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Abstract The use of microbial fuel cells (MFCs) has gained a lot of attention as 
a means to combat both energy shortages and water pollution. Despite their best 
efforts, MFCs are unable to produce substantial amounts of energy or effectively 
remove pollutants due to a number of difficulties, one of which being the electrode. 
One of the most significant components of an MFC is the electrode. Different types 
of electrode materials have recently been developed to boost pollutant removal rates 
and energy production efficiency. Carbon-based materials have been used as the most 
often used electrode material in MFCs. A wide range of potentials is now accessible 
for use in the manufacturing of electrode materials, which can significantly reduce 
current issues such as the demand for high-quality materials and their cost. In the 
present chapter, the conventional electrode material is briefly discussed with their 
influence and role in MFC operation and performance. A brief discussion of the 
current issues and future views of electrode materials is also included. 
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1 Introduction 

An eco-friendly and green environment is one of the necessities for human beings 
to live a healthy life, but due to discharge of industrial effluents containing irorganic 
and organic pollutants into water bodies, results in water contamination which has 
adverse effects on human beings and other aquatic life [1–3]. These crises are well 
countered by the microbial fuel cell approach due to its unique properties of achieving 
energy and wastewater treatments [4]. The microbial fuel cells (MFCs) approach is 
an innovative step in research to convert toxic chemicals into non-toxic chemicals and 
convert chemical outputs to electrical outputs in the form of energies by using various 
catalysts (e.g., bacteria) present in wastewater [5, 6]. There have been significant 
advancements in wastewater remediations and power outputs. MFCs have yet to 
be commercialized due to their low energy generation and removal efficiency. Low 
energy consumption or removal efficiency can be caused by a variety of factors, 
including the utilization of low-graded materials as working electrodes or material 
cost issues. Because it offers the essential surface area for bacterial proliferation, 
the working electrode seems to be the most critical section of MFCs. These bacteria 
produce electrons and protons and transferred it to the anode. Fabrication of anode 
materials for MFCs functioning, on the other hand, remains difficult. Recently, there 
has been a surge of interest in electrode configurations, materials, and design that 
results in steadily increased performance of MFCs [7]. Electrode grading materials 
should have a few general features to face high-performance criteria, including high 
conductivity, comparable biocompatibility, stable thermal temperature, chemical and 
electrical stability, mechanical strength, and an expanded surface region. MFCs use 
a variety of electrode graded materials, however, these graded materials have several 
limitations that are unsuitable for industrial usage [2, 8]. According to a prior study, 
electrode modification has emerged as a novel point in the field of MFCs for achieving 
an expansion of surface regions, bacterial adherence, and have the ability of electron 
transference 

In MFCs, the electrode is known as the cathode and anode in which anode plays 
a vital role to transfer bacteria toward cathode to generate electricity. The materials 
used in the fabrication of anodes have some limitations and till now, not applied at 
large scale. In literature, El Mekawy [9] et al. mention that anode is the crucial part 
of MFCs fabrication approaches. As in our knowledge that many researchers started 
their study on graphene derivatives as modifiers or enhancers to provide a good 
performance of MFCs on electrode surfaces either as anode or cathode. From one 
of the previous reports [9], the authors come to the conclusion that graphene deriva-
tives based or carbon-based materials electrodes as cathode or anode are shown as 
superior and emerging materials for electrodes in MFCs. These materials provide a 
new dimensions to the researchers working in same area due to cost-effective and 
efficient materials [10]. Nowadays, the most usable graphene derivative, graphene 
oxide, is easily fabricated through industrial and domestic waste materials. More-
over, the issue of corrosion or the influence of toxic bacteria on MFCs is resolved by
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using polymer layers or metal oxide layers with graphene derivatives. The modifica-
tions of polymers and metallic composites not only resolved the corrosion issues, but 
also increase the working performance and efficiency of the electrode in MFCs [11, 
12]. It increased the conductivity, biocompatibility, and stability between bacteria 
and electrodes either as anode or cathode. That’s why it is an up-to-date approach 
to modify electrodes with graphene or carbon-based derivatives to achieve better 
performance. In this chapter, we reviewed the different types of electrode materials 
with their unique properties of surface modifications, sizes, designs, electricity gener-
ation, and inoculation sources. To discuss the significance of biomass wastes as an 
emerging materials, many ideas and sources based on electrode fabrications have 
been summarized in this chapter. Furthermore, the effects of electrodes on wastew-
ater remediation and energy processing are discussed, together with new difficulties 
and prospects. 

2 Essential Properties of Electrode Materials 

It is foremost and essential step in MFCs to investigate the unique properties of 
electrode materials in terms of achieving steady electron mobility, electrochemical 
efficiency, and bacterial adhesions between system and electrode materials [13]. 
Some of the unique properties which helps us in this matter is mentioned in this 
chapter to understand the reproducibility of working of MFCs. 

2.1 Conductivity of Material 

It is an important aspect of electrode because the electrons due to bacterial adhesions 
travel from negative terminal to positive terminal via the channel of outer circuit. 
As in literature, the electrode material is in charge of allowing electrons to flow and 
enhance their speed [14, 15]. The more highly conductive materials are more helpful 
in resisting the bulk solutions resistance and increasing the electron transfer rate [16]. 
To improve electron transfer, lower the interfacial impedance between substrate and 
electrode as mentioned in the literature [17, 18]. Before constructing the electrodes 
for MFCs, the electrical conductivity of materials is typically investigated. 

2.2 Physiological Properties 

The surface regions of the electrode severely affects energy generation in MFCs [19– 
21]. Because resistivity of electrodes depends on ohmic losses in a MFCs, increasing
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its surface area is the given suggestions in reports to minimize resistance power. More 
active sites are gained with an expanded surface regions for bacterial colonization 
and improves the efficiency of the electrode kinetics. Microorganisms, for example, 
Geobacter species, E. coli, Pseudomonas species, and others were immobilized effi-
ciently on the active regions of electrodes, allowing for suitable electron transfer 
[20]. Because biological responses occur on the active regions of the electrodes, the 
surface regions has a significant impact on MFC performance [22]. 

2.3 Material Biocompatibility 

The anode electrode’s biocompatibility is critical in MFC operations since it comes 
into direct contact with microscopic organisms and their respiration cycles. Many 
materials utilized as electrodes in MFCs, such as silver, gold, and copper, are not 
considered biocompatible due to their corrosive nature [23–25]. The poisonous 
nature of such compounds can prevent bacterial development during MFC operation, 
resulting in lower energy generation. 

2.4 Stability and Durability 

In case of any research-based system, the stability and durability are one of the most 
significant points for your research. Various environmental factors affect the stability 
and durability of electrode. The decomposition, corrosion, and swelling are caused 
due to interaction of electrode with environment that affects its stability and duration 
of working performance [23, 26, 27]. Thus, the use of more preferable material as 
an electrode makes your system more durable and stable for good performance. 

2.5 Cost and Access of Material 

The cost and access of material is a key factor to approach your work without stress 
and also opens the feasible ways for other researchers. And moreover, the cost of 
electrode also has chance to provide MFCs system with easy and cheap approach 
as compared to expensive and heavy approaches. In present time, carbon derived 
graphene based composites have been widely used due to easily available and low 
cost. The expensive metal composites such as gold, silver, platinum are also replaced 
with inexpensive bimetal composites such as ZnO, Fe2O3, etc. [28, 29].
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3 Electrode Materials 

Removal efficiency of pollutants and energy production have been optimized to inves-
tigate the effectiveness of electrode materials. The electrode materials, as mentioned 
above, has some of the basic properties such as high stability and conductivity, more 
compatible than other materials. For this purpose, we investigated some electrode 
materials in two categories as electrode material as anode and electrode material as 
cathode. 

3.1 Electrode Materials as Anode 

From previous studies, it becomes clear that there are various types of materials used 
to fabricate anode of MFCs in terms of large surface area to increase the extracellular 
efficiency of electron transfer via biofilm. Moreover, the anode materials have more 
significancy because it is useful for metabolic rates in oxidizing organic wastes by 
anaerobic microorganisms [30–32]. It is notable that the kinds and concentration 
of bacteria have great effect on power density of MFCs, but now, it is also proven 
that the anode materials have also significant feature for MFCs to work better. Thus, 
fabrication of the anode materials through various chemical modifications, must be 
taken an account in the future to enhance the capacity of anode. Some of the generally 
used sources are composite materials, allotropes of carbon, conducting polymers, or 
metal or metal oxides, which seem to have significant value to be worth materials 
for anode fabrication. 

3.2 Carbon-Graded Materials 

Nowadays, carbon-derived materials are gaining more attention due to their unique 
properties such as low cost, chemical and mechanical stability, high electron transfer 
kinetics, biocompatibility, and highly conductive in nature. By studying the recent 
literature, it is well known that different types of carbon-graded materials like 
graphite, carbon nanotubes, fullerenes, carbon nanorods, carbon cloth paper, carbon 
fiber, reticulated vitreous carbon, glassy carbon, and carbon quantum dots have been 
investigated. The latest carbon-based materials which are now an emerging class of 
carbon allotropes are graphene and its derivatives. 

Carbon paper, brushes, rods, felt, fabric, meshes, and other carbon-graded mate-
rials are normally utilized materials in MFCs. A carbon mesh is somewhat more 
affordable than other carbon structures, as indicated by Wang et al. [33] and it 
likewise has a higher current thickness. On the other hand, modification of carbon 
meshes with alkali or gas give good results. Therefore, no untreated material presently
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conveys a more powerful thickness. Borsje et al. [34] investigated the functioning 
of single carbon granules as capacitive bioanodes. Charge stockpiling execution and 
current creation via solitary carbon granule was utilized to decide the outcomes. The 
bioanode stored the charge in the form of two-fold sandwich. To assess the undis-
covered capability of granular bioanodes, scientists utilized granular and initiated 
graphite carbon granules. In contrast with Ag/AgCl anodes, single enacted carbon-
graded granules create 0.6 mA at 300 mV. Capacitive granules produce 1.3 times extra 
electricity as compared to graphite granules at the lower surface regions [35–37]. Li 
et al. [38] investigated granule-activated carbon, which delivered twice more energy 
than the customary carbon materials. According to the findings, granule-actuated 
carbon could be a viable alternative for anode preparation. Carbon cloth/sheets are 
flexible and allow bacteria to grow on their surface. It is, however, much more expen-
sive at larger scales [39]. Actuated carbon cloth has an expanded surface region and 
suitable adsorption capacity for the expulsion of sulphide in electrochemical oxida-
tion at the anode. Wang et al. [40] arranged carbon cloth that provides an increment 
of the current effectiveness of 2777.7 mW/m2. Doped with nitrogen gas, the carbon 
cloth produced high power production, and it could be valuable for future researches. 
Likewise, graphite is one of the regular forms utilized for an electrode in MFCs. 
Graphite is known as a crystalline allotrope of carbon with Sp2 hybridization. MFCs 
use graphite as an anode because of its good conductivity and long-term stability. 
For the production of electrodes, different forms of graphite are effectively used [41– 
43]. Ter-Heijne et al. [44] observed the raw form of carbon for the electrode in MFC 
rather than flat forms, which showed higher current density. But they have a low 
surface region and high cost which makes this material inadequate for commercial 
use in the production of energy. The graphite brush as the best model for electrodes 
with the best performance to be used as anodes in MRCs for improved energy gener-
ation and toxic pollution removal was reported by Lowy et al. [45]. Yazdi et al. 
[46] later reported that the rate of bacterial colonization on the electrode’s surface is 
proportional to the anode’s surface area. In another study, Zhang et al. [47] found a 
category of graphite brushes within the range of sizes. Little brushes can deliver more 
energy output than bigger ones. 1771 mW/m2 small value of power density is also 
reported in the Cassava mill by graphitic brushes in wastewater remediation [48, 49]. 
Bacteria feed on organic material and flourish in environments with lots of carbon 
because of its increased particular surface area [50]. Yasri et al. [51] created an effi-
cient anode material by doping graphite with calcium sulphide to promote bacterial 
interaction with the active regions of electrodes. In the modern period, graphene, a 
newly developing carbon allotrope (found in a 2D hexagonal lattice), has earned a lot 
of interest. With its emerging features of outstanding conductivity and mechanical 
and thermal strength, graphene is an ideal material for electrode construction. When 
compared to graphite materials, graphene possesses a nonlinear and better diamag-
netism. Graphene and its derivatives, on the other hand, are still being studied as 
anodes in MFCs [52]. Graphene has been synthesized using a variety of processes. 
Commercially available graphene is expensive, whereas graphene made from waste 
materials is less expensive [53–56] Due to its more energy generation relative to 
other typical carbons, graphene as an anodic material enables high scale functioning
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for MFCs. Graphene-based electrodes have better electrode efficiency as anodes than 
conventional carbon-based electrodes [57]. During MFC operations, graphene has 
non-toxic impacts on bacterial growth. As a result, by modifying or combining it 
with conductive polymers and metals, drawbacks of other materials, like copper, can 
be reduced [58, 59]. Modified carbon allotropes have the potential to revolutionize 
wastewater treatment and energy. 

3.3 Natural Biomass Source as Anode 

The properties of the electrode materials vary significantly in terms of physical, 
chemical, and biological nature. The electrodes require electrical, and specifically 
microbial, compatibility with specific bacteria strains to affect the movement of 
electrons, just as surface opposition of electrodes [60]. Nonetheless, electrode mate-
rials, fabrication, and processing have been recently becoming a popular and up-
and-coming research area. MFCs use waste materials for construction. Changing 
waste materials into worthy and valuable materials is time-consuming and somehow 
effective in contrast with commercial materials in a few features [61]. Cheng et al. 
[62] researched a waste-inferred decreased graphene (rGO) composite for anodes to 
accomplish more powerful outcomes as far as energy age and wastewater treatment 
by means of MFCs. Utilizing dried eucalyptus leaves as waste material, the rGO was 
prepared successfully. Later, rGO/gold nanoparticle nanocomposites were fabricated 
by layering for the manufacturing of biocompatible anodes. The electrode prepared 
in this study has a higher surface roughness, which facilitates bacterial colonization. 
Gold nanoparticles are considered as a highly electroactive agent which tranfer the 
electrons and produces electricity at negative terminal. Singh et al. [63] prepared 
an effective electrode for MFCs using carbon nanoparticles derived from candle 
soot. The candle sediment was disseminated on the outer layer of a hardened steel 
circle, which permitted the carbon nanoparticles to be utilized as cathodes straight-
forwardly. The consequences of the electrical, physical, and compound portrayal 
of an anode’s mechanical, chemical and electrical strength are just as progressively 
permeable qualities. The production of carbon nanoparticle electrodes from candle 
soot is reusable, budget-friendly, robust, and dependable. Bose et al. [64] have also  
used biomass to manufacture a bioenergy active carbon cathode via MFCs. This 
was one of a kind method of generating electricity and treating water that had no 
negative environmental consequences. Platinum is commonly utilized as an impetus 
for oxygen decrease at the terminal of the cathode. In terms of reliability, function-
ality, and prices, the authors examined the effectiveness of actuated carbon derived 
from sugar cane waste. At different temperatures for 60 min, this useless material 
followed the carbonization process. Electrodes derived from various biomass sources 
are considered as an alternative for the treatment of pollutants from wastewater with 
electricity generation simultaneously. As we know that in MFCs, there have been
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only a small number of publications on the source of biomass anodes. That’s why the 
concept of reusability of biomass is a viable substitute for enhancing MFC’s working 
efficiency with no high costs. Graphene and its derivatives can easily be produced by 
numerous methods like chemical vapor deposition, arc detection, epitaxial growth, 
scotch tape, electrochemical synthesis, reduction of GO/rGO, exfoliation, confined 
self-assembly, and Hummer’s method. Its favorable points over other methods made 
it the most important and promising method. This is an eco-friendly method, for 
example, without producing harmful gases during processing, with a structured 
product, and with a larger output supplied. Hung et al. recently used [65] a coffee-
based renewable waste anode in MFCs to expand the power thickness. The authors 
have transformed waste material into precious carbonized materials and have used it 
to lessen squander from the environment as an anodic material in MFC. The energy 
density achieved was 3800 mW/m2, much higher than traditional techniques. In our 
vicinity, various types of waste materials cause serious dangers. Therefore, the use of 
biomass waste materials as valuable materials is a positive approach. In Hummer’s 
process, however, various useless materials are carbonized to obtain fine carbonated 
powder materials affected by argon gas at 1050 °C. The graphic powder is treated to 
obtain graphene oxide with the oxidizing agent KMnO4/H2O2. Fabricated graphene 
oxide can also be used to manufacture the graphene oxide material in anode-shaped 
electrodes with polymer binders like nafion, polyethyleneimine, and polylactic acid 
[66]. The graphene oxide synthesized can be utilized as positive or negative terminal 
material, however, its use as the anode is preferable, as previously stated. This type 
of modification may enhance the materials efficiency and reduces the expenses. The 
use of composites synthesized for low-cost use with metal oxides such as CuO/GO, 
ZnO/GO, etc., is an optimal way to deal with various difficulties. Table 1 summarizes 
the electrodes produced in recent years using natural biomass resources. 

3.4 Metal/metal Oxide-Sourced Materials 

Different materials were utilized to fabricate metal/metal oxides based anode– 
cathode, but consumption restricts the utilization of metal-sourced terminals, espe-
cially for MFC anodes. Metals are commonly penetrable than carbon-graded mate-
rials because of their capacity to work with proficient electron stream [76]. While 
each metal has exceptional properties, not all metals are reasonable for cathode 
creation because of the noncorrosive necessities of the interaction. Also, certain 
metals repress bacterial bonds. For instance, in contrast with other carbon-graded 
materials, for example, graphite and graphene, non-destructive tempered steel mate-
rials don’t have a powerful thickness. Overall, the smooth surfaces of metals are not 
helpful for bacterial grip. Predefined non-destructive materials, like tempered steel, 
can’t accomplish higher energy thickness than materials dependent on carbon. At the
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Table 1 List of electrodes synthesized using natural waste resource for MFCs 

Electrode 
materials 

Inoculum 
sources 

Surface area 
of electrodes 
(cm2) 

Power density 
(mW/m2) 

Size of 
electrodes 
(cm2) 

References 

Loofah 
sponge/PANI 

Mix sludge 10.99 2590 0.5 × 3.0 Tang et al. [67] 

Barbed chestnut 
shell 

Mix sludge 91 759 2.7 × 2.7 Chen et al. [68] 

Coconut shell/ 
sewage sludge 

Mix sludge 10.99 1069 0.5 × 3.0 Yuan et al. [69] 

Onion peels Mix sludge 7 742 1.0 × 2.0 
× 0.5 

Li et al. [70] 

Silk cocoon Mix sludge 7 5 – Li et al. [71] 

Coffee wastes Domestic 
waste 

1 3927 – Hung et al. [65] 

Loofah sponge Anaerobic 
sludge 

10.99 701 0.5 × 3.0 Tang et al. [72] 

Compressed 
milling residue 

Anaerobic 
mix sludge 

10.99 532 0.5 × 3.0 Huggins et al. 
[73] 

Bamboo 
charcoal 

Anaerobic 
mix sludge 

59.21 1652 2.4 × 1.57 Zhang et al. 
[74] 

Kenaf Domestic 
sewage 

2.5 – 0.23 × 1.52 Chen et al. [75] 

Chestnut shells Anaerobic 
mix sludge 

125.65 850 0.3 × 66.4 Cheng et al. 
[62]

anode chamber, stainless steel had a power density of 23 mW/m2 [77]. An anode-
based stainless-steel grid increased the relative current density of a single electrode of 
graphite [78, 79]. Silver, platinum, gold, and titanium are ideal anode metals. While 
noble metal-based anode electrodes contribute to the reduction of interior obstruc-
tion in MFCs, their significant expense and poor bacterial grip block their far and 
widespread use in MFC operation [24, 80]. Platinum and titanium are commonly 
suitable as catalysts to enhance electrode performance [81]. Moreover, commercial-
ization of some of pure metal-based anodes in MFCs have some limitation due to 
their high expense. The reactivity of metallic nanoparticles and transition metals is 
comparable to precious metals, altogether decreasing obstruction and working on 
microscopic organisms’ connection to surfaces. Additionally, nanometallic particles 
offer an excellent opportunity to diminish the impact of harmfulness on bacterial 
cells [82]. These issues are mitigated by coating metal/metal oxide nanoparticles 
(Ag, ZnO, etc.) with comparable materials such as carbon-graded or polymers. 
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3.5 Polymer Composite Material 

Various conductive polymers, namely polypyyrole, polyindoles, polythiophene, 
polycarbazoles, polyaniline, polyadenines, etc., were used in terms of highly conduc-
tive materials at anode surfaces on the basis of their efficient conductive proper-
ties [83–85]. The combination of carbon-based materials and conductive polymers 
produce very efficient and good results. As shown in previous reports, the polyaniline-
modified carbon cloth produced more power production than unmodified carbon cloth 
[86]. In another report, one of the most important conductive polymers, polypyy-
role with the layer of carbon paper, showed a 452 mW/m2 power output [87]. 
To our knowledge, Polypyyrole can enter bacterial cell membranes and transport 
electrons via metabolic pathway easily [88]. Thus, polymer composites combined 
with different materials, similar to carbon-graded materials and metals, significantly 
further develop anode productivity. For example, Dumitru et al. [89] investigated 
two polymers such as polypyyrole and polyaniline with CNTs as a nanocomposite 
anode. Due to their synergistic effect, CNTs and conducting polymer nanocompos-
ites perform justifiably well enough in electrochemical applications [90]. The use 
of conductive polymers (especially polyaniline and polycarbazole) with metal oxide 
composites could significantly improve MFC performance [91–93] But despite more 
researches, there is little exertion that has been made to plan polymeric composite-
based MFC electrodes. Figure 1 depicts common electrodes such as conductive 
polymer, metal, and carbon electrodes. 

Fig. 1 List of commonly used electrodes: a carbon paper, b carbon cloth, c carbon fiber, d retic-
ulated vitrified carbon, e carbon mesh, f graphitic granular, g carbon brushes, h graphite rod, i 
polycrystalline graphite, j carbon felt, k platinum mesh, l different metal electrode strips, and m 
conductive polymer-based strips. Adapted from reference [25] with MDPI permission
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4 Electrode Materials as Cathode 

Despite the anode (negative terminal), the cathode (positive terminal) material has 
also a significant place in the functioning of MFCs. Nowadays, the most widespread 
material for the cathode is carbon-based, but their features like size, model, and 
efficiency for cathode materials are challenging as compared to anode material [94– 
97]. The mostly reported anode materials are also used as cathode material. Due 
to deprived catalyst activity, reactions to reduce substrate commonly occur in the 
cathode section, reducing MFC performance [98–101]. The cathode terminals can be 
derived as with catalyst or without catalyst. The main distinction between these setups 
is the spark. Platinum and titanium are the most commonly used catalysts. A terminal 
named air cathode is directly influenced by oxygen [102]. The setup has drawn atten-
tion for its lack of aeration, functional simplicity, and appropriate electrode design. 
An air cathode can significantly expand the energy effectiveness through MFCs 
[103, 104]. Aqueous air cathodes use conductive materials like platinum meshes 
and carbon felt, cloth, and fiber to form electrodes. The catalyst is sandwiched with 
aqueous regions in low oxygen contact [105]. As an air cathode, carbon-derived forms 
are the most ideal conductive material. Catalysts (platinum, copper, etc.) are fixed to 
electrodes using binders [106, 107]. Poly(tetrafluoroethylene) and perfluorosulfonic 
acid are popular binders (nafion). Zhang et al. [108] compared the performance of 
articulated carbon and its derivatives as cathode utilizing poly(tetrafluoroethylene) 
for binding. In the presence of Pt as a catalyst, articulated carbon outperforms carbon 
cloth (1220 mW/m2) in terms of power density. So articulated carbon seems to be 
a good cathode material substitute for the fabrication of a positive terminal. Zhao 
et al. [109] employed catalyst Pt combined carbon derived as a motivating factor. 
According to the latest findings, this catalyst has a power efficiency of 1.2 W/m3. Cu  
is a preferable catalyst to Pt at lower temperatures due to its sustainable power. Under 
normal conditions, Pt is considered better and more generally known catalyst than 
other metals [110]. As a result, the materials utilized in the fabrication of positive and 
negative terminals (cathode/anode) can be performed as oxygen reduction catalysts. 
Due to their low overpotential, gold and platinum are considered potential catalysts, 
but their expensive cost makes them unsuitable [76, 111, 112]. Transition metals 
are cosidered as a alternative materials to fabricate potential electrode due to high 
stability, affordable and avoid any disruption in the microbial fuel system. Composite 
materials, known as molybdenum and carbide, perform well, but stainless steel and 
nickel alloys outperform them all [113]. Nanocomposites, on the other hand, are less 
expensive and provide a significant chance to boost MFC efficiency (for example, 
Ni and palladium nanoparticles/nanomaterials) [114]. In comparison to conventional 
materials, nanomaterials have an expanded surface region, superior electrochemical 
functioning, and stronger thermal and mechanical durability [115]. To improve the 
oxygen reduction reaction, a recent trend involves modifying the electrode using 
additional materials. According to the literature, fresh materials must be studied in 
order to improve the feasibility of electrodes, particularly anodes. Utilization of high-
graded materials for anodes, for example, graphene and its derivatives with metal
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oxides, could usher in a major shift in the MFC area. The preferable composites are 
GO/Ag, GO/Fe2O3, GO/ZnO, GO/chitosan, and GO/TiO2, all of which have a signif-
icant influence on power outputs. In addition, Table 2 lists the many types of classic 
carbon-graded materials, composite-based, metal/metal oxides, and Carbon-based 
+ Polymer composite that can be utilized as electrodes (anodes and cathodes). 

5 Influence of Electrodes (Cathode/Anode/) in MFCs 

In the presence of a biocatalyst, the electrode (anode/cathode) is a critical compo-
nent due to its unique feature of assisting in the remediation of hazardous agents 
and generation of energy during MFC operations. During the respiration process 
of bacteria, the bacteria are cooperated with the electrode region to create protons 
and electrons. As seen in Fig. 2, the electrode provides enough surface region for 
bacteria to proliferate and oxidize. The performance of the anode as compared to the 
cathode provides MFCs with high electric production, wastewater bioremediation, 
and compactable economic features. 

6 Influence of Electrode (Anode/Cathode) on Removal 
of Pollutants 

MFCs are thought to be a particularly efficient prospective use for wastewater biore-
mediation. Many traditional wastewater treatment technologies have been described, 
but they all have significant limitations such as high prices, being difficult to run, 
the possibility of self-toxicity, and being unstable in terms of ecosystem safety 
[51]. Fossil fuel industrial wastewater, scum wastewater, aquaculture wastewater, 
cassava mill wastewater, food processing waste, dairy wastewater, crop residues, and 
surgical cotton waste, are all examples of wastewater that could benefit from the MFC 
approach [151]. Organic agents are oxidized to generate electrons and protons in the 
chamber of the anode via exoelectrogens, thereby destroying the hazardous organic 
pollutants in water [152, 153]. Protons were transmitted directly to the cathode or 
via membrane sources, while electrons were transported via the outer circuit. The 
electrodes’ functioning efficiency is crucial to this procedure. The electrodes offer 
bacteria a surface area for respiration and growth, making it easier for electrons and 
protons to be transferred to the negative chamber through bacteria and ultimately to 
the positive chamber. 

Zhang et al. [154] investigated the suppression of two elements with the imple-
mentation of electricity utilizing vanadium-sourced water with waste as an electron 
acceptor in dual terminal microbial fuel cells. V(V) and Cr (VI) are primary metals 
found in vanadium-sourced effluent, both of which are highly hazardous and abun-
dant. Qiu et al. [155] reported vanadium based biocathode and got 60% fatality rate
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Fig. 2 Functioning of the electrode in MFCs. Adapted from reference [25] with MDPI permission

through MFC in presence of Dysgonomonas and Klebsiella. The power density of 
MFCs after seven days of operation with a 200 mg/L starting concentration of anaer-
obic sludge was 529 12 mW/m2. Jiang et al. [156] looked at wastewater from the 
oil sands process to see if MFCs could create electricity while also treating oil sand 
tailings. The MFCs cleaned various heavy metals from wastewater derived from the 
oil sands process with constant energy production and with good outputs of effi-
ciencies percentages. The removal efficiency was somehow low due to the usage of 
carbon derivatives as cathode and anode. For a variety of reasons, the carbon fiber 
felt outperformed the carbon cloth, but graded anode and surface region available to 
bacteria were essential. Habibul et al. [157] utilized a graphite manufactured anode 
to research electro kinetic biosorption of heavy metals from disturbed soils, in order 
to improve the anode’s quality. However, research into the breakdown of particu-
larly harmful metals such as cadmium, lead, and mercury is scarce. Bacteria require 
high-quality anode materials to digest harmful elements from the water supply. Simi-
larly, the researchers utilized various MFC used anodic chamber agents to decolorize 
the organic dyes that were damaging the ecosystem. Fang et al. [158] investigated 
the potential of MFCs which are made of activated carbon and a cathode built of 
stainless-steel mesh to process azo dye. The decolorization rate was high due to 
articulated carbon serving as an anode. To decolorize methyl orange from anaer-
obic sludge, Kawale et al. [159] utilized a graphitic rod as an anode to decolorize 
methyl orange from anaerobic sludge. Both decolorization and energy output were 
significantly influenced by the electrode. However, several researchers used MFCs 
with various anode materials to remove organic contaminants. Kabutey et al. [160] 
utilized a macrophyte cathode silt microbial power module to research the evacuation 
of natural impurities and energy age from metropolitan waterway dregs. Carbon fiber 
was utilized as both cathode and anode terminals in this investigation, with an expul-
sion proficiency of 28.2%. Microorganisms like Euryarchaeota and Proteobacteria
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were unable to separate phosphorus due to its acidic nature and inefficient ability of 
cathode used in this work. Marks et al. [161] investigated the functioning of MFCs in 
anoxic surroundings and found that they could remove 22% of nitrate from anaerobic 
sludge. The cathode and anode electrodes in this experiment were graphite plates. 
According to an exhaustive literature study, the authors determined that different 
types of anode materials are utilized under different situations since MFC functioning 
is influenced by a variety of parameters. One of the most significant functions of an 
anode is to give bacteria sufficient surface area for respiration while also assisting 
them in carrying electrons from colonization of bacterium to the cathode via an 
outer circuit. As a result, it has been shown that employing a high-graded anode will 
yield superior outcomes with less environmental constraints. Many difficulties that 
cause disruption during processing, such as long-term stability, might be addressed 
using this high-quality material. To reduce metal corrosion, we may fabricate anode 
more efficiently with the help of conductive material and high surface regions mate-
rials like composite materials, graphene, and its derivatives, containing metal/metal 
oxides. As a result, in order to get better outcomes for remediation purposes, the 
anode should be unique and efficient.

7 Influence of Electrode (Anode/Cathode) on Energy 
Production 

MFCs as an innovative approach opened new avenues in the domain of ecosystem 
pollution and its safe elimination. MFCs generate energy from various organic waste 
materials using microorganisms as exoelectrogens [162, 163]. In Single chamber 
MFCs, 3D terminal materials and the improved anodes are utilized for the generation 
of energy. [128]. Many materials and operating parameters were regularly modified 
at the start, making it difficult to pinpoint the aspects that helped improve the present 
generation over traditional approaches. In view of the progression of this framework, 
more consideration is currently needed to produce a more prominent electrical yield 
[164, 165]. The electrode is straightforwardly connected to the creation of power. 
The production of energy rises as the electrode’s strength and conductivity improve. 
Wang et al. [96] additionally demonstrated proficiency of carbon felt as an anode 
within sight of platinum in form of impetus, but force creation was exceptionally low. 
Zhang et al. [154] utilized the incorporated adsorption method to separate chromium 
from anaerobic assimilation ooze and had the option to accomplish a current force of 
343 mV. Utilizing engineered arrangements, Liu et al. [166] explored MFC execution 
utilizing carbon fabric as both terminals within sight of Fe/Ni/actuated carbon as an 
impetus and delivered remarkable energy yield. To improve the material, Santoro 
et al. [131] utilized graphite brushes within sight of Pt impetus SMFCs to accomplish 
a high energy yield. In the wake of utilizing local wastewater as an inoculum source, 
a force thickness of 1280 mW/m2 was reached. The performance of the electrodes 
determines the amount of energy produced. Carbon felt, for example, has a lower
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surface area and conductive efficiency than graphite-based materials. As a result, 
graphite-based materials produce multiple times the results of carbon-derived items. 
Nguyen et al. [167] reported a novel method to develop a high quality anode’s 
material. Zhang et al. [168] recently published a paper describing the outstanding 
electrochemical presentation of MFCs with an allotropic form of carbon named 
graphene oxide for electrode enhancing performance. When contrasted with other 
carbon-based materials, graphene oxide further developed electron transport and 
created more energy. Therefore, graphene is preferable and encouraging material for 
the fabrication of electrode (anode/cathode) in MFCs. 

Natural assets, on the other hand, are used in current research for anode fabrication 
since they are practical and elite materials when contrasted with manufactured mate-
rials. Yang et al. [169] found that banana strips and underwater wetland dregs, which 
were utilized as an inoculum hotspot for MFC activity, straightforwardly created 
energy. Accordingly, utilizing regular materials as terminals (anodes/cathode) is a 
viable answer for tending to introduce difficulties and orchestrating excellent anode 
materials, like GO and derivatives modified with metal oxides. The attributes of the 
anode can be improved by joining GO composites with metal oxides. Anodes made 
of ZnO/GO, Fe2O3/GO, and CuO/GO are generally utilized in MFCs to acquire high 
power execution. From the last few decades, low-cost anode and cathode materials 
have been developed for the removal of toxic pollutants with energy generation in 
MFCs system (Table 3). 

8 Challenges and Future Recommendations 

Regardless of the multitude of advancements in MFCs, mainstream researchers actu-
ally face numerous difficulties and issues as far as power age and aqueous treatment. 
It must be evidently quick advancement in designing MFCs as productive and prefer-
able. Besides, reactors of various plans have already been presented, such as one and 
two-fold chambers, film less, H-shape, and rounded MFCs [191, 192]. Basically, the 
primary objective of all improvements is to accomplish commonsense execution of 
MFCs for remediation purposes at a business level. The principal segment in MFCs 
is the anode, that additionally dependable somewhat for their financial and functional 
capability. There are a few challenges related to electrode (anode/cathode) that have 
reduced the use of MFCs on a modern level: 

1. The electrode components are crucial for the monetary province of MFCs. 
Thusly, removing costs for materials is a significant issue for executions in 
MFC applications. To resolve this matter, we ought to consider the waste mate-
rial sources and converted them into carbonized structures that can be further-
more used as terminal material in a couple of constructions, similar to posts, 
brushes, bars, and plates. Nevertheless, one more technique is the improve-
ment of composites with metals and utilizing polymers to fabricate them more 
compelling at an insignificant cost [193].
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2. During the creation of an electrode, the cover is indispensable for assembling 
material in its ideal shape. To confirm the assurance of an astoundingly essential 
factor for researchers to develop materials to make it firmer and steadier. It is 
alluring to find more sensible and spending plan agreeable folios for the terminal 
(anode/cathodes). 

3. The size and setup are imperative viewpoints in the creation of electrodes. The 
surface area of electrode play significant role in bacterial growth and electron 
transferred from negative to positive terminal in MFCs [194]. 

4. Adjustment of the electrode has made critical redesigns regards to power age and 
the bioremediation of wastewater. So that, material parts and fitting standards 
stay dim. Researchers ought to discover more authentic parts for preferable 
adjustments. 

5. One flaw is the long-term steadiness of electrodes at the bulk level. At present, for 
the genaration of energy, nobody has yet explored the strength of electrode for 
long term use [195, 196]. Steadiness is a significant issue that resists MFCs func-
tioning at a mechanical scale. Accordingly, scientists should carry on tracking 
a compelling manufacturing procedure for electrodes while remembering the 
strength factor for electrode materials. An exceptionally steady fastener like 
nafion or polysulfides can be utilized to tie the graphene derivatives to keep up 
with long-term steadiness.

9 Conclusion 

The impacts of electrode (cathode/anode) in MFCs were summarized in this chapter. 
Carbon-graded materials, conductive polymers, composite-based materials, and 
metal/metal oxide-based materials have all been proposed as electrode materials 
in MFCs. The adhesion of bacteria and the growth of biofilm are major areas of 
progress in the development of electrodes. To achieve higher biofilm densities, signif-
icant effort has been put into expanding the surface area of electrode materials. As 
indicated in this chapter, there are a variety of different materials proposed for use as 
anodes or cathodes. Notwithstanding, there is as yet a critical hole in the advance-
ment of conceivable cathode materials. A terminal (anode/cathode) in MFCs can be 
made of incredibly spongy and conductive materials like metallic composites and 
3D graphene. During long haul MFCs activity, cathode materials should be amaz-
ingly steady in wastewater. These qualities make a terminal more significant on a 
modern scale when it stays stable for quite a while. A terminal material should 
thusly have a huge pore size to forestall issues in the bioremediation of wastewater 
applications from being discouraged. The utilization of MFCs is mainly depend on 
the material expense and surface modification of electrode. Cheap and accessible 
materials and effective methods should, therefore, be introduced in the MFCs appli-
cations industry for metallic or polymer nanocomposite or carbon-based electrons. 
In future, the testing of upscaling of resource anodes should be a key effort. It is vital 
to develop an electrode/diaphragm collection for excellent membrane assembly for
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practical use. But the anode efficiency available is still not enough to be used on a 
business level. Further studies should focus on the use and optimization of waste 
material to fabricate electrodes. 
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