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Abstract The chapter deals with the brief introduction to water and energy crisis. 
Further, it presents a detailed introduction of microbial fuel cell (MFC) technology 
discussing its various components, types and different substrates treatable in MFC 
with various terminal electron acceptors utilised in it along with critical literature 
survey of last 5 years. As the fossil fuels stand on the edge of extinction, studies for 
new and potential renewable resources have become a focus of scientific research. 
The need to look for alternatives brought the scientific community to the domain of 
waste harvesting to generate potential renewable resources that can take the reign of 
energy generation from fossil fuels to lead the human civilisation to new highs in near 
future. MFC technology has recently garnered considerable attention due to its unique 
nature to create a symbiotic relationship between the wastewater and electric output. 
It works on the principle of redox reaction where the wastewater present in the anodic 
compartment generates electrons to flow through the circuit and produce current. An 
MFC system can treat a wide variety of waste streams ranging from simple substrate 
like glucose/acetate to more complex substrates like domestic/industrial wastewater. 
Several novel designs of MFC have been suggested over the years with the same basic 
idea of anaerobic anode and aerobic cathode. MFC presents a promising approach 
for waste treatment contrary to the conventional technologies with zero energy input, 
low sludge production, compact designing with no movable parts for easy handling 
and efficient performance. 
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1 The Major Concerns 

Water and energy are the two critical and extensively expanding demands of the 
twenty-first century’s sustainable society. Scarcity or lack of freshwater, according to 
World Health Organisation (WHO), affects more than 40% of the world’s population 
[192]. Water finds application in every aspect of life ranging from agriculture to 
domestic and industrial processes. These water utilising sources release effluents with 
undesirable pH, colour, odour, temperature and chemicals, termed as wastewater. 
This wastewater when mixed with fresh water and utilised for different purposes 
causes various health hazards. Clean and freshwater is a basic need of all living 
organisms. However, the toxicants such as dyes, pesticides, drugs and metal ions 
when present in the potable water induce severe environmental and health issues. 
They have high bioaccumulation potential, which is another serious and important 
concern. Figure 1 presents some facts about water—its distribution and pollution 
(WHO and UN-Water sites) [148, 159]. Recently, wastewater released from various 
sources like domestic and factory effluent has gained attention as a potential resource 
of renewable energy to harvest electric energy and offset the wastewater treatment 
cost, which is otherwise high for conventional treatment technologies. 

Further, the energy demand is continuously increasing around the world and most 
of this demand is fulfilled through fossil fuels. The development of all the economies 
around the world has been supported by these fuels for centuries by expanded industri-
alisation. However, with the limited availability, threatened depletion and the drastic 
consequence of fossil fuels on the environment (greenhouse gases (GHGs) emission), 
focus has shifted to sustainable and renewable sources of energy, a much-needed 
alternative to fulfil the energy demand efficiently and cleanly. Nonetheless, data 
released by International Energy Agency (IEA) in 2017 [62] reflected that the renew-
able resources only account for around 23% of the total energy produced (Fig. 2). 
Biofuels, in the recent years, have drawn worldwide attention in this context. In near 
future, bioelectricity can serve as a potential source of fuel to serve the purpose of 
energy requirement on a larger scale. It is a renewable source of energy with potential 
to become a replacement of fossil fuels for power production in future [96]. Thus, it 
can serve as GHG neutral alternative to the conventional energy sources (e.g., fossil 
fuels), which release heavy amounts of GHGs into the atmosphere thus intensifying 
global warming [100, 157]. Industrial and agricultural wastewater has high organic 
content that can be utilised to derive energy. Data released by IEA in 2017 reflected, 
however, that these resources (biomass and waste) only account for around 2% of the 
total energy produced globally (Fig. 2). Also, country-wise energy generation data 
suggest that Asian countries like China and India have high energy demand, which 
is expected to grow in the near future as per IEA energy outlook 2019 [63] (Fig. 3). 

India is among the top 10 countries in the world facing the worst water crisis as 
nearly 54% population of India lives under water stress. With heavy consumption, 
21 cities (including Delhi, Chennai) are estimated to run out of groundwater in very 
near future. By 2030, early 40% of Indian population may be affected with nearly 
no access to fresh drinking water as water demand will rise from 650 in 2008 to
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Fig. 1 Facts about water—its distributions and pollution

1498 billion cubic meters by 2030. On the other hand, with increasing development 
in both urban and rural sectors of the country, the energy demand is continuously 
increasing with the overall energy consumption of 1561 TWh in 2018 as compared to 
1317 TWh in 2015. By 2040, the Indian share of global energy demand is estimated 
to increase by 2 times and with coal being the major source, the CO2 emission will 
simultaneously be roughly doubled worsening its effect of environment. India is in 
urgent need to counter these growing concerns in an environmentally friendly way 
to pave way for a better future. 
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Fig. 2 Different sources of electricity production 

Fig. 3 Country-wise electricity generation in TWh. Source BP Statistics 

2 Renewable Sources of Energy 

The world has seen different eras of energy from charcoal to coal to oil era of twentieth 
century (Fig. 4). Owing to their threatened depletion and environmental effects, these 
non-renewable resources are being replaced with more renewable ones.
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Fig. 4 Different eras of energy 

Resources that can be repeatedly replenished in nature and do not run out with 
time are known as renewable resources, and energy produced from these resources is 
known as renewable energy or clean energy. Solar, wind, tidal, hydro and geothermal 
energies have been successfully employed to harvest renewable energy around the 
world. Figure 5 presents the flowchart of the various techniques available for gener-
ating renewable energy. Recently, bioenergy has garnered significant attention as a 
potential renewable energy source marking twenty-first century as the beginning of 
era of bioenergy. Bioenergy is the energy derived from biomass, which ranges from 
food waste and plants to wastewater [125]. 

In the recent years, as the direct derivation of renewable energy from the waste 
has become a potential option, bioelectrochemical systems have played a significant 
role in extraction of usable energy from waste. 

Different bioelectrochemical systems have been developed over the years with 
microbial fuel cell (MFC) being the most explored technology. Figure 6 presents 
the number of papers published on different bioenergy techniques (MFC, MDC, 
MEC, and BES) while Fig. 7 shows the papers published on MFC between 2015 and 
January 2020 according to Web of Science data search.
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Fig. 5 Flow diagram showing different sources of renewable energy with special reference to 
bioenergy
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Fig. 6 Quantitative analysis of number of papers published for various types of systems over last 
5 years. Source Web of Science 

Fig. 7 Number of papers published over the last 5 years on microbial fuel cell. Source Web of 
Science, January 2020 

3 Microbial Fuel Cell Technology 

The need and interest in finding the sustainable alternatives to the non-renewable 
sources of energy that are cost-effective and performance efficient have brought the 
focus of the scientists across the world to MFC technology (Fig. 8). MFC is a tech-
nology capable of harvesting energy from organic and inorganic chemical wastes in 
the form of electricity. The technology has garnered significant attention because of 
its capability of harvesting energy from waste with almost zero energy input [79]. 
MFC can be defined as the technology that utilises active microbial population to 
catalyse the oxidation of organic and inorganic waste to harvest energy in the form
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Fig. 8 Significance of microbial fuel cell

of bioelectricity. It acts as a connecting link between microbial metabolism and elec-
trochemistry of the system [79]. The first idea of harvesting electric energy with the 
aid of microorganisms’ dates back to the early twentieth century when Potter and co-
workers in 1911 suggested that living cultures like E. coli and Sacchromyces can assist 
in the production of electricity. However, the work did not gain much attention until 
the 1931 work by Cohen, who connected MFCs in series producing voltage larger 
than 35 V [157]. Further, NASA in 1960s researched the applications of MFCs in 
space missions. Later, in 1980s, Allen and Bennetto discovered that the performance 
of MFC can be greatly improved by using mediators to support electron conduction 
from microbes to the electrodes. However, the instability and toxicity of the mediators 
offered obstructions in their practical application. A major breakthrough came when 
Kim et al. in 1999 [63] showed that the electricity conduction does not require media-
tors and some microbial communities can transfer electrons to the electrodes directly 
using microbial metabolites. Bruce Logan and team are considered to be the first to 
develop a laboratory-scale MFC [48, 124]. The basic principle of MFC is based on 
the redox reaction taking place within the system where the oxidation taking place at 
the anode generates electrons and protons lowering the redox potential at the anode. 
The electrons produced travel through the external circuit while the protons migrate 
across the membrane to the cathode where they are accepted by the terminal electron 
acceptor (TEA) at higher redox potential. The flow of electron across the circuit as 
a result of developed potential gradient generates electrical energy [56]. The oxida-
tion product formed in the anodic chamber during the process is carbon dioxide 
and as most of the carbon dioxide in the renewable biomass is originally coming 
from the fixation of atmospheric carbon dioxide through photosynthesis, no net 
carbon emission is made into the environment by MFC [39]. However, the electricity 
generation can be dramatically inhibited if oxygen contaminates the anodic chamber
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Fig. 9 Components of MFC 

affecting the performance of anaerobic microbes adversely, which can be avoided 
by maintaining completely anaerobic conditions in the anodic chamber [39, 120].

MFC is a systematic arrangement of various components that collectively work 
to run the system. The five main building blocks of MFC are presented in Fig. 9. 

Anode 

Anodic chamber is one of the core elements of MFC as all the pre-requisites for 
degrading the biomass is provided in this chamber like the substrate to be degraded, 
microorganisms, mediators, and electron accepting anode. Bio-anode is sometimes 
described as the defining part of the MFC and can often act as the limiting factor for the 
MFC performance [124]. The choice of anode material also affects the performance 
as the shape, structure and material of the anode can affect the factors like bacterial 
adhesion, electron transfer and substrate metabolism. Some crucial properties to be 
considered while choosing a potential anode are its conductivity, biocompatibility, 
chemical stability in the electrolyte and specific surface area. Carbonaceous materials 
like graphite rods and plates, carbon paper, carbon cloth, carbon mesh, carbon felt, 
carbon fibre brush, reticulated vitreous carbon are the most widely used electrode 
material because of their high stability, conductive and biocompatible nature with 
simultaneous high surface area [96].
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Considering that anode has significant impact on the overall performance of MFC, 
several strategies have been employed over the years to modify the anode in a bid to 
improve the MFC power output. Strategies have been adopted to increase the biocom-
patibility and surface area of the anode through acid, ammonia and heat treatment. 
In 2007, Cheng and Logan improved the output power density (PD) of the carbon 
cloth utilising MFC by treatment with ammonia and enhancing the surface charge 
on the electrode [25]. Cai et al. [14] compared the performance of MFC utilising a 
plain, nitric acid-treated and heat-treated carbon cloth electrodes and observed that 
the heat-treated electrode outperformed the other two and the improvement in the 
power output was mainly attributed to the improved biocompatibility of the electrode 
[14]. Furthermore, other researchers employed the techniques of nanoengineering 
to modify anodes where, conducting polymers like polyaniline (PANI) and polypyr-
role (PPy) and carbon-based nanomaterials are the prime area of focus. Lai et al. 
[81] performed the electropolymerisation of PANI on carbon cloth and observed 
enhanced electrochemical activity, increased roughness for better biofilm formation 
with a relatively sustainable and reproducible MFC power output [81]. Qiao et al. 
[117] successfully reported carbon nanotube (CNT)/PANI as a feasible electrode 
material [117]. Zou et al. [196] harvested electric energy from E. coli catalysed MFC 
utilising a CNT/PPy coated carbon paper electrode [196]. Zhang et al. [190] studied 
the performance of graphene-modified stainless steel mesh anode and observed 18 
folds improvement in the performance as compared to plain stainless-steel mesh as 
a result of enhanced electron transfer efficiency owing to improved surface area and 
better bacterial adhesion [190]. More recently, Tang et al. [142] used anthraquinone-
2 sulfonate immobilised conductive polypyrrole hydrogel to significantly enhance 
the power output and reduce the charge transfer resistance of electrodes [142]. 

Another relevant factor that must be kept in mind while selecting anode is its poten-
tial. It defines the MFC power generation by monitoring the bacterial community 
and substrate interaction. Electrochemical analysis suggests that to achieve highest 
electric output the anode should have a low while cathode should have high elec-
trode potential. However, the bioelectrochemical studies suggest a better bacterial 
colonisation at more positive anodic potential. Thus, to maximise the MFC current 
and power output performance, a careful tuning of anode potential is crucial [124]. 
Pinto et al. [115] investigated the effect of anodic potential on biofilm formation and 
electroactivity of Shewanella oneidensis and observed that the negative potential of 
−0.3 V favoured the mediated electron transfer while the positive anodic potential 
of +0.3 V favours faster colonisation of the microbial population on the electrode 
[115]. 

Cathode 

Cathode is responsible for transferring the electrons travelling from anodic to the 
cathodic chamber and subsequently to TEA. Oxygen is generally the most frequently 
used electron acceptor owing to its ease of accessibility, free cost, high oxidation 
potential with no possibility of production of poisonous chemical waste as the end 
product of oxygen reduction is water [147]. However, the sluggish reduction kinetics 
of oxygen makes it a restricting agent in MFCs owing to the large potential loss and
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thus acts as a major bottleneck in the electrical applications of MFC. Potassium 
ferricyanide is another popular electron acceptor that shows significant improve-
ment in the power output, which could be due to the improved mass transfer rate and 
reduced activation energy required for the cathodic reaction [114]. However, ferri-
cyanide shows a major drawback of regeneration and needs refilling frequently [120]. 
Several other TEAs have been explored over the years. Dai et al. [31] explored the 
potential of sodium bromate as an electron acceptor and observed the catholyte pH 
to decrease with the increasing concentration of sodium bromate thereby improving 
the performance of MFC [31]. Kumar et al. [80] compared the performance of four 
different electron acceptors namely buffered ferric chloride, potassium hexacyano-
ferrate, potassium dichromate and phosphate buffer solution (PBS) and observed 
the highest bioelectric performance in case of ferric chloride with the output PD of 
308.7 mW/m2. It was also reported that the internal resistance of MFC with different 
catholytes decreased in the order of potassium dichromate > hexacyanoferrate > 
ferric chloride > PBS [80]. Oon et al. [111] compared the performance of different 
monoazo (New Coccine and Acid Orange 7) and diazo dyes (Reactive Red 120 and 
Reactive green 19) as potential electron acceptors and reported that the decolorisa-
tion rate was nearly 50% higher for monoazo dyes as compared to the diazo dyes and 
the decolorisation and power output followed the trend; New Coccine > Acid Orange 
7 > Reactive Red 120 > Reactive green 19 suggesting that the structure of the dye 
affected the decolorisation rate and power output [111]. Among the variety of TEAs 
explored so far, the free and easy access to oxygen still makes it the most opted elec-
tron acceptor. In a bid to enhance the oxygen reduction reaction rate (ORR) and lower 
the activation energy, the use of appropriate catalyst becomes important. Platinum 
(Pt) is the most widely known and explored catalyst showing a higher ORR calat-
alytic activity [12, 43, 116]. However, the use of Pt catalyst tremendously increases 
the operating cost of MFC and presents a major drawback of substrate poisoning in 
certain solutions [59]. Recently a variety of materials have been explored as ORR 
catalysts. For MFC, an ideal ORR catalyst should be cost-effective (keeping MFCs 
economically feasible), durable, synthesisable on large scale, and showing elevated 
catalytic activities. The catalysts used in cathode can be broadly divided into two 
categories, namely, (i) abiotic catalysts and (ii) biotic or biocatalysts [180]. The 
abiotic catalysts can be further subdivided into carbon-based catalysts like carbon 
black (CB), activated carbon (AC), carbon nanofibres (mainly CNTs) and graphene; 
metal-based catalysts; metal-carbon hybrids; and metal-nitrogen-carbon hybrid. 

CB has been widely used in MFC as a metal catalyst supporting material. CNTs 
have garnered significant attention because of its high surface area and electric 
conductivity. The CNT-based catalysts can be easily tuned by doping with other 
components to achieve desired properties [173]. Also, CNT-based catalysts have 
been reported to have better durability than Pt-based catalysts [180]. Graphene has 
also recently received a lot of attention because of its higher stability and conduc-
tivity [136]. Graphene is comparable to CNTs in terms of cost-effectiveness but still 
lags behind the AC [180]. Macheri et al. [102] studied the performance of zirconium 
oxide (ZrO2)/CB cathode with different concentrations of ZrO2 (0, 25, 50, 75 and 
100%) and observed that the ORR catalytic activity of ZrO2/CB cathode with 25 wt%
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of ZrO2 was better compared to the other cathodes with the maximum PD of 600 
mW/m2 in a single chambered MFC. Also, the study reported that the assembling 
cost of ZrO2/CB catalyst was 15 times less than Pt/CB cathode thereby decreasing 
the operating cost of the MFC [102]. Das et al. [34] synthesised a metal-based ORR 
catalyst using surface modified ferrite with Co and Zn in 1:1 ratio and observed 
the results to be comparable to 10% Pt/C-based catalyst with the maximum PD of 
176.42 mW/m2, a high Coulombic efficiency (CE) of 43.3% and maximum COD 
removal efficiency of 87% [34]. A novel Fe/N doped graphene/CNT composite was 
synthesised by Wang et al. [150]. The study revealed the synthesised nanocomposite 
to possess improved electrogenic and high electrocatalytic activity in the neutral PBS 
medium for ORR. They also reported that the synthesised composite displays higher 
MFC power output of 1210 mW/m2 as compared to the Pt/C catalyst (1080 mW/m2). 
The results of the work performed by Wang et al. concluded that the Fe-N/G with 
CNT possesses enhanced ORR capacity compared to Pt/C, which could be due to the 
high pyridine doped CNT or increased ORR active sites [150]. In another recently 
published study, a low-cost AC supported F-N-C catalyst was synthesised and used 
as cathode, which improved the PD of MFC by around 33% as compared to the 
plain AC. The synthesised composite also displayed good stability with no surface 
morphology change during the experiment [171]. Further, in the research carried out 
by Majidi et al. [98], an α-MnO2 nanowire supported carbon vulcan was employed 
as ORR cathode catalyst. The study reported that the α-MnO2/carbon vulcan can 
serve as an effective and economically feasible Pt free MFC catalyst on large scale 
because of its increased redox activity owing to its surface structure and increased 
surface area [98]. 

Microorganisms can also play the role of active ORR catalyst by acting as electron 
shuttle between cathode and TEA. Studies have revealed that the microbial commu-
nity can transfer the electrons through one or multiple pathways [180]. Several studies 
have demonstrated that a variety of substrates can be treated using pure and mixed 
culture bio-cathodic MFCs [60, 65, 163, 185, 186]. The performance of the bio-
cathode can be influenced by the initial catholyte concentration of dissolved oxygen 
(DO). In one of the recent studies, the PD for nitrogen wastewater treating MFC was 
highest for anoxic bio-cathode [52]. The uniqueness of the bio-cathodes lies in the 
variety of microbial communities interacting with the system to achieve the desired 
goals. Cao et al. [15] developed a photobio-cathode by illuminating the developed 
bio-cathode to directly fix dissolved CO2 or bicarbonate as electron acceptor. The 
MFC utilising the bio-cathode produced 15 folds higher PD than MFC working with 
the plain carbon cathode with the maximum achieved PD of 750 mW/m2 [15]. In 
another study Wang et al. [156], used an air diffusion bio-cathode to accelerate the 
ORR in MFCs. The study confirmed the improved ORR in MFC with bio-cathode 
than abiotic MFC with enhanced current and power densities. The study, however, 
also revealed that the use of bio-cathode decreased the biodiversity within the system 
[156]. In a very recent study performed by Izadi et al. [64], a gas diffusion bio-cathode 
was developed for MFC enriched with iron oxidising bacteria. The study reported 
an enhanced PD of 1.02 W/m2 compared to that of 0.59 W/m2 PD produced using 
Pt catalyst in continuously operated MFC. The study further revealed that the gas



Microbial Fuel Cells—A Sustainable Approach to Clean Energy … 401

diffusion electrode (GDE) improved the mass transfer and the MFC performance and 
provided a reproducible and fast startup for bio-cathodic MFC [64]. Like bio-anodes, 
the activity of the bio-cathodes can be enhanced by modifying the bio-cathode to 
improve its surface area, biocompatibility and conductivity using appropriate mate-
rial. Chen et al. [23] developed a microbially in situ synthesised reduced graphene 
oxide bio-cathode that significantly improved the ORR [23]. Table 1 presents recent 
advances and modification in electrodes used in MFC and also shown in Fig. 10. 

Membrane 

Membranes or separators are significantly intrinsic part of MFC physically barring 
the oxidation and reduction reactions taking place in the anodic and cathodic cham-
bers. In MFC, these separators allow the selective permeation of protons from anodic 
chamber (where they are produced) to cathodic chamber (where they are consumed). 
The separators also help in controlling the oxygen diffusion to the anaerobic anodic 
chamber which could be detrimentally affected by the oxygen penetration [120]. 
However, the incorporation of the membranes in the MFC system also presents 
some hurdles like pH splitting caused by the increasing cathodic pH and decreasing 
anodic pH due to the slow movement of protons from one to the other chamber 
[87]. Also, the membranes add to the cost of the MFC setup making upto 38% of 
the capital cost and also increase the internal resistance of the system [49, 58]. A 
wide variety of materials have been used as separators in MFC like glass wool, 
ceramics, nanoporous filter, salt bridge and ion exchange membranes (IEMs) [26, 
74, 87, 132, 166, 179, 187] beside others. However, the IEMs remain the most 
widely used separators because of their high conductivity and selective permeability. 
In MFCs, the most commonly used membranes are the cation exchange membrane 
(CEMs) or more precisely the proton exchange membranes (PEMs). The positive ions 
are attracted and permitted to allow through these membranes as they are composed 
of the backbone of negatively charged groups [120]. Nafion, a fluoropolymer based 
on sulfonated tetrafluoroethylene group has been widely used in various studies 
[131]. It has a SO3

− (sulfonate) group attached to it imparting high proton conduc-
tivity. Nafion, however, has the drawbacks of high cost, easily susceptible to biolog-
ical and chemical biofouling as well as pH splitting [21, 87]. Ghasemi et al. [48] 
compared the performance of treated, untreated and biofouled Nafion membranes 
and observed the performance to be following the trend of treated > untreated > 
biofouled membrane with the CE of the treated membrane being 2.32 and 4.15 times 
better than untreated and biofouled membranes, respectively [49]. Ultrex is another 
commonly used PEM. Ultrex CMI-7000 is a strong acid membrane composed of gel 
polystyrene and divinylbenzene cross-linked polymer with sulphonic acid (SO3H−) 
as the active functional group. Although the membrane is compatible with Nafion 
in terms of mechanical strength, conductivity and affordability, the higher resistance 
posed by the membrane lowers its performance [139]. Zirfon, composed of 85:15 
wt% of hydrophilic zirconium oxide (ZrO2) and polysulfone, is an anion exchange 
membrane (AEM), which outperforms the specific resistance of Nafion membrane 
and is cheaper. However, it presents a major drawback of high oxygen penetration to 
the anodic chamber thereby affecting the performance of the MFC system [120, 139].
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Fig. 10 Commonly used electrodes in MFC

In a very recent study performed by Wang et al. [152], four different IEMs, bipolar 
exchange membrane (BEM), CEM, PEM and AEM were investigated for chromium 
removal and electricity generation in MFC. It was observed to follow the trend BPM > 
AEM > CEM > PEM with PEM displaying pH splitting [152]. San-Martin et al. [128] 
compared the performances of different commercially available IEMs, Nafion-117, 
Ultrex CMI-7000, Zirfon Perl UTP and Fumasep FKE and FKB. The study reported 
Nafion and Ultrex to possess high thermal stability while the other tested membranes 
displayed better resistance to biofouling. The study further concluded that the elec-
trochemical performance in BES was maintained by all the membranes tested [128]. 
Verily, an ideal MFC membrane should showcase following characteristics of abso-
lute substrate crossover and oxygen diffusion control, cost-effective with low internal 
resistance and resistant to biofouling [5]. Recently, novel membrane materials have 
been synthesised and tested that can possibly be cheaper and perform compatibly 
with the commercially available membranes. A novel sulphonated polyether ether
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ketone membrane (SPEEK) was synthesised and compared for its performance with 
the Nafion-117 by Ayyaru and Dharmalingam [8]. The study reported the synthesised 
membrane to display high PD and CE with retarded substrate losses emphasising 
the potential of electrode in enhancing the performance of MFC system greatly [8]. 
A polybenzimidazole-based novel PEM has been recently synthesised and tested as 
a potential separator in MFC and its performance was compared with Nafion-117. 
The membrane reportedly performed better in terms of power output, durability and 
treatment efficiency as compared to Nafion. The membrane also showed inhibition 
to surface bacterial adhesion thus preserving the MFC from biofouling, which is a 
major drawback with Nafion [5].

4 Biofilm Formation and Microbial Communities Involved 
in MFC 

In order to generate electricity in MFC, the electrons originated by the reduction 
of organic substrates need to be transferred to the anode, which acts as an electron 
acceptor. To fulfil this, the electrons are required to be transferred extracellularly. 
The shuttling of electron between microbes and electrodes is known as extracel-
lular electron transfer (EET) [77]. Potter and Cohen were the first to observe the 
microbial property of EET in early 1900s. A wide variety of microbial communities 
have been studied over the years to possess the ability to transfer electrons extra-
cellularly. The microbes performing this process of electron transfer are commonly 
known as Exoelectrogens. Geobacter and Shewanella have been the most exten-
sively studied EET performing microbial species. These are gram negative metal-
reducing microbes, performing EET via multihaem c-type cytochrome to transfer 
the electrons to the metals via direct contact [27]. In MFC, these microbes perform 
the EET to transfer the electrons to anode instead of metal as electron acceptor 
in the similar fashion. Some widely known examples of exoelectrogens are Rhod-
oferax ferrireducen, Shewanella putrefacien, Geobacter sulfurreducen, Geobacter 
metallireducen [67]. Wrighton et al. [160] first gave the exoelectrogenic evidence 
of gram-positive bacteria using Thermincola potens strain. Recently, a novel pure 
culture of gram-positive P. freudenreichii was confirmed to behave as exoelectrogen 
in an H-shaped mediatorless MFC [122]. In a study conducted by Wang et al. [149], 
E. coli was successfully employed to harvest current in MFC with excellent power 
output of 547 mW/m2 [149] while [167] isolated Citrobacter sp. from MFC as poten-
tial exoelectrogen [167]. Studies have suggested mixed culture to be favourable in 
utilising complex substrates [112]. The electron transport between microbes and 
electrodes can take place via different routes and has been reported to be broadly 
categorised in three sections: short-range direct transfer, long-range direct transfer 
and indirect electron transfer employing special redox-active molecules commonly 
called mediators to shuttle the electrons between microbes and electron acceptor or
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electrode [175]. In MFC start-up, electron transport process to the anode is consid-
ered as the rate-limiting step as the biofilm developed on anode plays a crucial 
role in EET [189]. Four main types of proteins have been identified so far to be 
involved in EET: Porin-cytochrome complex, a complex of porin and redox protein; 
surface-bound cytochromes; nanowires; and miscellaneous redox proteins [30, 126]. 
In case of short-range direct transfer, the physical contact of the developed biofilm 
with the electrode is a pre-requisite to conduct electron. The microbial community 
in the biofilm adheres to the electrode and transfer the electrons via the involve-
ment of outer membrane redox multiheme molecules called cytochrome c proteins 
[69]. In such electron transfer processes, as the physical contact is an important 
criterion for electron conduction, the microbial community only in the closed prox-
imity/physically adhering to the electron (monolayer) is able to perform electron 
transport thereby limiting the MFC performance. A study evinced that the outer 
membrane c-cytochrome, OmcA and MtrC are determining factor for Shewanella 
species to generate electricity [160]. In case of G. Sulfurreducens, outer membrane 
cytochromes OmcE, OmcB, OmcZ and OmcS have been reported to have role in 
electron transport [27, 126]. In the high current producing bioflms, OmcZ has been 
observed to play a major role. The homogenously carried electron transport through 
biofilm involves OmcZ while OmcB moderates the electron transport heteroge-
neously between biofilm and electrode [78]. OmcF has also been reported to play indi-
rect role in current production without directly influencing electron transfer by regu-
lating the synthesis of appropriate proteins like OmcB, OmcE and OmcS by moni-
toring the relevant gene transcription [33]. Moreover, it has been reported that the 
microbial communities in developed biofilm have higher dominance of cytochrome 
as compared to the lag phase [79]. 

The long-range direct transfer, on the other hand, is able to conduct electrons 
from microbes to the electrodes more efficiently and rapidly by the development of 
an electroactive layer. Unlike short-range transfer, in this case, the electron transport 
is performed via special pili-like electron carrying structures produced by exoelec-
trogens like Geobacter and Shewanella species. These produced filaments allow the 
electrons to be conducted through a more complex multilayered biofilm without the 
restriction of physical monolayer contact [78]. The nanowires produced by Geobacter 
sp. are comprised of pili protein that have been reported to have metal-like conduc-
tivity because of their structural backbone of aromatic amino acids maintaining pi-pi 
orbital overlapping for electron delocalisation [30]. On the other, nanowires produced 
by Shewanella sp., unlike Geobacter are comprised not of pili but are extension of 
outer membrane and follow an alternative mechanism of conduction called elec-
tron hopping. In this model, the electrons hop along the chain of cytochromes that 
accounts for the current conduction [77]. It has been reported that the nanowire 
production by Geobacter sp. increases when electrode is used as electron acceptor 
in MFC. Also the effect of temperature and pH change has been observed to be 
consistent with metal-like materials [99]. Species like Shewanella and Geobacter 
can perform electron conduction via three different modes of mediation through 
outer membrane cytochrome, nanowires or via self-synthesised electron shuttles or 
mediators [77]. The electron transfer achieved via mediators is known as indirect
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electron transfer or mediated electron transfer [69]. Mediators play a crucial role of 
electron shuttling between the microbes and the electrodes. Mediator can be divided 
into two main categories of endogenous and exogenous. An endogenous mediator 
is a microbial synthesised substance while an exogenous mediator is an externally 
added redox substance that plays the role of electron shuttle. Endogenous soluble 
electron mediators are excreted by microbes like G. fermentas, P. aeruginosa, S. 
oneidensis and L. lactis. G. fermentas produces riboflavin, P. aeruginosa secretes 
pyocyanin and phanazine-1-carboxamide while S. oneidensis synthesise riboflavin 
and flavin mononucleotide as extracellar mediators [78]. Exogenous electron medi-
ators are utilised by microbial communities like D. desulfuricans, E. coli, P. fluo-
roscens, P. vulgaris, P. micorbilis beside others. Several studies have reported the 
use of 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), redox dyes 
and ferricyanide as exogenous electron shuttles [69, 191]. 

Electron flow in MFC can take place bidirectionally: from microbes to electrode 
(anode) and electrode (cathode) to microbes. Microbial species like Geobacter and 
Shewanella can potentially transfer electrons bidirectionally. Moreover, biocommu-
nities like C. pasteurianum, A. colcoacenticus, A. ferrooxidans apart from Geobacter 
and Shewanella can perform electron transfer from cathode to microbes [27, 77, 78]. 
The electron transfer mechanism of Geobacter in case of cathode to microbe has 
been reported to be completely different from microbe to anode electron transfer. 
Periplasm located cytochrome PccH is a potential candidate in cathode to microbe 
electron transport by Geobacter. On the other hand, Shewanella has been reported 
to follow the same electron transfer mechanism involving flavin and riboflavin with 
c-cytochrome in reverse direction [32, 140]. Methods like chemical, high temper-
ature or surface binding pre-treatment of electrodes and anode modification affect 
the development of biofilm and thus performance of MFC [77]. CNT/PPy-modified 
electrode has been reported to enhance the power output from MFC metabolising 
glucose substrate as a result of better electrode-bacteria interaction on modified elec-
trode [196]. Lui et al. [95] reported PEDOT (poly (3,4-ethylenedioxythiophene) to 
increase the active sites for bacterial catalytic reactions and improve MFC perfor-
mance [95]. Further, the addition of biosurfactants like rhamnolipid to anolyte has 
been recently reported to increase the development of biofilm and electron transfer 
resulting in an improved MFC performance [189]. Heavy metal ions like Cu2+ and 
Cd2+ added to the anodic chamber can potentially enhance the riboflavin electron 
shuttle synthesis and effectively improved the EET and MFC performance [168]. 
Figure 11 presents the pictorial representation of various modes of electron transfer. 

5 Types of MFC 

Various different MFC configurations have been developed over the years in a bid 
to achieve high and sustainable performance in longer run and at larger scale. The 
MFC configurations are mainly categorised into two groups: air-cathode MFCs and
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Fig. 11 Pictorial 
representation of direct and 
indirect modes of electron 
transfer 

liquid-feed MFCs. The most common MFC configurations are single and dual cham-
bered MFCs. The following section discusses some common MFC configurations 
developed over the years (Fig. 12). 

Single Chambered MFCs (SCMFCs) 

This is the most basic configuration of MFC and falls under the category of air-
cathode MFC. SCMFC is comprised of a single anodic anaerobic chamber with 
anode separated through a membrane to an air cathode (placed at outer surface of the 
reactor). The electrodes are connected using external circuits. The anodic microbial 
community feeds on the added substrate and release electrons, which flow through 
the circuit generating electric current. The transported electrons are accepted by 
oxygen as TEA [39, 69]. SCMFCs have the benefit over dual chambered MFCs of 
reduced cost of catholyte and aeration as air-cathode MFCs take atmospheric oxygen 
as TEA [109]. Membrane-less SCMFCs have also been constructed to further lower 
the operational cost in various studies; however, membrane-less MFCs pose the 
problem of lower performance because of anodic oxygen diffusion [134, 195]. 

Dual Chambered MFCs (DCMFCs) 

DCMFCs, like SCMFCs are also basic and widely used configuration that mainly 
falls under the category of liquid feed cathode. DCMFC consists of two separate 
anaerobic anodic and aerobic cathodic chambers separated by the membrane (mainly 
PEM) to avoid liquid and oxygen diffusion and allow protons to pass through it to the 
cathodic chamber. DCMFCs can simultaneously treat two different waste streams in 
anodic and cathodic chambers respectively (e.g. degradation of organic-rich substrate 
in anode and metal recovery via reduction in cathode) [69]. Different designs of 
DCMFC have been developed like H-shaped and rectangular DCMFC [20, 82, 184].
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    (a) (b) 

(c) (d) 

(e) (f)

 (g) 

(h) 

Fig. 12 Various designs of MFC. a SCMFC. b H-shaped DCMFC. c Cubical-DCMFC. d Tubular 
MFC. e SMFC. f CW-MFC. g Stacked MFC. h Upflow MFC
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Tubular Chambered MFCs 

The reactor is mainly a cylindrical single chambered system comprised of a folded 
membrane surrounded by the cathode/anode. The anodic chamber is inoculated with 
anaerobic sludge and organic substrate is added. Rabaey et al. [118] constructed 
a continuous tubular MFC with graphite granules and graphite mat as anode and 
cathode, respectively. The cathode was dripped over with ferricyanide solution as 
electron acceptor [118]. Cheng et al. [22] constructed mini air-cathode tubular MFCs 
to treat benzene contaminated groundwater. The three mini-tubular MFCs were 
comprised of folded anode surrounded membrane with internal air-cathodes. The 
systems were dipped in the benzene contaminated water. The results revealed the 
considerable performance in terms of treatment and power generation [22]. Liao 
et al. [88] reported a novel method to improve the performance of tubular MFC by 
employing a rotating carbon brush anode resulting in a dramatic power output of 
210 W/m3 [88]. Tubular MFC has the potential advantage over others of enhanced 
scalability in continuously operated systems with increased sludge retention and 
diminished hydraulic retention time thereby reducing the overall operating cost 
[69, 124]. 

Up-flow MFCs (UMFC) 

He et al. [57] combined the benefits of upflow anaerobic sludge bed reactor (UASB) 
of long biomass retention and high treatment efficiency to MFC. A UMFC consists 
of two cylindrical compartments separated by membrane with cathodic compartment 
located on top of anodic compartment. The anodic feed is allowed to recirculate in the 
system at defined rate. He et al. treated a common carbohydrate, sucrose to harvest 
electrical output [57]. Xylose wastewater was treated in an UMFC with AEM and 
flat graphite electrodes and revealed that decreasing HRT improved the power output 
at optimum recirculation rate [83]. Recently, single chambered UMFCs have gained 
attention across globe as a potential approach to reduce the operating cost and high 
maintenance and difficulty in upscaling and [143] successfully treated Acid orange 
7 azo dye in one such single chambered UMFC [143]. Another study demonstrated 
that the KCl concentration plays an important role in enhancing the anode to cathode 
electron transfer while chemical oxygen demand (COD) increase has derogatory 
effect on the voltage recovery as excessive biofilm formation increases the internal 
resistance [144]. 

Staked MFCs 

The systematic arrangement of individual MFCs in series and parallel pattern is 
collectively known as stacked MFCs. In this type of configuration, individual fuel 
cells arrange to form a battery fuel cell. The arrangement does not affect the individual 
CE of MFC but improves the overall performance of the newly arranged system [69]. 
Both stacked connections show potential applications in MFC performance with 
series connection directly affecting the output voltage of the system compared to 
the individual units. On the other hand, in parallel arrangement voltage stabilisation 
with enhanced current output is observed [7]. Winfield et al. [158] studied the effect
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of electronic configuration on the hydraulically connected MFCs and observed both 
configurations to improve the output performance compared to the individual cells 
however, in parallel connection the power and current output were 2 and 10 folds 
higher than series stack, which was proposed to be result of shunt losses in series 
stack because of fluidic and electrical connections. One of the biggest drawbacks of 
stacking is voltage reversal in the connected MFCs as it can severely damage the bio-
anode and limit the performance. Voltage reversal has been suggested to be caused by 
kinetics imbalance at electrodes. To overcome another issue of proton accumulation 
in the anodic chamber of MFC, hybrid stack of hydraulically connected SC and 
DC MFCs were constructed. Compared to the individual stacks of SC and DC, the 
hybrid SC/DC stack was reported to generate higher electric output. The proton 
accumulation was proposed to be monitored due to the oxygen diffusion through 
SCMFC cathode to acetate metabolising biofilm [170]. 

Sediment MFCs (SMFC) 

SMFC harvest energy by connecting marine sediments with seawater. They generate 
energy from anaerobic sediments and aerobic water electropotential difference. To 
construct a SMFC, anaerobic anode is buried into the sediments and connected to the 
overlying aerobic cathode. The organic matter in sediments is metabolised by anaer-
obes and the electrons produced are collected at anode and transported to cathode 
thereby generating current [69, 194]. The first SMFC was constructed by Reimer and 
co-workers [123]. Rate of organic loading influence the performance of SMFC. Zhao 
et al. [193] studied the effect of different organic loading rates on MFC performance 
and observed that the excess loading can lead to biogas accumulation causing system 
to break down while the low loading limits the power output [193]. Another study 
suggested that high polarity organic contaminants are preferably treated in SMFCs 
[165]. The removal of toxic waste (mercury, silver and zinc) present in the sediments 
was studied using SMFC and reported to achieve more than 80% removal of all 
contaminants with successful energy generation [1]. 

Constructed wetland MFCs (CW-MFCs) 

Constructed wetland (CW) is a widely employed wastewater treatment technology 
allowing the treatment by taking advantages of natural processes like filtration. CW-
MFC is an emerging technology capable of harvesting energy while performing waste 
treatment. The wetlands (CW-MFCs) are constructed by burying anode in the depth 
and allowing the cathode to be exposed freely to the available oxygen. Anaerobic 
and aerobic conditions in wetland prevail throughout the depth with anaerobic condi-
tions maintained in the deeper depths and aerobic conditions present at the surface 
of wetlands from atmospheric oxygen penetration [37]. Plants in wetlands perform 
filtration and adsorption of wastewater while degradation is performed by anaerobic 
and aerobic microbes [194]. Araneda et al. [6] performed the treatment of greywater 
(wastewater generated in households and office buildings) in CW-MFCs with Phrag-
mites australis as wetland plant and matrix of gravel achieving the maximum PD of 
719.57 mW/m2 and COD removal efficiency of 91.7% [6].
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6 Substrates in MFC 

Several kinds of wastewaters have been investigated in MFC to study their treat-
ment and effect on different factors like PD, COD removal and CE. A wide range 
of wastewaters treated in the MFC can be broadly divided into Defined or Simple 
Substrate and Undefined or Complex Substrate. MFCs can treat waste both anaero-
bically in anodic chamber and aerobically in cathodic chamber. In anodic chamber, 
the substrate added is fed upon by anaerobes and oxidised to yield electrons and 
protons. Alternatively in the cathodic chamber, the aerobic microbial community 
transfers the electrons to the externally added TEAs, which are thereby reduced to 
simpler less harmful products. 

Defined or Simple Substrate 

Various pure simple organic contaminants have been utilised over the years to harvest 
electrical output. Carbohydrates, amino acids and volatile fatty acids are the simplest 
metabolic fuels that make up the more complex waste among which carbohydrates 
are the most commonly utilised MFC metabolite. These simple metabolites or pure 
substrates commonly referred to as synthetic wastewater have been tested in MFCs as 
electron donor to generate electric output. Acetate is the simplest and most commonly 
used carbon source reported in various MFC studies. Acetate and butyrate have been 
compared for electric output in a SCMFC and acetate was observed to generate 
66% higher power output than butyrate fed MFC [92]. In another study, mecha-
nism of glucose metabolisation in MFC was studied and reported to involve the 
syntrophic relation of fermenters and electrogens. The fermenters act on glucose 
to produce hydrogen and acetate which are acted upon by electrogens to produce 
carbon dioxide, protons and electrons [46]. Catal et al. [17] studied energy gener-
ation from 12 monosaccharides including 1 aldonic acid (gluconic acid), 2 uronic 
acids (glucouronic acid and galacturonic acid), 3 pentoses (arabinose, xylose and 
ribose) and 6 hexoses (fructose, glucose, galactose, rhamnose, fucose and mannose) 
using mixed microbial community. The results presented more than 80% COD 
removal of all monosaccharides. Mannose and glucouronic acid were observed to 
produce lowest and highest power output, respectively [17]. The results demon-
strated a wide range of monosaccharides as potential fuel in MFC for electricity 
generation. Glucose (fermentable) and acetate (non-fermentable) remain the most 
evaluated MFC substrate however the lower performance from fermentable substrate 
compared to non-fermentable substrate has been suggested to be the consequence of 
denser biofilm metabolising fermentable substrate [112]. 

Proteins also form an important constituent of wastewater like domestic wastew-
ater. MFC has been studied to harvest electricity from nitrogen-containing wastew-
ater. Cystein, a proteinogenic amino acid has been employed as electron donor in 
DCMFC [97]. Yang et al. [169] tested eight amino acids namely L-Asparagine, 
DL-Alanine, L-Aspartic acid, L-Arginine, L-Glutamic acid, L-Histidine, L-lysine 
and L-Serine as substrate in SCMFC and observed L-Serine and DL-Alanine to 
generate highest and lowest PD, respectively [169]. In a recent study [82], treated



412 N. Khan et al.

P-nitroaniline in DCMFC in the presence and absence of co-substrate. The result 
revealed that both PD and COD removal efficiency decreased as the concentration 
of P-nitroaniline in anodic chamber increased; however, the addition of co-substrate 
improved the power output by two folds [82]. In another study, urea as a form of 
total ammonia nitrogen was successfully treated in SCMFC upto the concentration of 
3490 mg/L with more than 80% achievable nitrogen removal. The PD was reported to 
increased upto 69% on increasing the total ammonia nitrogen concentration from 80 
to 3490 mg/L. However, further increase has detrimental effect on MFC performance 
[153]. 

Undefined or Complex Substrate 

Real wastewater discarded from domestic, municipal, agricultural and industrial 
sources are not pure but rather complex consisting of variety of treatable compo-
nents. MFC owing to its ability of treating wastewater with simultaneously harvesting 
energy has been employed to test a wide range of waste streams. A few of the complex 
substrates have been discussed in this section. Agro-food waste like brewery, manure, 
swine and dairy are generally very rich in organic content and show high biodegrad-
ability. Dairy wastewater is rich in biodegradable content with sugar making upto 
97% of the total COD [112]. It was treated in long run in DCMFC for 2.5 months 
with successful remediation of high COD substrate achieving a maximum PD of 
27 W/m3 [19]. Swine wastewater has been treated in CW-MFCs while maintaining 
upflow-downflow scheme. The observed results showed 70 and 75% increase in 
PD and ammonia removal efficiency compared to the continuous upflow system 
[38]. Winery wastewater, an important agro-industrial waste is rich in biodegradable 
organics. Using this wastewater, Pentaedo et al. [114] harvested power output of upto 
465 mW/m2 in a DCMFC  [113]. 

Food waste is referred to the food losses occurring in the food chain. Food waste is 
mainly rich in carbohydrates. Nearly 1/3rd of the food globally produced per year is 
lost as waste [84]. Thus, food waste garners a lot of attention for high biodegradability, 
potential for energy and inexhaustibility. Food waste is disposed from both domestic 
and commercial sectors and pose serious environmental concerns like odour, toxic gas 
emission and contamination of groundwater. Goud et al. [51] treated canteen-based 
food waste in SCMFC and successfully harnessed electrical energy via anaerobic bio-
treatment. The study revealed that optimum organic loading rate affects the MFC 
output performance [51]. A similar study performed by Li et al. [84] revealed that the 
aromatic and hydrophilic fractions of canteen-based food waste were more readily 
and preferentially degraded than non-aromatic compounds and neutral fractions [84]. 
In another study, MFC treated orange peel waste to generate PD of 358 mW/m2 while 
simultaneously achieving a COD removal efficiency above 80% [105]. Domestic and 
municipal wastewater have been of major interest among research working in the 
field of energy recovery. Domestic wastewater can be treated in MFC successfully 
with upto 80% COD removal and power recovery within a hydraulic retention range 
of 3–33 h at an influent strength of 50–220 mg/L [93]. Septic wastewater is rich in 
COD content, which is potentially convertible to useful energy. Yazdi et al. [174] 
studied the treatment of septic wastewater in stack MFC and obtained the PD of 142
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mW/m2 from three parallel connected units [174]. Urine in another study was used 
as MFC substrate to generate electric output and simultaneously recover struvite, a 
phosphate fertiliser present in urine [176]. 

Further, the decomposition of organic waste and rainwater percolation at land-
fills sites generates organic constituent rich waste called Landfill Leachate. Landfill 
Leachate is heavily polluted wastewater that contains organic/inorganic and heavy 
metal waste capable of heavily contaminating groundwater through percolation. 
MFC can potentially treat this waste to generate power output. In one of such study, 
leachate was treated in a SCMFC to obtain a maximum open circuit potential and 
specific PD of 1.29 V and 1513 mW/m2. The results also revealed that the volu-
metric PD increase with increase in surface area while area-specific PD decrease 
with increase in electrode surface area [135]. Moharir and Tembhurkar [108] studied 
the effect of recirculating food waste leachate anolyte to generate the highest PD 
of 29.23 mW/m2 and achieving COD removal efficiency of 65.76% suggesting an 
increase in PD and COD removal on anolyte recirculation [108]. 

Textile industry is one of the largest and most complex industries generating tonns 
of recalcitrant toxic waste every year that is rich in organic content and a potential 
resource of energy. Azo dyes are the most commonly used dye (making upto 60%) in 
textile industry that is extremely toxic, carcinogenic and mutagenic in nature. These 
factors make textile wastewater a priority candidate among wastewater treatment 
researchers. MFC has been widely employed in dye treatment. Khan et al. [70] 
successfully treated two azo dyes viz. Reactive Orange 16 and Acid Navy Blue R 
in MFC with simultaneous energy recovery [70]. Congo Red has been treated in the 
presence of 3 different co-substrate (glucose, acetate and ethanol) and observed the 
highest PD of 103 mW/m2 with glucose followed by acetate and ethanol respectively 
[16]. In a recently conducted study, textile effluent and Scarlett RR dye were treated 
in phytobed MFC with Chrysopogon zizanioides and Typha angustifolia plants to 
enhance the COD, TDS and colour reduction [66]. 

Industrial wastewater is a huge source of contamination to water bodies affecting 
the biotic communities present in the ecosystem. A collective wastewater sample 
consisting of waste from chemical, metal, vegetable oil, glass and marble and other 
industries was treated to produce the maximum voltage output of 890 mV [2]. Other 
industrial wastewaters treated are rice mill water [10], soak liquor [121], neomycin 
sulphate antibiotic [18] and surgical cotton industry [141]. A comparative analysis 
of some common MFC substrates has been presented in Table 2. 

7 Terminal Electron Acceptors 

In MFCs, electron flow occurs from lower redox potential (anode) to higher redox 
potential (cathode). The availability of appropriate TEA that overcomes potential 
losses makes the cell thermodynamically favourable for electron flow. A good TEA 
reflects the properties of low cost, ease of availability, sustainability in biotic/abiotic 
environments for prolonged duration, fast kinetics and high redox potential [56]. The
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most commonly used TEA in MFC by far is oxygen owing to its easy availability, 
high redox potential and sustainable nature. However, a wide range of alternate TEAs 
have been studied in MFCs like dyes, metal ions and others. The TEA employed in 
MFCs can be broadly divided into inorganic and organic compounds. Oxygen is the 
most widely used inorganic electron acceptor and has played the role of TEA in 
various studies [11, 41, 45, 94, 119]. It can be supplied to the electrode by either 
directly exposing electrode to the air or by aerating the cathodic compartment [147]. 
Poor oxygen-electrode interaction/contact and slow reduction rate of oxygen on plain 
carbon-based electrode limit the performance of MFC. The reduction reaction can be 
improved by modifying carbon electrodes with the help of ORR enhancing catalysts. 
The redox potential of nitrate is comparable to oxygen making it a potential TEA. 
Biologically catalysed denitrification was first performed by Clauwaert et al. [29] 
yielding the power output of 8 W/m3 and removing upto 0.146 kgNO3—Nm−3d−1 

[29]. Wang et al. [151] studied nitrate treatment and suggested that the feed-drain 
frequency enhances the nitrification-denitrification efficiency [151]. The nitrite accu-
mulation at cathode has been observed as a major issue in denitrification due to its 
health concern and should be achieved to minimise denitrification. The environmental 
conditions like pH, DO and insufficient electron donors do not significantly affect 
the nitrite accumulation. [138] modelled denitrification yielding parameter to design 
bio-cathode performing higher denitrification [138]. Wu et al. [164] design a novel 
MFC with aerated electroconductive membrane bio-cathode to improve nitrification-
denitrification [164]. Ferricyanide is another popular TEA used in various studies 
owing to its high redox potential [35, 103]. However, ferricyanide has a disadvantage 
of frequent chemical regeneration limiting its use as electron acceptor [104]. Several 
other metal ions have been reduced in MFC like Cr(VI) [54, 76], bromate (BrO3

−) 
[31], Fe(III) [80], heavy metal ions like Cu2+, Hg2+, Zn2+, Cd2+, Pb2+ and Cr2+, 
SO4 

2−, percarbonate (HCO3
−) and Mn7+ [40, 44, 54, 133, 155, 161]. Simultaneous 

nitrate and perchlorate removal has also been achieved in MFC [65]. Chlorella-based 
bio-cathode has been employed in MFC for Cd2+ removal [188]. Buffered catholytes 
especially PBS has been used in MFCs to maintain pH balance. Saline water has also 
been studied as potential catholyte [3]. Various organic contaminants have also been 
employed as TEA in cathode compartment of MFC. A variety of textile dyes have 
been used as potential electron acceptors and reduced at MFC cathode. Oon et al. 
[111] successfully employed various mono and diazo dyes as TEA and observed 
50% higher decolorisation for mono than diazo dyes [111]. Nitrobenzene, nitro-
phenol, ethanoamine have also been tested as cathodic electron acceptor generating 
significant voltage output [191, 192]. Phenol and chlorophenols (CPs) are colourless 
organic compounds that are potential carcinogens. Khan et al. have explored the 
bioremediation of these contaminants at cathode in MFCs [71, 72, 74, 75].
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8 Challenges 

MFC on many fronts has emerged as a technology, which is suitable and sustainable 
in harvesting energy from waste in an eco-friendly way. Development of commer-
cial prototypes like Cambarian innovation and initiatives of companies like Pilus 
Energy and Emefcy has brought the technology a step closer to commercialisation. 
However, issues concerning low power output, electron transfer efficiency or CE, 
understanding of suitable wastefeed and microbial processes taking place within the 
system still present challenges in scaling up of the technology. Factors like wastewater 
concentration, composition, unwanted biomass, side processes like methanogenesis, 
optimum pH, diffusion across separators, incomplete biodegradation limits the waste 
treatment in MFC [5]. 

The efficiency of electrical recovery (CE) is another major concern regarding 
MFC scaleup. Six major reasons for low CE as suggested by Pandey et al. [88, 112] 
are: 

(a) Electron diversion to non-exoelectrogens. 
(b) Substrate consumption by competitive pathways like methanogenesis. 
(c) Metabolic inhibition of biomass because of toxicant and proton buildup. 
(d) Substrate lockup of electrons. 
(e) Low transfer efficiency to/from electrodes. 
(f) Inappropriate separators causing electrolyte/oxygen diffusion to the other 

chamber. 

As the interaction of biomass and electrode plays a crucial role in MFC, designing 
appropriate electrode with high biocompatibility is a major challenge. This chapter 
has made attempts to discuss the various electrode modification advances made 
recently to design suitable electrodes that can effectively tackle fouling, corrosion 
and enhance activity. Further the cost of MFC components is still too high for practical 
implication and suitable, economically feasible alternatives are much needed to make 
the technology commercially feasible [9]. 

9 Conclusion 

Water and energy are undoubtedly the most essential contributing factors of the 
society. As per a Slovakian proverb “Water is the first and foremost medicine” and 
clean water is the basic right of all living souls inhibiting the earth. Energy on the other 
hand is a mean to derive the society forward. The continuously growing society with 
rapid industrialisation has led to one major issue of water contamination making it 
unfit for daily activities. MFC technology has earned the focus of the world research as 
a potential technique linking the basic needs of the mankind. It treats wastewater and 
harvest energy in the form of electric power from the organic/inorganic contaminants. 
MFC technology promises to be a carbon-neutral clean source of renewable energy.
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The article reviews the role of different configurational aspect of MFC on its perfor-
mance. From the article, it can be concluded that MFC can achieve high performance 
by optimising the factors such as electrode used, membrane and microbes involved, 
and selection and concentration of substrates being treated. However, for the prac-
tical implementation of this technology, further research in the field of longevity, 
system fouling, role of internal resistance and microbial kinetics needs to be deeply 
explored. 
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