ terms not containing μi .

(6.44)

Therefore, μi can be updated by using the Gibbs sampling method. To handle Ai j , it
is convenient to use the Metropolis algorithm or the HMC algorithm.

6.2 Ising Model

In this section, we study the Ising model [4, 5]. This model is the classic among
classics taught in university physics courses. Good textbooks on the Monte Carlo
study of the Ising model include Refs. [6, 7].

We consider the spins (small magnets) sitting on lattice points. The dimension of
the lattice can be arbitrary. The shape can be also arbitrary, say square, triangular,
or hexagonal. We use i to label the lattice points and si to denote the spin at point
i . Each spin takes only two values, si = +1 (N-pole is up) or si = −1 (S-pole is
up). In pictures, si = +1 and si = −1 are often depicted by upward and downward
arrows, respectively. When all the spins align in the same direction, they form a
strong magnet as a whole. If two directions are mixed, they cancel with each other
and become a weak magnet. When the numbers of up and down spin are the same,
it is not a magnet macroscopically.

Spins sitting nearby interact with each other. To make the story simple, let us
assume that only the nearest-neighbor spins interact. Then, the energy of the system
is given by

E({s}) = −J
∑

〈i, j〉
si s j − h

∑

i

si . (6.45)

Here 〈i, j〉 stands for a pair of i, j sitting next to each other. The parameter J describes
the interaction. Aswewill see, when J is a large positive value the spins take the same
direction and the system as a whole becomes a strong magnet. When J is negative,
various interesting physics appear depending on the shape of the lattice. The other
parameter h is the external magnetic field. When the magnetic field is strong (i.e., h
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is a large positive value or large negative value), spins tend to align to the direction
of the magnetic field.

Each configuration is realized with the probability

P({s}) = e−βE({s})

Z
, (6.46)

where Z is the partition function which is defined by

Z =
∑

{s}
e−βE({s}). (6.47)

The parameter β is related to the absolute temperature T by8

β = 1

T
. (6.48)

Below, we will explain how to construct a sequence of configurations {s(0)} →
{s(1)} → {s(2)} → · · · → {s(k)} → {s(k+1)} → · · · that follows the statistical distri-
bution (6.46) via MCMC.

6.2.1 Ising Model via Metropolis

The simplest implementation of the Metropolis algorithm is as follows:
Ising model via Metropolis algorithm� �

1. Choose a lattice point i randomly.
2. Flip the i-th spin, leaving all other spins untouched: s ′

i = −s(k)
i , s ′

j = s(k)
j

( j �= i). Propose this {s ′} as a candidate for {s(k+1)}.
3. By using the difference of the energy before and after flipping the i-th spin,

i.e., �E = E({s ′}) − E({s(k)}), the proposal is accepted with the proba-
bility min(1, e−β�E ) and the configuration is updated as {s(k+1)} = {s ′}.
Otherwise the proposal is rejected, i.e., {s(k+1)} = {s(k)}.

� �
Note that�E depends only on si and neighboring spins, and hence the computational
cost for each update is small. We can also choose the lattice points in some specific
order. Orwe can domore acrobatic things like choosing a positive integer n randomly
and then flipping randomly chosen n spins simultaneously. It is not wrong, although
probably there is no advantage.

8 More precisely, β = 1
kBT

, where kB is the Boltzmann constant. Note that the Boltzmann constant
can be set to 1, just by changing the definition of temperature by an overall constant.
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6.2.2 Ising Model via Gibbs Sampling (Heat Bath)

We can also use the Gibbs sampling algorithm introduced in Sect. 5.2.
Ising model via Gibbs sampling (heat bath)� �

1. Choose a lattice point i randomly.
2. Consider two configurations s ′

i = ±1, s ′
j = s(k)

j ( j �= i), and calculate the
energies E± corresponding to s ′

i = ±1.

3. New configuration {s(k+1)} is s(k+1)
i = +1 with the probability e−βE+

e−βE+ +e−βE−

and s(k+1)
i = −1 with the probability e−βE−

e−βE++e−βE− . All the spins but the i-th

one are left untouched, i.e., s(k+1)
j = s(k)

j ( j �= i).

� �
The update probability e−βE±

e−βE+ +e−βE− is the conditional probability that the i-th
spin is si = ±1 when all other spins are fixed. Therefore, this is the same as the
Gibbs sampling. Actually, the name “Gibbs sampling” comes from the fact that
this probability distribution is called the Gibbs distribution (or also the Boltzmann
distribution) in physics. To calculate δ ≡ E+ − E−, we only have to take into account
the interaction with the spins sitting next to the i-th point. By using δ, the update
probability can be written as e−βE+

e−βE++e−βE− = e−βδ

e−βδ+1 and
e−βE−

e−βE++e−βE− = 1
e−βδ+1 . Hence,

the computational cost for update probability is small.
Readers with some knowledge of thermodynamics and statistical physics would

have noticed that the conditional probability used above is the equilibrium distribu-
tion, where all spins but the i-th one are regarded as the heat bath. This interpretation
is valid not just for the Ising model but also for any examples to which the Gibbs
sampling algorithm can be applied. For this reason, in the physics community, the
Gibbs sampling algorithm is also called the heat bath algorithm. This point of view
enables us to better understand both physics and the Gibbs sampling algorithm.

6.2.3 Simulation of Two-Dimensional Ising Model

Let us consider the Ising model on the two-dimensional square lattice. In this case,
the analytic solution is known thanks to Onsager [8]. We denote the lattice points
by (ix , iy), where ix and iy take integer values from 1 to n. We impose the periodic
boundary condition in order to reduce the finite-volume effect, namely, ix = n and
ix = 1 are taken to be next to each other, so as iy = n and iy = 1. (Equivalently, we
identify n + 1 and 1. See Fig. 6.7.)

For each lattice site, we can assign a serial number i = n(ix − 1) + iy , which runs
from 1 to n2. Let us generate a random number r between 0 and n2, and vary the
spin sitting on the i-th lattice point if i − 1 ≤ r < i .
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Fig. 6.7 Two-dimensional
square lattice with periodic
boundary condition.
ix = n + 1 and ix = 1, and
iy = n + 1 and iy = 1 are
identified
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In the Metropolis algorithm, when we vary six ,iy , the change of the energy
�E depends only on six ,iy itself and the spins on the neighboring lattice points,
six±1,iy , six ,iy±1. More concretely, we only have to calculate the change of

(

−J
∑

±1

(
six±1,iy + six ,iy±1

)− h

)

six ,iy . (6.49)

Because the spin at (ix , iy) is flipped as six ,iy → s ′
ix ,iy

= −six ,iy , the change of the
energy is

�E = 2

(

J
∑

±1

(
six±1,iy + six ,iy±1

)+ h

)

six ,iy . (6.50)

Zero External Magnetic Field

Suppose that the external magnetic field h is zero. Then, the action is S = E
T =

− J
T

∑
〈i, j〉 si s j and hence the ratio

J
T is the only independent parameter. The specific

heat C is obtained by taking the derivative of the expectation value of the energy 〈E〉
with respect to temperature T :

C ≡ ∂〈E〉
∂T

= ∂

∂T

∑
si=±1 Ee

− E
T

Z
.

= 1

Z
· ∂

∂T

(
∑

si=±1

Ee− E
T

)

+
(
∑

si=±1

Ee− E
T

)

· ∂

∂T

(
1

Z

)
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Fig. 6.8 The specific heat
per volume, C

n2
, in the

two-dimensional Ising model
at J = 1, h = 0. As the
volume increases, C

n2
diverges at T 
 2.269. To
avoid the critical slowing
down, we used the Wolff
algorithm which is
introduced in Sect. 6.2.4.
The error bars are omitted in
this plot
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·
(
∑
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T 2
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)

+
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∑

si=±1

Ee− E
T

)

·
(

− 1

Z2

∂Z

∂T

)

= 1

T 2

(〈E2〉 − (〈E〉)2) . (6.51)

The energy of the system is approximately proportional to the volume (the number
of lattice points) n2. Hence, the property of the system can be better understood by
looking at the energy and specific heat per volume, E

n2 and C
n2 . In the large-volume

limit n → ∞, which is also called the thermodynamic limit, C
n2 diverges. In physics,

this is called the second-order phase transition. The phase transition temperature
is T 
 2.269J (more precisely, sinh

(
2J
T

) = 1) [8]. In Fig. 6.8, C
n2 is plotted as a

function of temperature. (The simulation was done by using the Wolff algorithm,
which is explained later.) We can see that C

n2 diverges at T 
 2.269J as the volume
becomes large.

At zero temperature, all spins align upward or downward. Even at finite tempera-
ture, if the temperature is sufficiently low, mostly up andmostly down configurations
are dominant. Therefore, two peaks appear in the distribution of total spin

∑n2

i=1 si .
In such a case, the simulation can be trapped in one of the peaks, which can lead
to tricky problems. This issue has been discussed in Sect. 4.4. The same problems
happen very often in the optimization problems discussed in Sect. 6.3. However, in
the case of h = 0, two peaks have exactly the same properties except for the sign of
the spin, and hence it is sufficient to study only one of the two peaks. Rather, another
difficult problem—the critical slowing down—arises when two peaks merge. We
will discuss the critical slowing down in Sect. 6.2.4.
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Fig. 6.9 Total spin of
two-dimensional Ising model
∑n2

i=1 si obtained by using
the Gibbs sampling
algorithm. The lattice size is
n2 = 642 = 4096, and one
sample is collected every
10n2 = 40960 steps. The
coupling constant and
temperature are J = 1 and
T = 1, respectively, and the
external magnetic field is
varied every 100 samples.
The initial condition is all-up
(si = +1 for all i)
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Nonzero External Magnetic Field

Next, let us vary the external magnetic field h, fixing the coupling constant and
temperature to be J = 1 and T = 1. When h is zero, there are two ground states:
all-up (si = +1 for all i) and all-down (si = −1 for all i). When h is not zero, this
degeneracy is resolved, and the ground state is all-up for h > 0 and all-down for
h < 0.

Let us focus on the case of h < 0 below. We start from h = −0.4 with the all-
up initial condition and perform the simulation with the Gibbs sampling algorithm.
The lattice size is n2 = 642 = 4096, and we sample one configuration every 10n2 =
40960 steps. We lower the value of h by 0.1 for every 100 samples. The result
obtained this way is shown in Fig. 6.9. The vertical axis is the total spin. At first, the
sum is close to 4096, which means almost all spins are up. This is a similar situation
to Fig. 4.9: it is hard to transit from one of two peaks (almost-up and almost-down)
to the other. This kind of situation is seen when the external magnetic field h is small
and the temperature T is low. If we wait a long time, eventually a small cluster of
down spins is formed, then it spreads quickly and the transition to the true vacuum is
realized. In the current example, at h = −0.6 it is easier for such a transition to take
place, and the almost-down phase appears. In this way, depending on the parameters
and initial condition, wrong peaks (which are called the metastable states in physics)
can be sampled. Often we cannot notice such a problem just by looking at the history
of the simulation and hence we have to be extra cautious. We will have the same sort
of headache when we study the optimization problems in Sect. 6.3.

The rate that the transition takes place depends on the detail of the algorithm.
With the Wolff algorithm, the transition takes place immediately whatever small h
and T are; see Sect. 6.2.4.
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6.2.4 Critical Slowing Down and Cluster Algorithm

If you actually performed simulations for the Ising model, you might have had a hard
time studying parameter region near the phase transition via theMetropolis algorithm
or Gibbs sampling algorithm, because autocorrelation becomes larger. The reason
that we see such an increase in autocorrelation is that we are using a local update
procedure (i.e., only one spin is flipped at each time) while a global phenomenon
(the phase transition), which changes the property of the system drastically, is tak-
ing place. To understand it more precisely and more intuitively, let us see what is
happening near the phase transition point.

In Fig. 6.10, typical configurations at several different temperatures are shown
for J = 1, h = 0 and lattice size 512 × 512. (These plots are obtained by using the
Wolff algorithm.) Up and down spins are denoted bywhite and black, respectively. At
low temperatures, almost all points are white (spin +1) and black dots (spin −1) are
sparsely scattered.As the temperature is raised, clusters of down spins becomebigger.
Eventually, both up and down spins form big clusters. Above the phase transition
temperature, neither up spins nor down spins form a big cluster, and they are mixed
well. So we can see that the phase transition is not realized by flipping each spin.
Rather, large blocks of up or down spin are formed, and then they gradually become
smaller.

This is why the simulation slows down near the phase transition if we use the
Metropolis algorithm or Gibbs sampling algorithm. At low temperatures, almost all
spins take the same direction, so we can efficiently collect independent samples just
by flipping one spin at each time. (Note, however, that it is hard to go from almost-up
to almost-down and vice versa.) However, as the temperature goes up and big clusters
are formed, it becomes harder to get independent samples unless many spins in a big
cluster are flipped simultaneously. With the local update procedure (i.e., updating
only one spin at each time), it takes a very long time to reach the target distribution,
and long autocorrelation is inevitable. This phenomenon is the critical slowing down.
At sufficiently high temperatures, up and down spins are mixed well, so the local
update procedure can work efficiently again.

The plots obtained via the Gibbs sampling algorithm are shown in the first row
of Fig. 6.11. The lattice size is n2 = 642 = 4096, and the coupling constant and
the external magnetic fields are chosen to be J = 1 and h = 0, respectively. As the
initial condition, we chose all spins to be up. One configuration is sampled at every
40960 steps, and 10,000 configurations are collected in total. The vertical axis is the
total spin. At low temperature (T = 2.20), the simulation is trapped in one of the two
ground states. This is problematic in the sense that the right distribution is not realized,
but not particularly a problem in the sense that it reflects the spontaneous breaking
of the symmetry at low temperature, which is an important physical phenomenon.9

Near the phase transition (T = 2.35), the total spin goes back and force between the
positive and negative values, but the autocorrelation is rather large. If we go even
closer to the phase transition (T = 2.30), the autocorrelation increases further. This

9 Similar situations are discussed in Sect. 6.3 in detail.
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T=2.24 T=2.25 T=2.26

T=2.27 T=2.28 T=2.29

T=2.30 T=2.35 T=2.40

Fig. 6.10 Typical configurations in two-dimensional Ising model at J = 1, h = 0 and various
temperatures. The lattice size is 512 × 512, and the white and black regions are spin +1 and −1,
respectively. The Wolff algorithm was used for the simulation. (Note that, because h = 0, the
configurations with the opposite sign can also appear with the same probabilities.)

is evidence for the critical slowing down. (As we have stated before, the critical
temperature in the large-volume limit is T 
 2.269J.)

The critical slowing downcan be avoided by using the cluster algorithm, inwhich a
big cluster of spins is chosen and flipped simultaneously. The bottom row of Fig. 6.11
is obtained by using the Wolff algorithm, which is a particular version of the cluster
algorithm. We can see the power of the cluster algorithm very clearly: we cannot see
the autocorrelation at all, even near the phase transition temperature.
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Fig. 6.11 Two-dimensional Ising model, lattice size n2 = 642 = 4096, coupling J = 1, and exter-
nal magnetic field h = 0. [Top] The Gibbs sampling algorithm (equivalently, the heat bath algo-
rithm), sampled every 10n2 = 40960 steps. [Bottom] TheWolff algorithm, sampled every 10 steps.

The vertical axis is the total spin,
∑n2

i=1 si . From left to right, T = 2.20, 2.30, and 2.35

6.2.5 Wolff Algorithm

When the external magnetic field h is zero, theWolff algorithm [9] works as follows:
Ising model via the Wolff algorithm (when h = 0)� �

1. Choose a lattice point i randomly and add it to the “cluster”. We use red to
denote the points belonging to the cluster.

2. If a spin sitting next to the cluster is the same as the spin of the cluster, it
is connected to the cluster via a blue link or green link with the probability
K or 1 − K , respectively, where K = 1 − e−2J/T .

3. The points connected to the cluster via a blue link are added to the cluster.
4. Repeat the above as long as the cluster can grow.
5. Flip all the spins in the cluster simultaneously.

� �
An example of the construction of the cluster is shown in Fig. 6.12. All the spins

in the cluster constructed in this manner are flipped as shown in Fig. 6.13.
TheWolff algorithm can be regarded as a special kind of the Metropolis-Hastings

algorithm (see Sect. 5.3). New configurations are proposed with a very well-crafted
probability f ({s} → {s ′}) such that the acceptance rate (5.43) becomes 1:

e−S({s ′}) f ({s ′} → {s})
e−S({s}) f ({s} → {s ′}) = 1. (6.52)

Let us confirm the relation (6.52). As an example, we take the left and right of
Fig. 6.13 to be the configurations {s} and {s ′}. The initial point in the construction of
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Fig. 6.12 An example of the construction of the cluster in the two-dimensional Ising model. The
cluster is formed starting from a randomly chosen spin. We used red to denote the spins added to
the cluster
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Fig. 6.13 Two configurations related to each other via the flip of the spins in the clusters

the cluster can be anything, and the links which are not shown explicitly in Fig. 6.13
can be anything, as long as the cluster is formed. Then, modulo the common over-
all factor, the probabilities f ({s} → {s ′}) and f ({s ′} → {s}) are determined by the
probabilities that the green links explicitly shown in Fig. 6.13 are chosen. Let the
numbers of green links in the left and right panels be m and n (m = 6 and n = 8 in
this specific example), then

f ({s} → {s ′}) ∝ (1 − K )m, f ({s ′} → {s}) ∝ (1 − K )n. (6.53)

Therefore, (6.52) can be rewritten as

e−S({s ′})+S({s}) = (1 − K )m−n. (6.54)

Because we are assuming h = 0, the left-hand side can be calculated by looking at
the interactions at the boundary of the cluster. In the left panel of Fig. 6.13, the green
links and the rest contribute to the energy by −mJ and +nJ , respectively. In the
right panel, the green links and the rest contribute by −nJ and +mJ , respectively.
Therefore, the change of the energy associated with the flip of the spins {s} → {s ′}
is 2(m − n)J , and the relation (6.54) can be rewritten further as

e−2(m−n)J/T = (1 − K )m−n. (6.55)

Because we chose K = 1 − e−2J/T , this relation is satisfied.
The cluster algorithms are designed by using the specific features of the systems

under consideration. There is no known way to resolve the critical slowing down in
arbitrary systems.

Nonzero External Magnetic Field

Suppose that the external magnetic field h is not zero. Then, if we construct the
cluster as before, we obtain
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e−S({s ′}) f ({s ′} → {s})
e−S({s}) f ({s} → {s ′}) = eh×(change of total spin)/T . (6.56)

Here, (change of total spin) = ±2 × (cluster size). We choose the positive sign
when ↓ is flipped to ↑, and we choose the negative sign otherwise. Therefore, we
have to perform theMetropolis test when the cluster is flipped. Following the general
strategy of the Metropolis-Hastings algorithm, the proposal {s} → {s ′} is accepted
with the probability min

(
1, eh×(change of total spin)/T

)
.

Sample Program

Concerning the coding, the only nontrivial issue is the construction of the cluster.
To construct the cluster, we prepare an integer-valued variable ncluster that counts
the number of lattice points belonging to the cluster and integer-valued variables
ik(k = 0, 1, 2, . . .) that are used for recording the lattice points in the cluster.

Construction of the cluster in the Ising model� �

1. Choose a lattice point i0 randomly and add it to the cluster. Set ncluster = 1,
k = 0.

2. Among the lattice points next to ik , study the ones not yet added to the
cluster. If the spin is the same as si0 , add it to the cluster with probability
1 − e−2J/T , store the number labeling this lattice point in incluster , and increase
the value of ncluster by 1.

3. Increase k by 1.
4. If k < ncluster, go back to step 2.

� �
Let us see some sample code written in C++. We focus on the two-dimensional

model, and instead of ik we use icluster(k, 0) and icluster(k, 1) to store the x- and y-
coordinates, respectively. Because the algorithm is not so complicated, let us just
write everything manifestly:

int make_cluster(const int spin[nx][ny],const double coupling_J,
const double temperature,int& n_cluster,int (&i_cluster)[nx*ny][2]){

int in_or_out[nx][ny];
for(int ix=0; ix!=nx; ix++){
for(int iy=0; iy!=ny; iy++){

in_or_out[ix][iy]=1;
}

}
//in_or_out[ix][iy] = 1 -> not in the cluster; 0 -> in the cluster.
//choose a point randomly.
double rand_site = (double)rand()/RAND_MAX;
rand_site=rand_site*nx*ny;
int ix=(int)rand_site/ny;
int iy=(int)rand_site
in_or_out[ix][iy]=0;
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i_cluster[0][0]=ix;
i_cluster[0][1]=iy;
int spin_cluster=spin[ix][iy];
n_cluster=1;
double probability=1e0-exp(-2e0*coupling_J/temperature);
int k=0;
while(k < n_cluster){
ix=i_cluster[k][0];
iy=i_cluster[k][1];
//be careful about the boundary condition.
int ixp1=(ix+1)
int iyp1=(iy+1)
int ixm1=(ix-1+nx)
int iym1=(iy-1+ny)

if(spin[ixp1][iy]==spin_cluster){
if(in_or_out[ixp1][iy]==1){

if((double)rand()/RAND_MAX < probability){
i_cluster[n_cluster][0]=ixp1;
i_cluster[n_cluster][1]=iy;
n_cluster=n_cluster+1;
in_or_out[ixp1][iy]=0;

}
}

}
if(spin[ix][iyp1]==spin_cluster){

if(in_or_out[ix][iyp1]==1){
if((double)rand()/RAND_MAX < probability){

i_cluster[n_cluster][0]=ix;
i_cluster[n_cluster][1]=iyp1;
n_cluster=n_cluster+1;
in_or_out[ix][iyp1]=0;

}
}

}
if(spin[ixm1][iy]==spin_cluster){

if(in_or_out[ixm1][iy]==1){
if((double)rand()/RAND_MAX < probability){

i_cluster[n_cluster][0]=ixm1;
i_cluster[n_cluster][1]=iy;
n_cluster=n_cluster+1;
in_or_out[ixm1][iy]=0;

}
}

}
if(spin[ix][iym1]==spin_cluster){

if(in_or_out[ix][iym1]==1){
if((double)rand()/RAND_MAX < probability){

i_cluster[n_cluster][0]=ix;
i_cluster[n_cluster][1]=iym1;
n_cluster=n_cluster+1;
in_or_out[ix][iym1]=0;

}
}

}
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k=k+1;
}
return spin_cluster;

}

6.3 Combinatorial Optimization and Traveling Salesman
Problem

The traveling salesman problem is a typical combinatorial optimization problem.
The goal of this section is to solve this problem via Markov Chain Monte Carlo.

Suppose a salesman starts his trip from the city where the headquarter of his
company is located, visits N − 1 cities, and comes back to the headquarter. We use
the numbers 1, 2, . . . , N to label the cities. The headquarter is in the city 1. We
assume that the distances between the cities are known; ri j is the distance between
the city i and the city j . The salesman has to visit each city once and only once in
such a way that the total distance is minimum. Our task is to design such a trip for
him. This is the traveling salesman problem.

By choosing an ordering of numbers from 2 to N as i2 → i3 → · · · → iN , the
route of the trip and the total distance can be specified. To simplify the notation, we
set i1 = iN+1 = 1. Then the total distance is expressed as

rtotal(i1 → i2 → · · · → iN → iN+1) = ri1i2 + ri2i3 + · · · + riN−1iN + riN iN+1

=
N∑

k=1

rik ik+1 .

(6.57)

We want to find the ordering i1 → i2 → · · · → iN → iN+1 which minimizes rtotal.
When N is small, we can check all possible orderings. However, the number of
orderings increases as10 (N − 1)! and hence this naive approach does not work for
large values of N .

Of course, we can reduce the computational cost by removing such routes that are
obviously non-optimal. For example, if there is an intersection, then by resolving it
the distance can be made shorter, so any route with at least one intersection is not
optimal. Also, if one cuts out a part of the route and finds a detour in that piece, such
a route cannot be optimal. By utilizing such properties systematically, it is possible
to find the optimal solution even when N is a few thousand.

In this section, we introduce methods based on MCMC that are applicable to
various other optimization problems as well.

10 The opposite ordering gives the same distance, but still, we have to check (N−1)!
2 combinations.
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6.3.1 Minimization and Local Optimum

To develop the right intuition, we start with the minimization of a function f (x). The
simplest algorithm would be something like this:

A naive algorithm for minimizing a function� �

1. Choose �x randomly and vary x a little bit as x → x ′ = x + �x .
2. Accept this change and update x to x ′ if f (x ′) < f (x).
3. Repeat it until the acceptance rate becomes very small.

� �
Thismethod is not efficientwhen there aremultiple variables. Thegradient descent

method is more convenient:
Gradient descent method (univariate version)� �

1. Vary x a little bit as x → x ′ = x − f ′(x) × ε. Here, f ′(x) is the derivative
of f (x) and ε is a parameter controlling the amount of the variation.

2. Repeat it until f ′(x) becomes almost zero.
� �
Note that the accept/reject test via the comparison of f (x) and f (x ′) is not there
anymore. With this method, if ε is sufficiently small, almost certainly f (x ′) < f (x).
The multivariate version of the gradient descent method is as follows:

Gradient descent method (multivariate version)� �

1. Vary xi a little bit as xi → x ′
i = xi − ∂ f

∂xi
× ε.

2. Repeat it until ∂ f
∂xi

becomes almost zero for all i’s.

� �
Here, ∂ f

∂xi
means the partial derivative of f with respect to xi that is the slope along

the direction of xi . Intuitively, we regard f (x) as a height and go down the slope as
shown in Fig. 6.14.

A naive method applies also to the traveling salesman problem:
A naive algorithm for the traveling salesman problem� �

1. Propose a new route by changing the ordering i1 → i2 → · · · → iN a lit-
tle bit. For example, choose two numbers 2 ≤ k < l ≤ N randomly and
exchange the k-th and l-th cities.

2. Accept the proposal if rtotal decreases. Otherwise reject the proposal.
3. Repeat it until the acceptance rate becomes zero.

� �
If there is only one minimum like in Fig. 6.14, the minimum can be found via such a
simple method. However, if there are multiple minima like in Fig. 6.15, we may get
a wrong answer (local but not global minimum) depending on the initial condition.
This is the problem of local optimum.
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Fig. 6.14 A schematic
picture of the gradient
descent method. If we go
down the slope, we should be
able to reach the minimum

Fig. 6.15 The problem of
local optimum in the
gradient descent method.
The true minimum (global
minimum) is obtained if we
start with a red point, but a
wrong answer (local but not
global minimum) is obtained
if we start with a yellow or
blue point

6.3.2 Simulated Annealing Algorithm

The simulated annealing algorithm [10] uses an idea from physics to avoid the prob-
lem of local optimum.

It is instructive to recall the Ising model. The weight was e− E
T , where E and T

are energy and temperature, respectively. When the Metropolis algorithm is used, at
a very low temperature, even a tiny increase of E leads to a huge increase of E

T and
gets rejected via the Metropolis test. Therefore, the energy decreases monotonically
toward the local minimum (equivalently, local optimum), which may or may not be
the globalminimum.Once reaching theminimum, there is no update anymore.On the
other hand, at finite temperature, even if the simulation is captured at a localminimum,
there is a chance to escape from there after a sufficiently long time (Fig. 6.16). By
performing a long enough simulation decreasing temperature sufficiently slowly, we
canfind the true, globalminimumat zero temperature. This is the simulated annealing
method.
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Fig. 6.16 Schematic picture of the simulated annealing algorithm. It is possible to escape from the
local minima (equivalently, local optima) because of thermal fluctuation. The global minimum can
be found by lowering temperature sufficiently slowly and continuing the simulation for a sufficiently
long time. However, it is not easy to find the optimal rate of decreasing temperature. Furthermore,
it is not clear whether the global minimum can be found in realistic simulation time

In order to find the minimum of a generic function f (x), we regard f (x) as
the energy, introduce temperature T , and perform the simulated annealing with the
weight e− f (x)

T .
Simulated annealing algorithm� �

1. Introduce sufficiently high temperature T0.
2. PerformMCMCwith theweight P0(x) ∝ e−S0(x), where S0(x) = f (x)/T0.
3. Lower temperature a little bit: T0 → T1.
4. Perform MCMC the weight P1(x) ∝ e−S1(x), where S1(x) = f (x)/T1.
5. Lower temperature a little bit: T1 → T2.
6. PerformMCMCwith theweight P2(x) ∝ e−S2(x), where S2(x) = f (x)/T2.
7. Repeat it until the temperature becomes zero.

� �
Via the simulated annealing algorithm, the global minimum can be found by low-

ering temperature sufficiently slowly and continuing the simulation for a sufficiently
long time. However, it is difficult to know how long simulation time is needed; if
the temperature becomes too low, it is impossible to escape from the wrong minima
(local but not global minima) within a realistic simulation time. Another subtle issue
is whether we can tell if the result of the simulation is the global minimum. We can
get a certain level of confidence if we obtain the same answer from several different
simulations with different initial configurations, but we cannot be 100% sure.

If a truly global minimum is not needed, the simulation can be terminated when
a sufficiently good local minimum is obtained.
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6.3.3 Replica Exchange Algorithm

The replica exchange algorithm [11] (also known as the parallel tempering algorithm)
improves the simulated annealing algorithm. Suppose that two different probability
distributions P1({x}) and P2({x}) are defined for the same set of variables {x}. We
distinguish two copies (replicas) of the set as {x}1 and {x}2, respectively.We consider
the product distribution defined by

P({x}1, {x}2) = P1({x}1) × P2({x}2). (6.58)

By construction, if we do not care about {x}2 and see only the distribution of {x}1,
we obtain P1({x}1). Also, if we do not care about {x}1 and see only the distribution
of {x}2, we obtain P2({x}2). The replica exchange algorithm improves the simulated
annealing algorithm by using this trivial property in a very interesting and nontrivial
manner.

Let f (X) be the function we want to minimize.11 We introduce two different
values of “temperature” T1 and T2 (T1 > T2), and define the probability distributions
as P1(X) ∝ e− f (X)/T1 and P2(X) ∝ e− f (X)/T2 .We construct P(X1, X2) = P1(X1) ×
P2(X2) in the following way:

Replica exchange algorithm� �

1. Update X1 via a usual MCMCmethod, e.g., Metropolis or HMC. (Whether
we use P1(X1) or P(X1, X2) does not matter.)

2. Update X2 via a usual MCMCmethod, e.g., Metropolis or HMC. (Whether
we use P2(X2) or P(X1, X2) does not matter.)

3. Exchange replicas as X1 → X ′
1 = X2 and X2 → X ′

2 = X1 with the
probability min(1, e−�S), where �S denotes the change of the
action S(X1, X2) = f (X1)

T1
+ f (X2)

T2
, i.e., �S ≡ S(X ′

1, X
′
2) − S(X1, X2) =

(
1
T2

− 1
T1

)
( f (X1) − f (X2)).

4. Repeat step 1, step 2, and step 3.
� �

In principle, we can get the target distribution just from step 1 and step 2. The third
step just exchanges X1 and X2 via the Metropolis test; mathematically, it does not
affect the resulting distribution at all. However, this step has a very importantmeaning
which improves the efficiency of the simulation. The exchange of the replicas X1 ↔
X2 is equivalent to the exchange of the temperatures T1 ↔ T2. Even when X2 is
trapped in a local minimum, the temperature can go up from T2 to T1 so that there is
a bigger chance of escaping from a local minimum.

The frequency of the third step (replica exchange) can be chosen arbitrarily. It
does not have to be 1, 2, 3, 1, 2, 3, . . .. Other choices such as 1, 2, 1, 2, 3, 1, 2, 1, 2,
3,... are equally fine. The efficiency of the simulation may change depending on the
frequency of the third step.

11 To make the equations less messy, we introduced the notation X = {x}.
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We can repeat the same argument with more replicas. We prepare M tempera-
tures T1 > T2 > · · · > TM and replicas X1, X2, . . . , XM , and define the action as
S(X1, X2, . . . , XM) =∑M

m=1
f (Xm )

Tm
.

Replica exchange algorithm with M replicas� �

1. Update X1, X2, . . . , XM via a usual MCMC method, e.g., Metropolis or
HMC.

2. For m = 1, 2, . . . , M − 1, exchange the replicas as Xm → X ′
m = Xm+1,

Xm+1 → X ′
m+1 = Xm with the probability min(1, e−�S). Here, �S =(

1
Tm+1

− 1
Tm

)
( f (Xm) − f (Xm+1)).

3. Repeat step 1 and step 2.
� �

Again, the exchange of the replicas Xm ↔ Xm+1 is equivalent to the exchange of
the temperatures Tm ↔ Tm+1. If the difference between neighboring temperatures is
sufficiently small, the temperature can go up or go down frequently, and then it is
easier to escape from local minima. Therefore, we have a bigger chance of finding
the global minimum within a realistic simulation time.

In the replica exchange algorithm, the simulation for each replica (step 1) can be
done independently for each replica, and hence the parallelization is straightforward.
This is a nice feature when we want to study a big system.

Replica Exchange Algorithm Applied to a Simple Function

Let us consider a function f (x) = (x − 1)2 · ((x + 1)2 + 0.01
)
. This function has

twominima aswe can see fromFig. 6.17: the globalminimumat x = +1 and the local
but not global minimum near x = −1. This function resembles the situation in the
Ising model with a very weak external magnetic field h: the distribution proportional
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Fig. 6.18 Metropolis simulation with step size 0.1 and the weight proportional to e− f (x)/T . From
left to right, T = 1.0, 0.1, and 0.01. The horizontal axis is the number of steps, k. The initial value
is chosen to be x = 0, and the simulation results which were trapped in a wrong minimum x 
 −1
are shown. If the temperature is sufficiently high, it is possible to escape from the wrong minimum.
However, if the temperature is low, it is impossible to escape from the wrong minimum within a
reasonable simulation time

to e− f (x)/T has two peaks around x = ±1, and as temperature T approaches zero the
true minimum x = 1 becomes more and more dominant.

Let us first try a naive Metropolis simulation with the weight proportional to
e− f (x)/T . We take the initial value to be x = 0. Then, depending on the random
numbers, the simulation may be trapped in a wrong minimum at x 
 −1 as shown in
Fig. 6.18. When the temperature is not too low (T = 1.0 in Fig. 6.18), the fluctuation
is sufficiently large and the value of x goes back and force between twominima, such
that the correct distribution with two peaks around x = ±1 is obtained. However, at
low temperature (T = 0.1 and 0.01 in Fig. 6.18), it is difficult to escape from the
local minimum.

Next, we use the replica exchange algorithm. (As for sample code, see
Appendix A.7.1.) We introduce 2000 replicas by taking the inverse temperature
β = 1

T from β = 0.5 (T = 2.0) to β = 1000 (T = 0.001) with the spacing �β =
0.5. The result of the simulation is shown in Fig. 6.19. As we can see from theMonte
Carlo history (top row of Fig. 6.19), it takes some time for thermalization, but even-
tually the correct distribution is obtained.12 The distribution of x at each temperature
after the thermalization (from the 500,000-th step to 1,000,000-th step) is shown in
the bottom row. Very good agreement with the target distribution can be seen. The
replica exchange algorithm is working perfectly here!

We chose the parameters used here without any logical reason. Apparently, the
fluctuation is suppressed at low temperature, so the simulation can be made more
efficient by adjusting the step size for the Metropolis part depending on temperature.

12 We can see that the right distribution is obtained immediately at T = 0.001, while at T = 0.01
and T = 0.1 it takes some time for the convergence. The reason is as follows. Because we chose
x = 0 as the initial value, at the beginning of the simulation half of the replicas are at x > 0
and the other half are at x < 0. Then the replicas are exchanged, and roughly speaking, the low-
temperature half of the replicas go around the true minimum x = 1, while the high-temperature half
go around x = −1. This is more or less the correct answer at very low temperatures, but not at high
temperatures. As we continue the simulation, the fluctuations generated in the high-temperature
region propagate to the entire system, and the correct distribution is achieved at all temperatures.
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Fig. 6.19 The result of the replica exchange simulation at T = 0.1, 0.01, and 0.001. [Top] The
Monte Carlo history. The horizontal axis is the number of steps, k. [Bottom] The distribution of
x in the second half of the simulation. The target distributions are drawn as well, but it is hard to
distinguish them from the histograms because the result of the replica exchange simulation is very
precise

Furthermore, we do not have to take the spacing between β = 1/T to be uniform.
The frequency of the exchange of the replicas can also be tuned.

Let us use the replica exchange algorithm for the traveling salesman prob-
lem. We prepare M replicas labeled by m = 1, 2, . . . , M . Each replica speci-
fies a route i (m)

1 = 1 → i (m)
2 → · · · → i (m)

N → i (m)
N+1 = 1. From the ordering I (m) ={

i (m)
1 , i (m)

2 , . . . , i (m)
N

}
, the total distance r (m)

total can be calculated.

Traveling salesman problem via Replica exchange� �

1. For each replica, choose 2 ≤ k < l ≤ N randomly and exchange k-th and l-
th cities as a candidate for a new route: i (m)

k → i ′(m)
k = i (m)

l , i (m)
l → i ′(m)

l =
i (m)
k . This candidate is acceptedwith a probabilitymin(1, e−�r (m)

total/Tm ), where
�r (m)

total is the change of the total distance r
(m)
total.

2. For each m, the replicas are exchanged (I (m) → I ′(m) = I (m+1),
I (m+1) → I ′(m+1) = I (m)) with a probability min(1, e−�S), where �S =(

1
Tm+1

− 1
Tm

) (
r (m)
total − r (m+1)

total

)
.

3. Repeat.
� �

We study the case of N = 100. We regard 100 pairs of random numbers (xi , yi )
(i = 1, 2, . . . , 100) as the locations of 100 cities; see Fig. 6.20. The symbol + is
(x1, y1), which is the city where the headquarter is located. The distance between
two cities i and j is given by13

13 To simplify the setup, we ignore the fact that the earth is not flat.
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Fig. 6.20 100 pairs of random numbers (xi , yi ) (i = 1, 2, . . . , 100) are regarded as the locations
of cities. The symbol + is (x1, y1)
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Fig. 6.21 10 pairs of random numbers (xi , yi ) (i = 1, 2, . . . , 10) are regarded as the locations of
cities. The symbol+ is (x1, y1). [Left] The shortest route. [Right] The total distance rtotal calculated
via the replica exchange algorithm. The value atβ = 100 is shown. The horizontal axis is the number
of steps, k. The dotted line is the optimal, shortest distance. We can see that the optimal path is
found quickly

ri j =
√

(xi − x j )2 + (yi − y j )2. (6.59)

Because the initial condition can be arbitrary, we simply use i (m)
2 = 2, i (m)

3 =
3, . . . , i (m)

100 = 100 for all m’s. As for the inverse temperature β = 1
T , we choose

βm = 1
Tm

= m · �β. We use M = 200 and �β = 0.5 (again, without deep reasons).
Before tackling N = 100, let us study an easier case, N = 10. There are (N −

1)! = 9! = 362, 880 routes in total; this is not a very large number, we can find the
answer by brute force. Hence, we can check if the correct answer is obtained via the
replica exchange algorithm. We use (xi , yi ) (i = 1, 2, . . . , 10) as the locations of ten
cities. The outcome of the replica exchange simulation is shown in Fig. 6.21. We can
see that the optimal route is found rather quickly.

Next let us study the case of N = 100 (Fig. 6.22). We calculate rtotal at β = 100
every 500 steps. The shortest route found by that step is shown by a solid line. The
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Fig. 6.22 The outcome of the replica exchange simulation for the traveling salesman problem,
N = 100. The total distance rtotal is calculated at β = 100 every 500 steps. The horizontal axis is
the number of Monte Carlo steps, k. The solid line is the minimum distance found by then. The
cross marks are rtotal shown every 10,000 steps

values of rtotal are shown at every 10,000 steps by gray cross marks. It looks that the
simulation is thermalized after 35,000,000 steps or so. In Fig. 6.23, the optimal routes
found by the 5,000-th, 50,000-th, 50,0000-th, and 50,000,000-th step are depicted.
The last one is a nice, single-stroke shape without a crossing.

First-Order Phase Transition

We studied a simple example with two minima, f (x) = (x − 1)2 ·(
(x + 1)2 + 0.01

)
. Similar examples appear in physics, associated with first-

order phase transitions. A first-order phase transition is a sudden, discontinuous
change of the property of a system when the parameters of the theory such as
temperature are varied. It happens when the importance of the local optimal
solutions changes with parameters and the global optimum changes at a certain
point (Fig. 6.24). For example, in the Ising model, if we change the magnetic field
h at a low-temperature region, a first-order phase transition takes place at h = 0.

An interesting example of the first-order transition is related to the thermodynam-
ics of a black hole. You might have heard that a black hole swallows everything and
even light cannot escape. However, Hawking considered the quantum mechanical
effects near a black hole and predicted that black hole gradually emits particles and
eventually evaporates [12].14 According to the holographic principle (see Sect. 6.4),
the properties of a black hole can be studied by using certain gauge theories. To
see the creation and evaporation of a black hole, we should study the phase transi-
tion of gauge theory by changing temperature. In many cases, there is a first-order
phase transition called the Hawking-Page transition [13, 14]. Associated with the

14 With the current technology, it is impossible to detect the evaporation of large black holes
observed in the universe because it is very slow.
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Fig. 6.23 The shortest route found with the parameter choice explained in the main text. [Top,
left] by the 5,000-th step, [top, right] by the 50,000-th step, [bottom, left] by the 500,000-th step,
[bottom, right] by the 50,000,000-th step

Fig. 6.24 Schematic picture of a first-order phase transition. As the parameter is varied (e.g., as
the temperature is lowered), the global optimum changes at a certain point

Hawking-Page transition, not just the optimal solutions but also the dip between the
peaks in the probability distribution should have interesting information about black
hole [15, 16]. The Hawking-Page transition has not been studied intensively so far
because of the large cost of the simulations, but the detailed study via the replica
exchange algorithm would be performed in near future.
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6.4 Applications to High-Energy Physics

The last example is high-energy physics. Once you understand how the elementary
particles are described in high-energy physics, you can see that MCMC is a very
natural approach. The keywords are quantum field theory and Feynman path integral.

It is important to note that particles are not literally “particles” in quantummechan-
ics, rather they are “quanta” which are, in certain sense, spread over space. Rather
than sitting at specific points in space, they are probabilistically spread out. Perhaps
it does not make sense for you, but there is no need to be worried. As Feynman
mentioned at the beginning of his famous lecture on quantum mechanics [17], no
human could ever understand quantum mechanics intuitively.15 However, there is a
well-established theoretical framework to deal with such counter-intuitive “quanta”:
there is an object called “field”, which is something like a wave spread over space,
and the field is described by a probability distribution specified by a certain action.
If we want to understand the behavior of elementary particles, we should understand
the probability distribution of the fields. Such formulation is called the Feynman path
integral [18, 19]. Markov Chain Monte Carlo can be used to describe particles via
the Feynman path integral.

6.4.1 Quantum Chromodynamics (QCD)

Let us study physics inside nuclei. Nuclei are made of a class of particles called
hadrons such as protons, neutrons, and pions. Hadrons are made of more elementary
particles called quarks and gluons. There are six different types of quarks. Among
them, we consider the two lightest ones, up quark and down quark. Elementary
particles—quarks and gluons, in this case—are described by the fields. We denote
quark and the gluon fields as q f,i

α (x) and Ga
μ(x), respectively. Here we used “x”

to denote time t and spatial coordinate x, y, z together. A small script f attached
to quark field labels up quark ( f = 1) or down quark ( f = 2). Other indices i =
1, . . . , 3 and α = 1, . . . , 4 represent the degrees of freedom called color and spin,
respectively. From now on, we use I = (i,α) to simplify the notation and write the
quark field as q f,I (x). Gluons intermediate the force connecting quarks. The gluon
field has indices a = 1, . . . , 8 and μ = 0, . . . , 3. The former is related to the colors
of quarks connected by gluon. The label μ is needed because gluon field is a vector
that has the temporal (μ = 0) and spatial (μ = 1, 2, 3) components.

15 Feynman said that “Because atomic behavior is so unlike ordinary experience, it is very difficult
to get used to, and it appears peculiar and mysterious to everyone—both to the novice and to the
experienced physicist. Even the experts do not understand it the way they would like to, and it is
perfectly reasonable that they should not, because all of direct, human experience and of human
intuition applies to large objects”. Quantum field theory is an even more crazy beast.
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QCD (Quantum Chromodynamics) is the quantum field theory that describes the
interaction between these fields. Concerning the use of MCMC, the key point is that
the action SQCD[G, q] is explicitly given. Schematically, it takes the following form:

SQCD[G, q] =
∫

d4x
(1
4

∑

μ,ν,a

Fa
μν(x)

2 +
∑

f

∑

I,J

q∗
f,I (x)D(G)I J q f,J (x)

)
. (6.60)

Here Fa
μν(x) is a quantity called field strength which can be calculated from the gluon

field Ga
μ(x). A matrix of differential operators D(G)I J , which is called Dirac oper-

ator, can also be determined from the gluon field.
∫
d4x · · · is the four-dimensional

integral over time t and space x, y, z. We ignored the difference between the mass
of up quark and down quark, so that we can use the same Dirac operator for them.
This is not a bad approximation, and the simulation becomes much simpler with this
approximation.

In QCD,16 the probability distribution of the fields is proportional to e−SQCD[G,q].
We can understand the interaction between elementary particles if we can calculate
this probability distribution. Markov chain Monte Carlo is a natural option for this
purpose.

However, there are two problems. Firstly, the fields are functions defined in space-
time. Because there are infinitely many points in spacetime, we have to consider the
probability distribution of infinitely many degrees of freedom. Secondly, quark fields
are represented by Grassmann numbers, i.e., when the order of the product is flipped,
a negative sign appears as q f,I (x)q f ′,I ′(x ′) = −q f ′,I ′(x ′)q f,I (x).

One of the resolutions of the first problem, which is particularly suitable for
MCMC simulations, is to approximate the continuum spacetime by a discrete lattice
at large but finite volume [20]. There is only a finite number of points on such a
lattice, so the fields are expressed by a finite number of variables. Such discretized
theory is called lattice field theory. The lattice version of QCD is called lattice QCD.
With more variables the calculation is more costly, however as long as it is finite
the MCMC algorithms can be applied. By making the lattice finer and finer, we can
learn what happens in the continuum limit. For a technical reason, it is convenient
to put quarks on lattice sites and gluons on the links connecting the sites. The action
of lattice QCD is schematically expressed as

SlatQCD(G, q) = S(G) +
∑

f

∑

I,J,x,y

q∗
f,I,x DI x;J y(G)q f,J,y, (6.61)

where x and y stand for lattice points. The first term S(G) is the lattice counterpart of
the gluon action. In the second term, the Dirac operator has indices x and y because
the continuumversion of theDirac operator contains a derivative. Since the derivative
describes a change associated with an infinitesimal translation, its counterpart on a
lattice is expressed by a difference between the values at two neighboring lattice

16 Strictly speaking, in QCD on Euclidean spacetime.
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sites. As a consequence, the Dirac operator becomes a huge matrix whose indices
express color, spin, and spacetime coordinate.

Still, we have to resolve the second problem: the second term contains Grassmann
numbers qI,x , which cannot be handled efficiently on a computer. Luckily enough,
regarding the quark fields, the action takes the Gaussian form. Therefore, we can
integrate out the quark fields for fixed values of gluon field Ga

μ. From the usual
Gaussian integral, the inverse of the determinant is obtained (see Appendix B.2.2),
but from the Grassmannian version, the determinant itself is obtained. In the end, we
obtain the probability distribution in terms of the gluon field,

P(G) ∝ det(D(G) · D†(G)) · e−S(G). (6.62)

One has to generate this distribution via MCMC.17

HMC with Pseudofermion

In principle, the MCMC methods we learned in this book can be applied to the
target probability distribution (6.62). However, the calculation of the determinant
det(DD†) is so costly that the simulation is impossible with realistic computational
resources. Therefore, we introduce a complex vector F as an auxiliary field and
rewrite the determinant det(DD†) as

det(DD†) ∝
∫

dF exp
(−F†(DD†)−1F

)
. (6.63)

Then, to get (6.62), the action should be modified to

S̃(G, F) ≡ S(G) + F†(DD†)−1F, (6.64)

and the simulation should be done by using e−S̃ as the weight.18 This weight can be
simulated by combining the HMC algorithm and the Gibbs sampling algorithm.

The concrete procedures are as follows [21]. Firstly, F is updated via the Gibbs
sampling algorithm for fixed G. Because of F†(DD†)−1F = F†(D†)−1D−1F =
(D−1F)†(D−1F), in terms of � defined by

17 We used one approximation at this stage. If we integrate out the quark fields in (6.61), we obtain
det(DD) rather than det(DD†). The determinant of the Dirac operator is not necessarily non-
negative, often it becomes complex. But unless det(DD) = (det(D))2 is non-negative, det(D(G) ·
D(G)) · e−S(G) cannot be regarded as a probability and the MCMC techniques cannot be applied.
Therefore, we neglected the phase factor and replaced det(DD) with det(DD†). If the physical
phenomena under consideration are sensitive to this phase, we have to take the phase into account.
Fortunately, in lattice QCD, many important phenomena can be studied in a setup without a phase.
18 In physics, this F is called pseudofermion. This is because F is a boson that leads to the fermion
determinant.
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� ≡ D−1F (6.65)

the distribution is Gaussian, e−�†�. This� can be generated by using the Box-Muller
method. Once � is given, F is obtained by solving D� = F .

Next,G is updated via theHMCalgorithm for fixed F . TheHamiltonian is defined
by

H = 1

2
TrPP† + S̃[G, F]. (6.66)

The conjugate momentum of G is taken to be P†. The Hamilton equation is

dGi j

dτ
= Pi j , (6.67)

dPi j
dτ

= − ∂ S̃

∂G†
i j

= − ∂S

∂G†
i j

+ χ† ∂(DD†)

∂G†
i j

χ, (6.68)

where χ = (DD†)−1F . This χ is obtained by solving (DD†)χ = F .
Here is a summary of the procedures:

Lattice QCD simulation via HMC with pseudofermion� �

1. Generate � with the Gaussian weight.
2. Derive F by using D� = F .
3. Fix F and update G via HMC.
4. Repeat.

� �
Most of the computational time is spent obtaining χ by solving (DD†)χ = F .

Although such a computation is usually very hard, in lattice QCD the solutions can
be obtained efficiently by using the conjugate gradient method (CGmethod) because
the Dirac operator D is a sparse matrix. In this way, the simulation is much more
efficient than a naive method which requires the calculation of the determinant. As
for the CG method, see Appendix E.

As an example of the lattice QCD simulation via the HMC algorithm, the mass
spectrum of the hadrons is shown in Fig. 6.25.19 N stands for nuclei (proton and
neutron). By tuning the parameters of the theory such that the mass of π, K, and
� agree with the experimental values, the mass spectrum of all other particles can
be calculated numerically. The values obtained via Monte Carlo simulation agree
excellently with the results of the accelerator experiments.

19 Strictly speaking, up and down quarks are treated via the HMC algorithm, and the strange quark
is incorporated via another method. Note also that some features of the real world are neglected,
such as the difference of the mass of up and down quarks and the electromagnetic interaction.
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Fig. 6.25 Hadron mass
spectrum from lattice QCD
obtained by using the HMC
algorithm. This plot is based
on the data in Ref. [22]
(PACS-CS collaboration)
and Ref. [23] (BMW
collaboration)
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6.4.2 Superstring Theory and Holographic Principle

Superstring theory is a candidate for the unified theory of gravity (general relativ-
ity) and quantum mechanics. (The standard textbooks on superstring theory include
Refs. [24–27].) The history of superstring theory is very complicated. When it was
first proposed in the 1960s, the motivation was to explain the strong interaction: it
was hoped that various hadrons might be understood as different vibration modes
of a string. This idea was so attractive that many researchers studied it until the
early 1970s. However, superstring theory turned out to have a few fatal problems as
a theory of the strong interaction. In the meantime, QCD turned out to be a better
candidate, and by the mid-1970s most researchers left superstring theory. But then it
was revived as a theory of quantum gravity: some properties that were serious flaws
as a theory of the strong interaction turned out to be advantageous as a theory of
quantum gravity. Since then, superstring theory has been actively studied to date.

Nobody knows what the ultimate theory of quantum gravity would look like, but
there is a hint from a black hole. A black hole is a solution of the Einstein equa-
tion equipped with an extreme spacetime structure. Hawking studied how quantum
mechanics affects the properties of a black hole, and discovered that a black hole
has temperature and entropy. Roughly speaking, entropy is the amount of hidden
information. To specify the macroscopic state of the air filling our room, we need
only a few parameters such as temperature and pressure. However, at microscopic
level, a lot of molecules are moving around and colliding with each other. There are
many different microscopic states which look the same macroscopically. Entropy
characterizes the number of microscopic states that cannot be distinguished macro-
scopically. A black hole can have various microscopic states, depending on the detail
of its history. The entropy of a black hole can be interpreted as the amount of such
hidden information.
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Peculiarly, the entropy of a black hole is proportional to its surface area [12, 28].
Usually, entropy is proportional to volume; in the case of the air, if the volume is
doubled then the number of molecules is also doubled, which leads to twice as much
information.20 A black hole becomes bigger when it swallows something, then one
would naively think that the increment of the entropy is proportional to that of the
volume, but, in fact, it is not the case.

Because general relativity is a theory of spacetime itself, we expect that the com-
plete theory of quantum gravity has some fundamental degrees of freedom which
are the building blocks of spacetime. That the entropy of a black hole is propor-
tional to the surface area suggests that those fundamental degrees of freedom are
distributed on a surface surrounding spacetime. Based on such reasoning, ’t Hooft
and Susskind conjectured that the building blocks of spacetime are living on the
“surface” rather than filling the spacetime volume, and that gravity and spacetime
are a sort of hologram. This conjecture is called holographic principle [29, 30].

At first, many people thought that holographic principle was just an abstract
slogan. The situation changed in 1997, due to the discovery of gauge/gravity duality
byMaldacena [31].Maldacena studied an object calledD-brane in superstring theory.
He argued that a systemofD-branes admits two descriptions—superstring theory and
a non-gravitational theory (supersymmetric gauge theory) defined on a “surface”—
in a certain parameter region, and hence these two theories should be equivalent.
Supersymmetric gauge theory is similar to QCD and both of them belong to a class
of quantum field theories called gauge theory. At first, many people thought that the
gauge/gravity duality is not true, because it was a very surprising proposal that claims
superstring theory, which contains gravity, and supersymmetric gauge theory, which
does not contain gravity, should be equivalent. However, although many nontrivial
tests have been performed for more than 20 years, no contradiction was found.
Rather, there is overwhelming evidence supporting the correctness of the duality.
Today, almost nobody doubts its validity. Of course, it does not immediately mean
that the universe we live in is a hologram, but it is certainly a big step.

Gauge/gravity duality claims that superstring theory is described by supersym-
metric gauge theory via holographic principle. In other words, we can learn about the
properties of superstring theory by studying supersymmetric gauge theory. Because
supersymmetric gauge theory is similar to QCD, similar simulation techniques can
be used. In particular, we can use MCMC to study supersymmetric gauge theory and
translate the results into the statements regarding quantum gravity.21

20 To specify the locations and velocities of N molecules, 6N numbers are needed. If there are 2N
molecules, 12N numbers are needed.
21 This is the reason why the authors learned MCMC.



6.4 Applications to High-Energy Physics 163

Many powerful algorithms are used for the Monte Carlo study of supersymmetric
gauge theory.We do not have enough space to explain the details, but let us introduce
a part of them.

RHMC Algorithm

In lattice QCD, there was a huge matrix called Dirac operator D and we had to
tame det(DD†). The Dirac operator appears in supersymmetric gauge theory as
well. Therefore, a fractional power of the determinant can appear in the weight, for
example,

P(G) ∝ (det(DD†)
)1/4

e−S(G). (6.69)

In this case, the pseudofermion can be introduced as in QCD. The determinant part
can be rewritten as

(
det(DD†)

)1/4 ∝ ∫ dF exp
(−F†(DD†)−1/4F

)
, hence the action

can be taken as

S̃(G, F) ≡ S(G) + F†(DD†)−1/4F, (6.70)

and the simulation with the weight e−S̃ should be performed.
If we simulate this weight naively using the fractional power of the matrix D, the

simulation can be very complicated and costly. To avoid the use of fractional power,
the following rational approximations can be used:

x1/8 
 a0 +
Q∑

i=1

ai
x + bi

, x−1/4 
 a′
0 +

Q′∑

i=1

a′
i

x + b′
i

. (6.71)

For any given range in x > 0, by taking Q and Q′ sufficiently large and by choosing
the coefficients appropriately, a very good approximation can be achieved.22

Let us start with the update of F via the Gibbs sampling algorithm. As before,
we generate � = (DD†)−1/8F with the Gaussian weight. When we obtain F from
�, we use (6.71) and evaluate

F = (DD†)1/8� 
 a0� +
Q∑

i=1

ai (DD† + bi )
−1�. (6.72)

22 Kate Clark, who is one of the inventors of the RHMC algorithm, offers a free program to obtain
these coefficients via the Remez algorithm at https://github.com/maddyscientist/AlgRemez.

https://github.com/maddyscientist/AlgRemez
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We do not have to repeat similar calculations to determine χi ≡ (DD† + bi )−1� for
each i , because there is a convenient tool called the multi-mass solver that solves Q
equations

(
DD† + bi

)
χi = � (6.73)

simultaneously without increasing the cost. See Appendix E.2 for details.
When we fix F and update G via the HMC algorithm, by using (6.71) we approx-

imate the Hamiltonian as

H = 1

2
Tr(PP†) + S(G) + a′

0F
†F +

Q′∑

i=1

a′
i F

†(DD† + b′
i )

−1F. (6.74)

We can solve

(
DD† + b′

i

)
χ′
i = F (6.75)

simultaneously via the multi-mass solver, and the Hamiltonian can be expressed as

H = 1

2
Tr(PP†) + S(G) + a′

0F
†F +

Q′∑

i=1

a′
iχ

′†
i (DD† + b′

i )χ
′
i . (6.76)

Then the Hamilton equation can be written as

dGi j

dτ
= Pi j , (6.77)

dPi j
dτ

= − ∂ S̃

∂G†
i j

= − ∂S

∂G†
i j

+
Q′∑

k=1

a′
kχ

′†
k

∂(DD†)

∂G†
i j

χ′
k, (6.78)

which is almost the same as the Hamilton equation in the lattice QCD simulation.
This algorithm is called RHMC [32, 33] because it is a combination of the r

¯
ational

approximation and the HMC algorithm. Let us summarize the procedures:
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RHMC simulation of supersymmetric gauge theory� �

1. Generate � with the Gaussian weight.
2. Solve

(
DD† + bi

)
χi = � simultaneously and derive χi . Then F is

obtained via F = a0� +∑Q
i=1 aiχi .

3. Solve
(
DD† + b′

i

)
χ′
i = F simultaneously and derive χ′

i . Calculate Hi via
(6.76).

4. Fix F and let G evolve via leapfrog. The time derivatives are given by
(6.77) and (6.78). Note that, although F is fixed, χ′

i changes as G evolves.
Therefore, we have to solve

(
DD† + b′

i

)
χ′
i = F and obtain χ′

i at each step
of the leapfrog.

5. Solve
(
DD† + b′

i

)
χ′
i = F simultaneously and derive χ′

i . Calculate Hf via
(6.76).

6. Perform the Metropolis test and accept or reject G(τ = τ f ) obtained via
the leapfrog.

7. Repeat.
� �

By using the RHMC algorithm, we can study supersymmetric gauge theories that
describe black hole via holography. In Fig. 6.26, the simulation result of one of such
theories (the maximally supersymmetric matrix quantum mechanics) is shown. The
horizontal and vertical axes are temperature and energy, respectively. The energy is
identified with the mass of the black hole via a famous relation E = mc2 discovered
by Einstein. The black hole corresponding to this gauge theory was identified in
Ref. [34]. The solid line is the energy of this black hole calculated by using general
relativity (i.e., Einstein’s theory of gravity). Holographic principle predicts that the
agreement betweengauge theory andgeneral relativity is better at lower temperatures.
We can confirm this prediction in Fig. 6.26, i.e., we can see that the simulation data
points approach the green line. The dashed line is a fit of the simulation results that
takes the string-theoretic corrections into account. Monte Carlo simulation provided
us with the evidence supporting the correctness of gauge/gravity duality.

6.4.3 Further Optimization

Multi-time-Step Method

In the HMC and RHMC algorithms, the discretization error associated with the
leapfrog time evolution becomes large when the force− ∂S

∂G is large. Then the change
of the Hamiltonian becomes large as well, and the acceptance rate goes down. To
avoid this problem, we can use a smaller step size for a variable with a larger force.

The multi-time-step method [36] is based on a very clever idea: use multiple step
sizes for the same variable. Suppose the Hamiltonian is written as

H =
∑

P2 + S1[G] + S2[G], (6.79)
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Fig. 6.26 The energy of the maximally supersymmetric matrix quantum mechanics as a function
of temperature T calculated by using the RHMC algorithm. The horizontal and vertical axes are
temperature and energy, respectively. The solid line is the energy of this black hole calculated by
using gravity (general relativity), and the dashed line is a fit of the simulation results that takes the
string-theoretic corrections into account. This plot was created based on Ref. [35]

Fig. 6.27 Multi-time-step
leapfrog. Nτ = 3, l = 1

and the force originating from S1 is much larger than that from S2. We introduce two
different step sizes �τ1 and �τ2 for S1 and S2 satisfying

�τ2 = (2l + 1)�τ1. (6.80)

Here l is a natural number. The leapfrog time evolution is defined as shown in
Fig. 6.27. The total number of steps is (2l + 1)Nτ . We always use the time step
�τ1, and take the force for the time evolution of P to be − ∂S1

∂G at blue points and
− ∂S1

∂G − (2l + 1) ∂S2
∂G at red points. Then, effectively, the forces coming from S1 and

S2 are incorporated every �τ1 and �τ2, respectively. In QCD and supersymmetric
gauge theory, we can take S1 = S(G), and S2 can be taken as the term arising from the
determinant det(DD†). Often, the force coming from S1 is large and hence we have
to calculate it frequently, but the cost per calculation is very small. On the other hand,
the force coming from S2 is small but the cost per calculation is huge, so we want
to avoid calculating them too often. The multi-time-step method allows us to reduce
the discretization error without increasing the computational cost significantly.
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n-th Root Trick

When the force coming from the determinant is too large, a naive multi-time-step
method does not work. The low-temperature region of supersymmetric gauge theory
has this problem. The n-th root trick is effective in such cases.

Let us introduce n pseudofermions. Then

(
det(DD†)

)1/4 =
∫

dF1dF
∗
1 · · · dFndF

∗
n exp

(

−
n∑

i=1

F†
i (D†D)−1/4n Fi

)

. (6.81)

We can simulate a theory with this action by using the RHMC algorithm. (We only
have to change (6.71) to the rational approximations of x1/8n and x−1/4n .) Although
we have to repeat the same calculation n times because there are n pseudofermions,
the force coming from the determinant becomes much smaller (roughly the n-th
root), and hence we can take the step size �τ2 large and reduce the computational
cost.
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Appendix A
List of Sample Code

Sample code can be obtained from

https://github.com/masanorihanada/MCMC-Sample-Codes

No special package is used, so they can be compiled just by using the standard C/C++
compilers. Some sample code in Python 3 can also be found there.

A.1 Naive Monte Carlo Method (Not MCMC)

A.1.1 Calculation of π (Sect. 2.2.1)

<File name> pi_MC.c
<Parameter> niter
<Output> Number of trials (equivalently, number of samples), the approximate
value of the area of the fan-shaped region
<How it works>

In this code, the area of the fan-shaped region is estimated by scattering the points
randomly and counting how many of them fall into this region. Please vary the
number of trials niter and see if the result of the simulation is close to the exact
analytic value π

4 .

A.1.2 Calculation of π (Sect. 2.2.2)

<File name> pi_MC_integral.c
<Parameter> niter
<Output> Number of trials, the approximate value of

∫ 1
0 dx

√
1 − x2

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Singapore Pte Ltd. 2022
M. Hanada and S. Matsuura, MCMC from Scratch,
https://doi.org/10.1007/978-981-19-2715-7
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<How it works>
This code estimates the integral

∫ 1
0 dx

√
1 − x2. The approximate value converges

to π
4 as niter becomes large.

A.1.3 Calculation of the Volume of a Ball x2 + y2 + z2 ≤ 1
(Sect. 2.3)

<File name> three_sphere.c
<Parameter> niter
<Output> Number of trials, the approximate value of the volume of a ball x2 +
y2 + z2 ≤ 1
<How it works>

This code calculates the volume of a ball with radius one. The approximate value
converges to the analytic value 4π

3 as niter becomes large.

A.2 Metropolis Algorithm

A.2.1 Univariate Gaussian Integration via Metropolis
(Sect. 4.2)

<File name> Gaussian_Matropolis.c
<Parameters> niter, step_size
<Output> x , acceptance rate
<How it works>

This code generates the Gaussian distribution P(x) = 1√
2π
e− x2

2 by using the

Metropolis algorithm. The acceptance rate and x (1), x (2),. . .,x (k),. . . are shown as out-
put. The initial configuration for the simulation is x (0) = 0. By changing S(x) to other
functions, various other probability distributions can be generated. (action_init
= ... and action_fin= ... should bemodified for that purpose.) Please try several
different choices of the number of samples niter and step size step_size and
see how the result changes.
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A.2.2 Bivariate Gaussian Integration via Metropolis
(Sect. 4.8.1)

<File name> Gaussian_Metropolis_2variables.c
<Parameters> niter, step_size_x, step_size_y
<Output> x , y, acceptance rate
<How it works>

This code generates the bivariate Gaussian distribution,

P(x, y) ∝ e− x2+y2+xy
2 . (A.1)

By changing S(x, y) to other functions, various other probability distributions can be
studied. (action_init = ... and action_fin = ... should be modified for that
purpose.) Depending on the detail of the distribution, it might be better to choose dif-
ferent values for the step size for x (step_size_x) and that for y (step_size_y).

A.2.3 Two-Dimensional Ising Model via Metropolis
(Sect. 6.2.3)

<File name> 2d_Ising_Metropolis.cpp
<Parameters> niter, nx, ny, coupling_J, coupling_h, temperature,
nskip, nconfig
<Output>
output.txt: Total spin, energy, acceptance rate
output_config.txt: Final configuration (x coordinate, y coordinate, spin)

<How it works>
This is a simulation code for the two-dimensional Ising model via the Metropolis

algorithm. The size of the lattice is specified by the number of points in x and y
directions, nx and ny. Parameters coupling_J and coupling_h appear in the
definition of the energy (J and h in Eq. (6.45)), and temperature is temperature
T . Total spin, energy, acceptance rate are calculated every nskip steps and written
in the output file output.txt.

The Metropolis algorithm suffers from very large autocorrelation near the phase
transition point. Therefore, the final configuration is saved in the file output_
config.txt, so that the simulation can be continued further by using it as the
initial configuration.
nconfig is used to specify the initial configuration. If nconfig = 1 or

nconfig = −1, all spins are taken to be +1 or −1, respectively. If you want
to start the simulation by using the existing configuration (the final configura-
tion output_config.txt from another run), please change the file name to
input_config.txt and set nconfig = 0.
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A.2.4 Bayesian Updating for Coin Toss via Metropolis
(Sect. 6.1.5)

<File name> Bayes_coin_toss_metropolis.c
<Parameters> niter, step_size
<Output> p, acceptance rate
<How it works>

This code is for theBayesian updating for the coin-toss problemvia theMetropolis
algorithm. The action used here is based on the example in the main text, n =
1000, k = 515, P(p) ∝ e−100(p− 9

10 )
2

. For details, see the description around (6.40).
To study other cases, please rewrite S in the right-hand side of action_init= ...

and action_fin= ... accordingly. niter is the number of iterations (number of
configurations collected in the simulation), and step_size is the step size for p.

A.2.5 Bayesian Updating for Bivariate Gaussian
Distribution via Metropolis (Sect. 6.1.5)

<File name> Bayes_Gaussian_Metropolis.cpp
<Parameters>niter,av_x,av_y,av_xx,av_yy,av_xy,nsample,step_A,
step_mu, nskip
<Output> A11, A22, A12, μ1, μ2, acceptance rate
<How it works>

The Bayesian updating for the bivariate Gaussian distribution is performed via
the Metropolis algorithm. We assume that nsample = n samples {x (1), y(1)},
. . . , {x (n), y(n)} were obtained via some experiment and the average values av_x
= x , av_y = y, av_xx = xx , av_yy = yy and av_xy = xy were obtained. By
using them as input, and by using P({Ai j ,μi }) ∝ e− 1

2

∑
i, j |Ai j |2− 1

2

∑
i |μi |2 as the prior

distribution, the Bayesian updating is performed. niter is the number of iterations,
and the values of A11, A22, A12, μ1 and μ2 are shown every nskip steps (hence the
number of configurations collected in the simulation is niter/nskip). step_A
and step_mu are the step sizes for A and μ, respectively. Please make sure about
the difference between niter and nsample. (Sorry for confusing names!)

A.3 HMC Algorithm

A.3.1 Univariate Gaussian Integration via HMC (Sect. 5.1.4)

<File name> Gaussian_HMC.cpp
<Parameters> niter, ntau, dtau
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<Output> x , 〈x2〉, acceptance rate
<How it works>

This code generates the Gaussian distribution P(x) = 1√
2π
e− x2

2 via HMC. It is
instructive to see how the acceptance rate and the autocorrelation length changewhen
ntau and dtau are varied.

Various other probability distributions can be studied by modifying calc_
action and calc_delh.

A.3.2 Multivariate Gaussian Integration via HMC
(Sect. 5.1.5)

<File name> Gaussian_HMC_multi_variables.cpp
<Parameters> niter, ntau, dtau, ndim
<Output> x , y, z, acceptance rate
<How it works>

This codegenerates themultivariateGaussiandistribution, P({x}) ∝ e− 1
2

∑
i, j Ai j xi x j ,

via HMC. The number of variables ndim can be chosen arbitrarily. (ndim means
the number of dimensions.) The values of Ai j are set explicitly in main. As a default

setup, we chose ndim = 3, P(x, y, z) ∝ e− x2+2y2+2z2+2xy+2yz+2zx
2 . As for the simulation

result with this default setup, see Figs. 5.8 and 5.9.
Various other probability distributions can be studied by modifying calc_

action and calc_delh.

A.3.3 Bayesian Updating for Bivariate Gaussian
Distribution via HMC (Sect. 6.1.5)

<File name> Bayes_Gaussian_HMC_2variables.cpp
<Parameters> niter, av_x, av_y, av_xx, av_yy, av_xy, nsample, ntau
dtau_A, dtau_mu, nskip
<Output> A11, A22, A12, μ1, μ2, acceptance rate
<How it works>

This code performs the Bayesian updating for the bivariate Gaussian distribution
via the HMC algorithm. We use the averages av_x = x , av_y = y, av_xx = xx ,
av_yy = yy and av_xy = xy, which were obtained from nsample = n samples
{x (1), y(1)}, . . . , {x (n), y(n)}. By using them as input, and by using P({Ai j ,μi }) ∝
e− 1

2

∑
i, j |Ai j |2− 1

2

∑
i |μi |2 as the prior distribution, the Bayesian updating is performed.

Different priors can be used by rewriting calc_action and calc_delh.
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As for the step size �τ , we can use different values for Ai j , p
(A)
i j and μi , p

(μ)

i . We
can use different values for A11, A12 and A22, but for simplicity we used the same
value �τA for all Ai j , p

(A)
i j . We used the same value �τμ for all μi , p

(μ)

i as well.

A.3.4 Matrix Integral via HMC (Sect. 5.1.5)

<File name> matrix_HMC.cpp
<Parameters> nmat, niter, ninit, ntau, dtau
<Output>
output.txt: 〈S〉 (the expectation value of the action), acceptance rate
configuration.dat: Final configuration

<How it works>
This code is for the matrix model whose action is specified in eq. (5.22). In

Molecular_Dynamics, the auxiliary momenta are generated randomly follow-
ing the Gaussian distribution, the configurations are evolved along the auxiliary
time, and the Hamiltonian is calculated. calc_hamiltonian, calc_delh and
calc_action calculate the Hamiltonian, ‘force’ acting on φ (namely ∂H

∂φ j i
= ∂S

∂φ j i
)

and the action S(φ), respectively.
When the matrix size nmat is large, the simulation becomes time-consuming and

we need to run multiple jobs successively. Therefore, the final configuration of each
job is saved in configuration.dat, and when ninit = 0 the configuration in
this file is used as the initial configuration.

In this code, we do not save the information regarding the pseudorandom num-
bers, we just set the seed every time by using the system clock. For more serious
simulations, it is better to save the information regarding the pseudorandom numbers
together with the configuration.

A.4 Gibbs Sampling Algorithm (Heat Bath Algorithm)

A.4.1 Multivariate Gaussian Integration via Gibbs Sampling
(Sect. 5.2.3)

<File name> Gaussian_Gibbs.cpp
<Parameter> niter
<Output> x , y, z
<How it works>

This is a Gibbs-sampling code for the trivariate Gaussian distribution. The param-
eters Ai j can be set to any values in main.
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A.4.2 Two-Dimensional Ising Model via Gibbs Sampling
(Sect. 6.2.3)

<File name> 2d_Ising_Heat_Bath.cpp
<Parameters> niter, nx, ny, coupling_J, coupling_h, temperature,
nskip, nconfig
<Output>
output.txt: Total spin, energy
output_config.txt: Final configuration (x coordinate, y coordinate, spin)

<How it works>
This code studies the two-dimensional Ising model via the Gibbs sampling algo-

rithm (equivalently, the heat bath algorithm). The parameters are the same as those
used in Appendix A.2.3.

There is a problem of large autocorrelation near the phase transition point,
just like the Metropolis algorithm. Therefore, the final configuration is saved in
output_config.txt so that the simulation can be continued if necessary.

A.5 Combination of Different Algorithms

A.5.1 Bayesian Updating for Bivariate Gaussian Distribution
via Gibbs Sampling and Metropolis (Sect. 6.1.5)

<File name> Bayes_Gaussian_Gibbs.cpp
<Parameters>niter,av_x,av_y,av_xx,av_yy,av_xy,nsample,step_A,
nskip
<Output> A11, A22, A12, μ1, μ2, acceptance rate
<How it works>

This code uses the Gibbs sampling algorithm for μ and the Metropolis algorithm
for A. The averagesav_x= x ,av_y= y,av_xx= xx ,av_yy= yy and av_xy=
xy, which were obtained from nsample = n samples {x (1), y(1)}, . . . , {x (n), y(n)},
are used. By using them as input, and by using P({Ai j ,μi }) ∝ e− 1

2

∑
i, j |Ai j |2− 1

2

∑
i |μi |2

as the prior distribution, the Bayesian updating is performed. The step size for
Metropolis is step_A. The frequency of the sampling is specified by nskip, i.e.,
the output is shown every nskip steps.
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A.6 Cluster Algorithm

A.6.1 Two-Dimensional Ising Model via the Wolff Algorithm
(Sect. 6.2.4)

<File name> 2d_Ising_Wolff.cpp
<Parameters> niter, nx, ny, coupling_J, coupling_h, temperature,
nskip, nconfig
<Output>
output.txt: Total spin, energy
output_config.txt: Final configuration (x coordinate, y coordinate, spin)

<How it works>
This code studies the two-dimensional Ising model via the Wolff algorithm. Total

spin and energy are calculated every nskip steps and recorded in output.txt.
When nconfig is a positive integer, the configuration is saved in output_
config.txt every nconfig steps. (Note that the meaning of nconfig is dif-
ferent from the Metropolis and Gibbs sampling codes.) The initial configuration is
all-spin-up.
make_cluster is the most important part that constructs the cluster. The

structure of main is extremely simple: the cluster is constructed by using
make_cluster, and then the spins in the cluster are flipped or kept unchanged
depending on the result of the Metropolis test.

A.7 Replica Exchange Algorithm

A.7.1 Simple Integral via Replica Exchange (Sect. 6.3.3)

<File name> replica_simple_example.c
<Parameters> nbeta, niter, step_size, dbeta
<Output> The values of x at nbeta = 20, 200 and 2000
<How it works>

Probability distribution P(x) ∝ e− f (x)/T is generated for f (x) = (x − 1)2 ·(
(x + 1)2 + 0.01

)
, via the replica exchange algorithm. nbeta is the number of

β = 1
T (number of replicas) and dbeta is the spacing between the values of β for

replicas. The values of β are β = dbeta,dbeta× 2, . . . ,dbeta× nbeta. Each
replica is updated via the Metropolis algorithm with step size step_size, then the
replicas are exchanged again via Metropolis.
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A.7.2 Traveling Salesman Problem via Replica Exchange
(Sect. 6.3.3)

<File name> replica_salesman.c
<Parameters> nbeta, niter, step_size, dbeta
<Output> output.txt: Number of iterations, total distance rtotal at the lowest
temperature replica, the smallest rtotal found by that stage are shown. Then, at the
end, the coordinates of the cities are shown along the shortest route found during the
simulation.
output_config.txt: Final configuration (location of the cities, the route at

each replica)
<How it works>

This is a code for the traveling salesman problem via the replica exchange algo-
rithm.
nbeta is the number of β = 1

T (number of replicas) and the values of β are
β = dbeta,dbeta× 2, . . . ,dbeta× nbeta. ncity is the number of cities.

If ninit is 0, then the locations of the cities are read from 100_cities.txt
at the beginning of the simulation. If ninit is 1, then the configuration (location
of the cities and the route at each replica) are read from input_config.txt.
If ninit is 2, then the locations of the cities are set by using the uniform random
numbers at 0 < x < 1 and 0 < y < 1.
calc_distance calculates the total distance along the route, rtotal.
In order to calculate the change of the total distance �rtotal when ordering of

visiting two cities are exchanged (i (m)
k → i ′(m)

k = i (m)
l , i (m)

l → i ′(m)
l = i (m)

k ), we do
not have to calculate rtotal every time. However, because the authors were lazy and
did not spend too much time for coding,�rtotal is obtained by calculating rtotal before
and after exchanging the ordering, and then by taking the difference. If you improve
this part, the simulation becomes much faster.

In this code, two steps explained in the main text (MCMC at each replica and
the exchange of replicas) are performed alternately. You can change this part, say to
repeat the first step several times and then to perform the second step once.

The final configuration is saved in output_config.txt. By changing the file
name to input_config.txt and choosing ninit to be 1, the simulation can be
continued.
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B.1 Matrix

Let us consider an m × n matrix M . If we write all matrix entries explicitly, there
are m rows and n columns:

M =

⎛

⎜
⎜
⎜
⎝

M11 M12 · · · M1n

M21 M22 · · · M2n
...

...
. . .

...

Mm1 Mm2 · · · Mmn

⎞

⎟
⎟
⎟
⎠

. (B.1)

M is called a square matrix if m = n. If all matrix entries are real numbers (respec-
tively, complex numbers), it is called a real matrix (respectively, complex matrix).

Vector can be regarded as a special kind of matrix. An m × 1 matrix is an m-
component column vector and a 1 × n matrix is an n-component row vector.
Summation, subtraction, and multiplication of scalar
The sum is taken component-by-component. Namely the (i, j)-component of M +
M ′ is (M + M ′)i j = Mi j + M ′

i j . The subtraction is taken component-by-component,
too.

Multiplication of a scalar c and a matrix M , which is written as cM , means a
matrix whose (i, j)-component is cMi j , i.e., all matrix entries are multiplied by c.

Product of matrices
Let M and M ′ be l × m andm × n matrices, respectively. The product of M and M ′,
denoted by MM ′, is defined by an l × n matrix whose (i, j)-component is

(MM ′)i j =
m∑

k=1

MikM
′
k j . (B.2)
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In order to see the motivation for this definition, let us consider a simple example.

We use a two-component vector 	v =
(
x
y

)

to denote the coordinate in a plane. By

using a polar coordinate, we write 	v as

	v =
(
x
y

)

=
(
r cos θ
r sin θ

)

. (B.3)

To this vector, we multiply a 2 × 2 square matrix M defined by

M(φ) =
(
cosφ − sin φ
sin φ cosφ

)

. (B.4)

Then, we obtain

M(φ) · 	v =
(
r cos(θ + φ)

r sin(θ + φ)

)

. (B.5)

We can see that themultiplication ofM(φ) corresponds to a rotation with the angleφ.
If we perform two rotationswith the angleφ1 andφ2, we should get a rotationwith the
angle φ1 + φ2. This is naturally realized as a product of matrices M(φ2) · M(φ1) =
M(φ1 + φ2). Other manipulations such as rotations in higher dimensional space or
stretching/shrinking to some directions can also be described by matrices, and a
product of two matrices is interpreted as a combination of two manipulations.

Inverse matrix
For a square matrix M , a matrix M−1 that satisfies M−1M = 1 is called the inverse
of M . Here 1 is the identity matrix, i.e., all diagonal entries are 1 and all off-diagonal
entries are 0. If M represents a rotation, then M−1 is simply the rotation to the
opposite direction. When the inverse matrix M−1 exists, M is said to be invertible
(also regular or non-singular).

Transpose and Hermitian conjugate
For an m × n matrix M , the transpose MT is defined by an n × m matrix whose
entries are

(
MT

)
i j = Mji .

For anm × n complexmatrixM , theHermitian conjugateM† is defined by an n ×
m matrix whose entries are

(
M†

)
i j = M∗

j i , where ∗ means the complex conjugate.

Because M† = (
MT

)∗
, the Hermitian conjugation is a combination of transpose and

complex conjugation.
A matrix M is “symmetric” if MT = M , and “Hermitian” if M† = M .

Determinant
For an n × n square matrix M , the determinant is defined by

det M =
∑

σ

sgn(σ)

n∏

i=1

Miσ(i). (B.6)
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σ runs through all permutations of 1, 2, . . . , n, and sgn(σ) is the signature of the
permutation σ.

For example, when n = 3, there are six permutations thatmap (1, 2, 3) to (1, 2, 3),
(1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2) or (3, 2, 1).

Any permutation can be obtained by repeating the permutations of two numbers
(‘transpositions’). For example, (1, 2, 3) → (2, 3, 1) is made of two transpositions,
(1, 2, 3) → (2, 1, 3) → (2, 3, 1). The signature sgn(σ) is +1 when σ consists of
an even number of transpositions, and −1 when σ consists of an odd number of
transpositions.

The determinant det M represents the change of the volume via the multiplication
of M .

By calculating honestly following the definition, we see that the product of deter-
minants is the determinant of the product:

det
(
MM ′) = det M · det M ′. (B.7)

This relation, together with the fact that the determinant of 1 is 1, leads to

det M−1 = 1

det M
. (B.8)

Therefore, invertible matrices have nonzero determinants.
When M can be diagonalized by using an invertible matrix A as A−1MA =

diag(d1, . . . , dn) (these d1, d2, . . . , dn are called eigenvalues), the determinant of M
is the product of d1, d2, . . . , dn ,

det M = d1 × d2 × · · · × dn, (B.9)

because

det(A−1MA) = det A−1 · det M · det A = det M. (B.10)

Logarithm and exponential
The exponential of a square matrix M is defined by the Taylor expansion as

eM =
∞∑

k=0

Mk

k! . (B.11)

When M can be diagonalized as A−1MA = diag(d1, . . . , dn), eM can also be diag-
onalized as eM = A × diag(ed1 , . . . , edn ) × A−1.



182 Appendix B: Miscellaneous Math Topics

The logarithm is the inverse function of the exponential (log ex = x). When all
eigenvalues of M are positive, the logarithm of M can be obtained as logM =
A × diag(log d1, . . . , log dn) × A−1.Also, if all eigenvalues ofM has themagnitudes
smaller than 1, it can be defined via the Taylor series

log(1 + M) =
∞∑

n=1

(−1)n−1Mn

n
. (B.12)

Because the diagonalization of a big matrix is numerically expensive, when we
want to save the computational cost we truncate the Taylor series at some order,
making sure that the higher order terms are sufficiently small.

Let us show an important relation used in Sects. 6.1.2 and 6.1.5,

∂Tr logM

∂Mi j
= M−1

j i . (B.13)

For that, we use the Taylor series

logM = log(1 − (1 − M)) = −
∞∑

k=1

(1 − M)k

k
. (B.14)

From this, we can easily show that

∂Tr logM

∂Mi j
=

∞∑

k=1

(1 − M)k−1
j i = (1 − (1 − M))−1

j i = M−1
j i . (B.15)

Let us also show that

log det M = Tr logM. (B.16)

When M can be diagonalized, we can immediately see that both left and right-hand
sides are

∑n
i=1 log di . Even when M is not diagonalizable, it can be triangulated.

Namely, by using an appropriate invertible matrix A, it can be written as M =
AU A−1, where U is an upper-triangular matrix (i.e., Ui j = 0 for i < j). Then, by
using the diagonal entries of U denoted by Uii = ui , the determinant is written as
det M = ∏

i ui , and hence,

log det M =
n∑

i=1

log ui . (B.17)
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Also, by noticing that the diagonal elements of Uk are (Uk)i i = uki , we obtain

Tr logM = Tr logU

= −
∞∑

k=1

Tr
[
(1 −U )k

]

k

= −
∞∑

k=1

n∑

i=1

(1 − ui )k

k

=
n∑

i=1

log ui . (B.18)

B.2 Gaussian Integral

B.2.1 Univariate Gaussian Integration

Let us start with a proof of the most basic formula,

∫ ∞

−∞
dxe− x2

2 = √
2π. (B.19)

By using I ≡ ∫
dxe− x2

2 , we can easily obtain

I 2 =
∫ ∞

−∞
dxe− x2

2 ×
∫ ∞

−∞
dye− y2

2 =
∫ ∞

−∞
dx

∫ ∞

−∞
dye− x2+y2

2 . (B.20)

We can rewrite is by using the polar coordinates x = r cos θ, y = r sin θ as

I 2 =
∫ 2π

0
dθ

∫ ∞

0
drre− r2

2 = 2π ·
[
−e− r2

2

]∞

0
= 2π. (B.21)

Therefore, I = √
2π.

By using this formula, we can immediately show
∫ ∞
−∞ dxe− x2

2σ2 = √
2πσ. Indeed,

by using y = x
σ
, we have

∫ ∞
−∞ dxe− x2

2σ2 = σ
∫ ∞
−∞ dye− y2

2 = √
2πσ. Therefore,

∫ ∞

−∞
dx√
2πσ

e− x2

2σ2 = 1. (B.22)
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We can also show that
∫ ∞

−∞
dx√
2πσ

e− (x−μ)2

2σ2 = 1 (B.23)

just by shifting the integration variable.

B.2.2 Multivariate Gaussian Integration

We start with a normalized Gaussian distribution consisting of d variables
y1, y2, . . . , yd ,

ρ(y1, . . . , yd) = e− 1
2

∑d
i=1(yi−νi )

2

(2π)d/2
. (B.24)

We define new variables xi and μi by using an invertible N × N matrix M as xi =∑
j M

−1
i j y j andμi = ∑

j M
−1
i j ν j , respectively. Then, via A = MT M , the distribution

can be expressed as

e− 1
2

∑d
i=1(yi−νi )

2 = e− 1
2

∑d
i, j=1 Ai j (xi−μi )(x j−μ j ). (B.25)

By taking into account the change of the integration measure as well, we can show
that the normalized distribution satisfying

∫ ∞
−∞ dx1 · · · ∫ ∞

−∞ dxdρ(x1, . . . , xd) = 1 is

ρ(x1, . . . , xd) =
√

det A

(2π)d
e− 1

2

∑d
i, j=1 Ai j (xi−μi )(x j−μ j ). (B.26)

Therefore, we regard (B.26) as a generalized Gaussian distribution. If all the eigen-
values of A are positive, we can change the variables such that the standard form
(B.24) is obtained from (B.26). Unless all the eigenvalues of A are positive, the
integral does not converge and the distribution cannot be interpreted as a probability.

Why do we consider a complicated form (B.26) instead of a simple stan-
dard form (B.24)? Because there are advantages, of course. For example, if x1
and x2 are the numbers of dogs and cats, y1 and y2 would be something like
0.1 × (number of dogs) + 1.2356 × (number of cats), which are hard to understand
intuitively. Then we can understand the meaning of the distribution more easily by
using (B.26). Note also that, via the method explained in Sect. 6.1, from the data xi
we can estimate Ai j and μi ; we cannot get the standard form (B.24) directly.
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Hamilton Equation

We briefly explain the Hamilton equation (5.2), in order to make it easier to under-
stand theHMC algorithm.We use the symbol V instead of S so that people with basic
knowledge of physics can follow the argument more easily. Then, the Hamiltonian
H is written as

H = 1

2

k∑

i=1

p2i + V (x1, . . . , xk). (C.1)

Suppose there are k particles, and xi and pi are the coordinate and momentum of
the i-th particle. The Hamiltonian can be identified with the energy of this sys-
tem. The first term on the right-hand side is the kinetic energy, assuming that the
mass of the particles m is 1. The second term is the potential energy. The Hamilton
equation (5.2) is

dpi
dτ

= −∂H

∂xi
= −∂V

∂xi
,

dxi
dτ

= ∂H

∂ pi
= pi . (C.2)

Note that − ∂V
∂xi

is the force acting on the i-th particle; hence the first equation is
nothing but the Newton’s law, “change of momentum = force”. Momentum p and
velocity v are related by p = mv. If m = 1, we simply have p = v. Hence, the
second equation is just the definition of velocity, “rate of the change of coordinate
= velocity”. Therefore, the Hamilton equation is the equation of motion.

Because the Hamiltonian is the same as energy, it is conserved under the time
evolution controlled by the equation of motion. To check it manifestly by using
math, we use
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dH

dτ
=

∑

i

(
dxi
dτ

∂H

∂xi
+ dpi

dτ

∂H

∂ pi

)

. (C.3)

By combining it with the Hamilton equation, we obtain

dH

dτ
=

∑

i

(
∂H

∂ pi

∂H

∂xi
− ∂H

∂xi

∂H

∂ pi

)

= 0. (C.4)



Appendix D
Jackknife Method in Generic Cases

When the Jackknife method was introduced in Sect. 4.3.3, it was assumed that the
quantity of interest can be calculated sample-by-sample. Below, we extend the Jack-
knife method to apply to more general situations, e.g., when we want to estimate the
error bar for the variance

〈
(x − 〈x〉)2〉.

Let f be the quantitywewant to estimate.Aswehavedone inSect. 4.3.3,wedivide
the configurations into groups. Suppose that each group consists ofw configurations
and there are n groups in total. The first group is {x (1), x (2), . . . , x (w)}, the second
group is {x (w+1), x (w+2), . . . , x (2w)}, and so on. We calculate f by removing the k-th

group, and call it f
(k,w)

:

f
(k,w) ≡ (the value of f calculated by removing the k-th group) . (D.1)

For example, when f is the variance and 1,000 configurations are divided to n = 10
groups, for each of k = 1, 2, . . . , n = 10 we calculate the variance by using 900

configurations. We employ the average of f
(k,w)

’s (k = 1, 2, . . . , n), which we call
f , as the value of f :

f ≡ 1

n

∑

k

f
(k,w)

. (D.2)

The Jackknife error is defined by

�w ≡
√
n − 1

n

∑

k

(
f

(k,w) − f
)2

. (D.3)

When f can be calculated sample-by-sample, this definition is the same as the
one given in Sect. 4.3.3.
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Appendix E
Conjugate Gradient Method (CG Method)

We explain the Conjugate Gradient method (CG method), which we mentioned in
Sect. 6.4.2, following Ref. [1]. The CG method is used to solve the linear equation

A	x = 	b, (E.1)

where A is a positive-definite (i.e., all the eigenvalues are positive) and Hermitian.1

A sequence of approximate solutions 	x1, 	x2, . . ., which eventually converges to the
exact solution, is obtained via the CG method.

Let us first see the procedures before explaining the logic:
Conjugate Gradient method (CG method)� �

1. Choose a candidate of the solution 	x1. This 	x1 can be arbitrary. From this,
we define 	r1 and 	p1 as 	r1 = 	p1 = 	b − A	x1.
Then, 	xk’s are constructed as follows, for k = 1, 2, . . .:

2. αk = 	r†k ·	rk
	p†k ·A 	pk .

3. 	xk+1 = 	xk + αk 	pk .
4. 	rk+1 = 	rk − αk A 	pk .
5. βk = 	r†k+1·	rk+1

	r†k ·	rk .

6. 	pk+1 = 	rk+1 + βk 	pk .
� �

By combining step 3 and step 4, we get 	rk+1 + A	xk+1 = 	rk + A	xk . This relation
holds for any k, so together with step 1 we obtain 	rk = 	b − A	xk . Therefore, 	rk
represents the deviation from the exact solution that is called the residual vector. A
good approximate solution is obtained by terminating the calculation when 	rk gets
sufficiently small.

1 The matrix A appearing in the Gaussian distribution satisfies this condition.
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Why does 	xk converge to the solution of A	x = 	b? Equivalently, why does the
residual vector 	rk converge to zero? To answer this question, we rewrite the problem
a little bit. Because A is a positive-definite Hermitian matrix, 	v†A−1	v ≥ 0 holds for
any vector 	v and the equality holds only when 	v = 0. Therefore, the exact solution
is obtained if 	r†k A−1	rk converges to zero. So we should minimize 	r†k A−1	rk , which is
equivalent to minimizing

	x†A	x − 	b†	x − 	x† 	b. (E.2)

Because the derivative of this quantity with respect to 	x† is A	x − 	b, the gradient
vector at 	x = 	xk is A	xk − 	b = −	rk .2 Therefore, if we construct the sequence as
	xk → 	xk + ε	rk , it is the same as the gradient descent method. However, as we can
see from the step 3 and step 6, in the CG method xk is updated by using pk rather
than 	rk .

Let us assume that 	p†i A 	p j = 0 holds when i �= j . (We will show that it is actually
the case.) Such 	pi ’s are linearly independent and the solution can be written as

	x ≡ 	x1 +
D∑

i=1

αi 	pi , (E.3)

where D is the number of variables. If we truncate the sum as

	xk ≡ 	x1 +
k∑

i=1

αi 	pi , (E.4)

then the sequence 	x1 → 	x2 → · · · 	xk → · · · → 	xD converges to the solution. Note
that 	xD is the exact solution. We show that the procedures explained above actually
lead to such a convergent series.

The first step of the proof is to show that 	r†i 	r j = 0 and 	p†i A 	p j = 0 hold for i �= j .
We show these relations via the mathematical induction. That is, we show that, if
these relations hold for i, j ≤ k, then they hold also for i, j ≤ k + 1. For i ≤ k, we
have

	r†i 	rk+1 = 	r†i (	rk − αk A 	pk)
= 	r†i 	rk − αk	r†i A 	pk
= 	r†i 	rk − αk

(
	p†i − βi−1 	p†i−1

)
A 	pk

= 	r†i 	rk − αk 	p†i A 	pk . (E.5)

2 Because the gradient can be zero only at the exact solution, there is no problem of a wrong local
minimum.
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This is zero for i < k by assumption for the induction, and zero for i = k as well
due to the definition of αk . In the same way, we can easily show

	p†i A 	pk+1 = 	p†i A (	rk+1 + βk 	pk)
= 	p†i A	rk+1 + βk 	p†i A 	pk
= 1

αi

(
	r†i − 	r†i+1

)
	rk+1 + βk 	p†i A 	pk

= −	r†i+1	rk+1

αi
+ βk 	p†i A 	pk, (E.6)

which is zero for i < k by assumption, and zero for i = k aswell due to the definitions
of αk and βk . Hence, we could justify the expansion (E.3).

Next, we show that the expansion (E.3), with our specific choice of αi , converges
to the solution we want. From the step 4, αk A 	pk = 	rk − 	rk+1 holds, from which
we can immediately get

∑D
k=1 αk A 	pk = 	r1. By combining it with the step 1, we

obtain
∑D

k=1 αk A 	pk = 	b − A	x1. This is equivalent to A
(
	x1 + ∑D

k=1 αk 	pk
)

= 	b,
and hence, 	x = 	x1 + ∑D

k=1 αk 	pk is indeed the solution. For practical purpose, we
terminate the calculation when the residual vector became sufficiently small.

In the CG method, the coefficient of 	pk is completely determined at each stage;
once it is fixed, it does not change later. This means that, when 	xk+1 is obtained,
the remaining directions to be studied are reduced to the D − k-dimensional space
spanned by 	pk+1, 	pk+2, . . . , 	pD . The solution can be obtained efficiently due to this
property.

The most costly part of the CG method is the multiplications of A to the vectors.
If A is sparse (i.e., if many components of A are zero), the computational cost can
be reduced by skipping the multiplication of zero. Furthermore, the parallelization
is not too difficult.

E.1 BiCG Method

The CG method provides us with an efficient way to solve A	x = 	b when A is a
sparse, positive-definite Hermitian matrix. To solve M 	x = 	b for a generic sparse
matrix M , it is convenient to use the biconjugate gradient method (biCG method).3

3 Because A = MM† is positive-definite and Hermitian, it is also possible to solve (MM†)	y = 	b
via the CGmethod and get 	y = (MM†)−1 	b = (M†)−1M−1 	b, and then multiply M† to get M† 	y =
M−1 	b = 	x .
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1. Choose a candidate of the solution 	x1. This 	x1 can be arbitrary. From this,
we define 	r1, 	̄r1, 	p1 and 	̄p1 as 	r1 = 	̄r1 = 	p1 = 	̄p1 = 	b − M 	x1.
Then, 	xk’s are constructed as follows:

2. αk = 	̄rTk ·	rk
	̄pTk ·M 	pk

.

3. 	xk+1 = 	xk + αk 	pk .
4. 	rk+1 = 	rk − αkM 	pk ,	̄rk+1 = 	̄rk − αkMT 	̄pk .
5. βk = 	̄rTk+1·	rk+1

	̄rTk ·	rk
.

6. 	pk+1 = 	rk+1 + βk 	pk ,	̄pk+1 = 	̄rk+1 + βk 	̄pk .
� �

Note that the transpose T is used instead of the Hermitian conjugate †. The
residual vector is 	rk = 	b − M 	xk , and the calculation is terminated when it becomes
sufficiently small.

The validity of this method can be checked as in the case of the CG method. Via

the induction, we can show that 	̄rTi 	r j and 	̄pTi M 	p j are zero for i �= j . From the latter,
we can show that 	pi ’s are linearly independent and that the solution 	x can be written
as a linear combination of 	pi . Finally, the coefficients are αi that can be checked as
before.

E.2 Multi-mass CG Method

We introduce the “multi-mass” CGmethod [2], which is a crucial piece of the RHMC
algorithm. For positive definite and Hermitian matrix A and a real number σ > 0,
we define Aσ as

Aσ = A + σ · 1. (E.7)

Via the multi-mass CG method,

Aσ 	x = 	b (E.8)

can be solved simultaneously for many different values of σ, with almost no extra
cost. This σ is analogous to the mass in physics problems. Because many equations
are solved simultaneously for multiple values of mass, the adjective “multi-mass” is
used.
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The key idea in the multi-mass CG method is that, from the recurrence relations

	rk+1 = 	rk − αk A 	pk,
	pk+1 = 	rk+1 + βk 	pk (E.9)

that appear in the usual CG method, the recurrence relations for Aσ , namely

	rσ
k+1 = 	rσ

k − ασ
k Aσ 	pσ

k ,

	pσ
k+1 = 	rσ

k+1 + βσ
k 	pσ

k , (E.10)

can be obtained. Here, the coefficient with σ is defined as4

	rσ
k = ζσ

k 	rk,
ασ
k = αk · ζσ

k+1

ζσ
k

,

βσ
k = βk ·

(
ζσ
k+1

ζσ
k

)2

,

ζσ
k+1 = ζσ

k ζσ
k−1αk−1

αk−1ζ
σ
k−1(1 + αkσ) + αkβk−1(ζ

σ
k−1 − ζσ

k )
. (E.12)

Furthermore, we need to choose the initial condition as

	x1 = 	xσ
1 = 	p0 = 	pσ

0 = 	0,
	r1 = 	rσ

1 = 	r0 = 	rσ
0 = 	p1 = 	pσ

1 = 	b,
ζσ
0 = ζσ

1 = α0 = ασ
0 = β0 = βσ

0 = 1. (E.13)

Note that (E.12) does not necessarily hold if a different initial condition is used.
In summary, we modify the usual CG method as follows:

4 From (E.9),

	rk+1 =
(

1 + αkβk−1

αk−1

)

	rk − αk A	rk − αkβk−1

αk−1
	rk−1 (E.11)

follows. A similar relation can be obtained from (E.10). By comparing the coefficients in these
relations, we obtain (E.12).
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Multi-mass CG method� �

1. Choose the initial condition following (E.13).
Then 	xk’s are constructed as follows:

2. αk = 	r†k ·	rk
	p†k ·A 	pk .

3. Calculate ζσ
k+1 and ασ

k by using (E.12).
4. 	xσ

k+1 = 	xσ
k + ασ

k 	pσ
k .

5. 	rk+1 = 	rk − αk A 	pk .
6. βk = 	r†k+1·	rk+1

	r†k ·	rk .

7. Calculate βσ
k by using (E.12).

8. 	pk+1 = 	rk+1 + βk 	pk ,
	pσ
k+1 = 	rσ

k+1 + βσ
k 	pσ

k .
� �

	xσ
k obtained this way is the approximate solution with the residual vector 	rσ

k :

	rσ
k = 	b − Aσ 	xσ

k . (E.14)
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