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Abstract

The clinical application of stem cells continues to fascinate the scientific and
clinical communities. Despite the controversies surrounding this field, it is clear
that stem cells have revolutionized regenerative medicine. Cell therapy is a
progressively growing field that is moving fast from preclinical model develop-
ment to clinical application. In this regard, outcomes obtained from clinical trials
reveal the therapeutic potential of stem cell-based therapy that deals with unmet
medical treatment for several disorders with no therapeutic alternatives. The
application of stem cells in regenerative medicine is addressing a wide range of
clinical conditions using various types of stem cells. Mesenchymal stromal cells
(MSCs) have been established as promising candidate sources of universal donor
cells for cell therapy due to their contributions to tissue and organ homeostasis,
repair, and support by self-renewal and multi-differentiation, as well as by
their anti-inflammatory, anti-proliferative, immunomodulatory, trophic, and pro-
angiogenic properties. Various diseases have been successfully treated by MSCs
in animal models. Additionally, hundreds of clinical trials related to the potential
benefits of MSCs are in progress or have concluded satisfactorily. However,
although all MSCs are considered suitable to exert these functions, dissimilarities
have been found among MSCs derived from different tissues. The same levels of
efficacy and desired outcomes have not always been achieved in the diverse
studies that have been performed thus far. Therefore, collecting information
regarding the characteristics of MSCs obtained from different sources and the
influence of other medical and physiological conditions on MSCs is important for
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assuring the feasibility, safety, and efficacy of cell-based therapies. This chapter
will update and discuss the state of the art in MSCs’ cell-based therapies and
provide relevant information regarding factors to consider for the clinical appli-
cation of MSCs.

Keywords

Advanced therapy · Cell therapy · Clinical trial · Good manufacturing practice ·
Immunomodulation · Inflammation · Medicinal products · Mesenchymal stromal
cells · Trophic factors

Abbreviations

Ad-MSCs Adipose tissue-derived MSCs
AGEs Advanced glycation end products
ATMPs Advanced therapy medicinal products
bFGF Basic fibroblast growth factor
BM-MSCs Bone marrow-derived MSCs
CAFs Cancer-associated fibroblasts
Cas9 CRISPR-associated protein 9
CCL Chemokine (C-C motif) ligand
CFU-F Colony-forming unit fibroblast
CRISPR Clustered regularly interspaced short palindromic repeats
CXCL12 C-X-C motif chemokine 12 (or SDF1)
Dkk-1 Dickkopf-1
ECs Endothelial cells
EMA European Medicines Agency
ESCs Embryonic stem cells
EVs Extracellular vesicles
FBS Fetal bovine serum
FDA Food and Drug Administration
GM-CSF Granulocyte-macrophage colony-stimulating factor
GMP Good manufacturing practice
GPS Glycotransferase-programmed stereo substitution
GVHD Graft-versus-host diseases
GVL Graft-versus-leukemia
HCELL Hematopoietic cell E-selectin/L-selectin ligand
HGF Hepatocyte growth factor
HLA-DR Human leukocyte antigen-DR isotype
HLA-G5 Human leukocyte antigen-G5
HSCT Hematopoietic stem cell transplantation
IBMIR Instant blood-mediated inflammatory reaction
ICAM-2 Intercellular adhesion molecule 2
IDO Indoleamine-2,3-dioxygenase
IFN-γ Interferon-gamma
IGF-1 Insulin-like growth factor 1

3 Considerations for Clinical Use of Mesenchymal Stromal Cells 53



IL Interleukin
IL-1α Interleukin-1 alpha
IL-1β Interleukin-1 beta
iPSCs Induced pluripotent stem cells
ISCT International Society for Cellular Therapy
ITP Immune thrombocytopenic purpura
LFA-3 Lymphocyte function-associated antigen 3 (or CD58)
MCP-1 Monocyte chemoattractant protein 1
MHC-HLA Major histocompatibility complex-human leukocyte antigen
MMP-2 Matrix metalloproteinase 2
MSCs Mesenchymal stromal cells
PAI-1 Plasminogen activator inhibitor-1
PDGF Platelet-derived growth factor
PD-MSCs Placenta-derived MSCs
PGE-2 Prostaglandin-E2
RA Rheumatoid arthritis
SDF-1 Stromal cell-derived factor 1
SLE Systemic lupus erythematosus
SSc Systemic sclerosis
STC1 Stanniocalcin-1
TALENs Transcription activator nucleases
TbRIII Type III TGF-β receptor
TGF-β Transforming growth factor beta
TNF-α Tumor necrosis factor alpha
tPA Tissue plasminogen activator
TRAIL TNF-related apoptosis-inducing ligand
Trx1 Thioredoxin-1
TSG-6 Tumor necrosis factor-stimulated gene-6
UCB-MSCs Umbilical cord-derived MSCs
VCAM-1 Vascular cell adhesion protein 1
VEGF Vascular endothelial growth factor
ZFNs Zinc finger nucleases

Introduction

Regenerative medicine is a novel emerging medical approach that drives the current
understanding of biological and medical processes and suggests new treatments. As
defined by the European Medicines Agency (EMA) and the US Food and Drug
Administration (FDA), advanced therapies include cell and gene therapy and tissue
engineering (Iglesias-López et al. 2019). Advanced therapies open up a broad set of
translational fields and targets in areas of unmet medical need. In this regard, cell-
based therapy through the application of cells, either alone or engineered, as a
pharmacologically active substance seeks to restore the functioning of damaged

54 A. Hmadcha et al.



tissues or organs through the protection of cellular integrity, the replacement of
damaged cells, and the promotion of trophic, anti-inflammatory, and immunomod-
ulatory effects among others. However, while the progression of cell-based therapy
in early-phase clinical trials with patients has progressed promisingly, the translation
from laboratory to bedside to late-phase clinical trials has not been as rapid as
expected. It is necessary to consider that these new therapeutic alternatives also
involve unknown side effects that must be detected and characterized in-depth to
improve and ensure safety, feasibility, and efficacy of cell application (García-Bernal
et al. 2021; Hmadcha et al. 2020; Soria-Juan et al. 2019; Escacena et al. 2015;
Gálvez et al. 2013).

In this regard, mesenchymal stromal cells (MSCs) are the most common cell type
used in cell-based therapy due to their unique biological properties, including easy
expansion and culture. The MSC-Committee of the International Society for Cellular
Therapy (ISCT-MSC) first proposed that plastic-adherent cells of the bone marrow
(BM) generally described as “mesenchymal stem cells” should be defined as “multi-
potent mesenchymal stromal cells.” In contrast, the term “mesenchymal stem cells”
should be reticent for a subset of these cells that show stem cell activity by clearly
stated criteria. As the acronym MSCs may be used to define both cell populations,
the combined definition “mesenchymal stem/stromal cells” is probably more appro-
priate, especially when the “stemness” of the whole MSC population is not demon-
strated (Horwitz et al. 2005). Recently, this committee offers a position statement to
clarify the nomenclature of “mesenchymal stem/stromal cells.” The ISCT-MSC
committee continues to support the use of the acronym “mesenchymal stromal
cells” but recommends that this should be complemented by the tissue origin from
which the cells were derived, which would highlight tissue-specific properties: that
they be referred to as “stromal” unless there are rigorous in vitro and in vivo
evidence of their stemness supplemented by a robust matrix of functional assays to
demonstrate the “mesenchymal stromal cells” properties. Thus, they should not be
defined generically, but based on the intended therapeutic mode of action
(Viswanathan et al. 2019).

The MSCs are now considered as “cellular medicament” but are widely accepted
to represent a heterogeneous population of multipotent non-hematopoietic progen-
itor cells with varying degrees of stemness, which mean that they have self-renewal
and multi-differentiation abilities, the capability to differentiate into multiple cell
types, including adipocytes, chondrocytes, and osteoblasts, depending on in vitro
culture conditions (Soria-Juan et al. 2019).

The MSCs reside in almost all tissues, are found in virtually all post-natal organs
and tissues, and are derived from the mesodermal germ layer. Furthermore, MSCs
can be obtained from easily accessible sources by minimally invasive methods (e.g.,
peripheral blood, adipose tissue) and can be rapidly expanded in large scale for
clinical use (Escacena et al. 2015). This allows producing a patient-specific cellular
medicament (e.g., autologous medicinal product) within a therapeutic time window.
In addition, the possibility of obtaining MSCs from adult tissue circumvents the
ethical issues associated with the use of embryonic source (Lo and Parham 2009;
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Ramos-Zúñiga et al. 2012). MSCs are inexpensively isolated and are easily
expanded in vitro due to their fibroblastic characteristic and high adherence to
plastic. MSCs are characterized by a specific pattern of membrane markers,
consisting of the expression of CD73, D90, and CD105 and the absence of expres-
sion of CD14, CD34, CD45, and human leukocyte antigen-DR (HLA-DR), making
them promising candidate sources of donor cells for use in cell-based therapy and
transplantation (Horwitz et al. 2005).

MSCs function in tissue repair and support, contributing to tissue homeostasis.
Even though the exact origin of MSCs remains elusive, there is strong evidence that
MSC progenitors are found in the perivascular zone (Escacena et al. 2015) in an
environment that promotes a quiescent state, ensuring the maintenance of homeostasis.
Upon tissue damage, MSCs enter the bloodstream and are attracted to
pro-inflammatory cytokines in the areas of injury. Therefore, MSCs have been termed
“guardians of inflammation” (Prockop and Oh 2012). The cytoskeleton, extracellular
matrix molecules, cell-cell contacts, adhesion ligands, and receptors are involved in
the repair process. While the exact mechanisms related to MSCs’migration to specific
sites and through the endothelial cell layer are still unknown, chemokines and their
receptors may play a role in this process (Hmadcha et al. 2020; Petrie et al. 2009).

Furthermore, MSCs’ survival, permanent engraftment, and differentiation into
resident cells were thought, initially, to be necessary to obtain the beneficial effects
of these cells, and clinical experience and several experiments have shown that one
of the primary functions of MSCs, most likely their critical function, is to secrete
several bioactive molecules related to the microenvironment “niche” in which these
cells are located. Consequently, the secretome reproduces most of the effects of
MSCs transiently; in this sense, MSCs secrete a wide variety of pro-inflammatory
and anti-inflammatory cytokines, chemokines, growth factors, and prostaglandins
under resting and inflammatory conditions (Hmadcha et al. 2009).

These molecules are associated with immunomodulation (indoleamine-2,3-
dioxygenase (IDO), prostaglandin-E2 (PGE-2), transforming growth factor beta
(TGF-β), human leukocyte antigen-G5 (HLA-G5), and hepatocyte growth factor
(HGF)), anti-apoptosis (vascular endothelial growth factor (VEGF), granulocyte-
macrophage colony-stimulating factor (GM-CSF), TGF-β, stanniocalcin-1 (STC1),
and insulin-like growth factor 1 (IGF-1)), angiogenesis (VEGF, monocyte
chemoattractant protein 1 (MCP-1), and IGF-1), local stem and progenitor cell growth
and differentiation support (CSF complex, angiopoietin-1, and stromal cell-derived
factor 1 (SDF-1)), anti-fibrosis (HGF and basic fibroblast growth factor (bFGF)), and
chemoattraction (chemokine (C-C motif) ligands 2 and 4 (CCL2, CCL4) and C-X-C
motif chemokine 12 (CXCL12 also called SDF1)) (Meirelles Lda et al. 2009).

MSCs display a low expression of major histocompatibility complex class I
human leukocyte antigen (MHC-HLA class I), while they are constitutively negative
for HLA-class II; likewise, they do not express costimulatory molecules such as
CD80, CD86, CD40, and CD40L. However, MSCs share the expression of surface
markers, such as vascular cell adhesion protein 1 (VCAM-1), intercellular adhesion
molecule 2 (ICAM-2), and lymphocyte function-associated antigen 3 (LFA-3 or
CD58) with the thymic epithelium, which is crucial for the interaction with T cells
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(Hmadcha et al. 2009; Le Blanc 2003). Whereas MSCs remain in a quiescent state
showing anti-apoptotic properties and contributing to homeostasis, in an inflamma-
tory environment (presence of IFN-γ, TNF-α, IL-1α, and IL-1β), they begin to
exercise their immunomodulation abilities, inhibiting the proliferation of effector
cells and their cytokine production. In the same way, MSCs can block various
immune cell functions (Hmadcha et al. 2009; Cagliani et al. 2017).

There is a complex “cross-talk” interaction between MSCs and endothelial cells
(ECs). MSCs increase the proliferation and migration of the ECs, promoting early
events of angiogenesis and decreasing the permeability of the monolayer of the ECs.
In direct co-cultures of MSCs and ECs,MSCs increased the persistence of pre-existing
blood vessels in a dose-dependent manner (Duffy et al. 2009). Moreover, beneficial
therapeutic effects of the use of conditioned media of MSCs have been reported; even
it is therapeutically better than the cells themselves (Burlacu et al. 2013; Shrestha et al.
2013) and to stimulate the proliferation of local ECs (Potapova et al. 2007). Likewise,
in addition to direct “cell-cell” contact, speculation has been made with a possible
transfer of mitochondria or vesicular components (secretome) that contain mRNA,
microRNA, and proteins (Tan et al. 2021). Not only have this, the exosomes, secretory
extracellular vesicles (EVs) from MSCs, also been identified to produce the same
immunomodulatory activity as MSCs (Haider and Aramini 2020). Targeting the
MSCs’ secretome as an acellular therapeutic agent could provide several advantages
over the use of cell-based therapies for various diseases paving the way for cell-free
therapy (Haider and Aslam 2018; Bari et al. 2019).

Altogether, these features constitute an area of research in expansion in the last
decade and make MSCs an eligible therapeutic candidate to be evaluated within
clinical trials for a plethora of diseases such as diabetes and diabetes complication
and cardiovascular and neurological diseases; in immune-mediated disorders, such
as graft-versus-host diseases (GVHD), multiple sclerosis (MS), Crohn’s disease
(CD), and osteoarthritis (OA); and even in immune-dysregulating infectious diseases
such as the novel coronavirus disease 2019 (COVID-19) (see ▶Chap. 6, “Mesen-
chymal Stromal Cells for COVID-19 Critical Care Patients,” of this book for review
on COVID-19).

When writing this chapter (May 2021), 1.276 � 103 publicly and privately funded
clinical studies worldwide in which MSCs have been used have been reported and
registered in the US National Library of Medicine database (NIH-ClinicalTrials.gov).
Although the therapeutic efficacy of MSCs has been demonstrated in different disease
animal models and numerous human phase 1/2 clinical trials and generally commu-
nicated, only very few (84 studies) phase 3/4 clinical trials using MSCs are registered
(Table 1) and have demonstrated the expected potential therapeutic benefit. Almost all
registered clinical trials are early phase 1/2 with safety as the primary objective. For
efficacy and effectiveness issues, other advanced phases are mandatory. In all cases,
one cannot consider these issues (efficacy nor effectiveness) unless phase 3 clinical
trials are developed (García-Bernal et al. 2021) (Fig. 1).

Even though MSCs and their EVs have been shown to have high potential
benefits in regenerative medicine and cell-free-based therapy, their clinical applica-
tion remains controversial; thus, considerations and determination of possible side
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Table 1 Public registry list of phase 3/4 clinical trials using MSCs as cell-based therapy (NIH-
ClinicalTrial.gov)

NCT number Title Status Phases URL

NCT03106662 Mesenchymal Stem Cell
Infusion in Haploidentical
Hematopoietic Stem Cell
Transplantation in Patients with
Hematological Malignancies

Completed Phase 3 https://
ClinicalTrials.
gov/show/
NCT03106662

NCT04351932 Bone Marrow Versus Adipose
Autologous Mesenchymal Stem
Cells for the Treatment of Knee
Osteoarthritis

Not yet
recruiting

Phase 3 https://
ClinicalTrials.
gov/show/
NCT04351932

NCT02755922 Bone Regeneration with
Mesenchymal Stem Cells

Completed Phase 3 https://
ClinicalTrials.
gov/show/
NCT02755922

NCT04224207 Management of Retinitis
Pigmentosa by Mesenchymal
Stem Cells by Wharton’s Jelly
Derived Mesenchymal Stem
Cells

Completed Phase 3 https://
ClinicalTrials.
gov/show/
NCT04224207

NCT01854125 Autologous Mesenchymal Stem
Cell Transplantation in Cirrhosis
Patients with Refractory Ascites

Unknown
status

Phase 3 https://
ClinicalTrials.
gov/show/
NCT01854125

NCT02218437 Treatment Protocol of Child
SAAwith the Injection of
Mesenchymal Stem Cells
(Umbilical Cord Derived)

Unknown
status

Phase 4 https://
ClinicalTrials.
gov/show/
NCT02218437

NCT01716481 The STem Cell Application
Researches and Trials In
NeuroloGy-2 (STARTING-2)
Study

Unknown
status

Phase 3 https://
ClinicalTrials.
gov/show/
NCT01716481

NCT00366145 Efficacy and Safety of Adult
Human Mesenchymal Stem
Cells to Treat Steroid Refractory
Acute Graft Versus Host Disease

Completed Phase 3 https://
ClinicalTrials.
gov/show/
NCT00366145

NCT03766217 Bone Tissue Engineering with
Dental Pulp Stem Cells for
Alveolar Cleft Repair

Completed Phase 3 https://
ClinicalTrials.
gov/show/
NCT03766217

NCT04689152 Clinical Trial to Evaluate the
Efficacy and Safety of Cellgram-
LC Administration in Patients
with Alcoholic Cirrhosis

Not yet
recruiting

Phase 3 https://
ClinicalTrials.
gov/show/
NCT04689152

NCT01676441 Safety and Efficacy of
Autologous Mesenchymal Stem
Cells in Chronic Spinal Cord
Injury

Terminated Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT01676441

(continued)
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Table 1 (continued)

NCT number Title Status Phases URL

NCT01157403 Autologous Transplantation of
Mesenchymal Stem Cells for
Treatment of Patients with Onset
of Type 1 Diabetes

Unknown
status

Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT01157403

NCT03325504 A Comparative Study of 2 Doses
of BM Autologous H-MSC
+Biomaterial vs Iliac Crest
AutoGraft for Bone Healing in
Non-Union

Recruiting Phase 3 https://
ClinicalTrials.
gov/show/
NCT03325504

NCT01652209 To Evaluate the Efficacy and
Safety of Hearticelgram®-AMI
in Patients with Acute
Myocardial Infarction

Recruiting Phase 3 https://
ClinicalTrials.
gov/show/
NCT01652209

NCT01873625 Transplantation of Bone Marrow
Derived Mesenchymal Stem
Cells in Affected Knee
Osteoarthritis by Rheumatoid
Arthritis

Completed Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT01873625

NCT01392105 Safety and Efficacy of
Intracoronary Adult Human
Mesenchymal Stem Cells After
Acute Myocardial Infarction

Completed Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT01392105

NCT00543374 Extended Evaluation of
PROCHYMAL® Adult Human
Stem Cells for Treatment-
Resistant Moderate-to-Severe
Crohn’s Disease

Completed Phase 3 https://
ClinicalTrials.
gov/show/
NCT00543374

NCT01394432 ESTIMATION Study for
Endocardial Mesenchymal Stem
Cells Implantation in Patients
After Acute Myocardial
Infarction

Unknown
status

Phase 3 https://
ClinicalTrials.
gov/show/
NCT01394432

NCT02442817 Linagliptin and Mesenchymal
Stem Cells: A Pilot Study

Completed Phase 4 https://
ClinicalTrials.
gov/show/
NCT02442817

NCT00482092 Evaluation of PROCHYMAL®

Adult Human Stem Cells for
Treatment-Resistant Moderate-
to-Severe Crohn’s Disease

Completed Phase 3 https://
ClinicalTrials.
gov/show/
NCT00482092

NCT01526850 Efficacy and Safety Study of
Allogenic Mesenchymal Stem
Cells for Patients with Chronic
Graft Versus Host Disease

Unknown
status

Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT01526850

NCT04421274 Bone Marrow Mesenchymal
Stem Cells Transfer in Patients
with ST-Segment Elevation
Myocardial Infarction

Completed Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT04421274
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Table 1 (continued)

NCT number Title Status Phases URL

NCT03818737 Multicenter Trial of Stem Cell
Therapy for Osteoarthritis
(MILES)

Active, not
recruiting

Phase 3 https://
ClinicalTrials.
gov/show/
NCT03818737

NCT02223897 Mesenchymal Stem Cells
Transplantation for Ischemic-
Type Biliary Lesions

Unknown
status

Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT02223897

NCT00891501 The Use of Autologous Bone
Marrow Mesenchymal Stem
Cells in the Treatment of
Articular Cartilage Defects

Unknown
status

Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT00891501

NCT01873547 Different Efficacy Between
Rehabilitation Therapy and
Stem Cells Transplantation in
Patients with SCI in China

Completed Phase 3 https://
ClinicalTrials.
gov/show/
NCT01873547

NCT04146519 Parkinson’s Disease Therapy
Using Cell Technology

Recruiting Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT04146519

NCT04243681 Combination of Autologous
MSC and HSC Infusion in
Patients with Decompensated
Cirrhosis

Completed Phase 4 https://
ClinicalTrials.
gov/show/
NCT04243681

NCT04297813 Efficacy in Alveolar Bone
Regeneration with Autologous
MSCs and Biomaterial in
Comparison to Autologous
Bone Grafting

Recruiting Phase 3 https://
ClinicalTrials.
gov/show/
NCT04297813

NCT02334878 Stem Cell Therapy for Treatment
of Female Stress Urinary
Incontinence

Completed Phase 3 https://
ClinicalTrials.
gov/show/
NCT02334878

NCT01759212 Left Ventricular Assist Device
Combined with Allogeneic
Mesenchymal Stem Cells
Implantation in Patients with
End-Stage Heart Failure

Active, not
recruiting

Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT01759212

NCT04877067 Therapy of Toxic Optic
Neuropathy via Combination of
Stem Cells with Electromagnetic
Stimulation

Completed Phase 3 https://
ClinicalTrials.
gov/show/
NCT04877067

NCT04366063 Mesenchymal Stem Cell
Therapy for SARS-CoV-2-
Related Acute Respiratory
Distress Syndrome

Recruiting Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT04366063

NCT03990805 A Phase 3 Study to Evaluate the
Efficacy and Safety of JointStem
in Treatment of Osteoarthritis

Completed Phase 3 https://
ClinicalTrials.
gov/show/
NCT03990805
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Table 1 (continued)

NCT number Title Status Phases URL

NCT02672267 A Study of Allogeneic Low
Oxygen Mesenchymal Bone
Marrow Cells in Subjects with
Myocardial Infarction

Completed Phase 3 https://
ClinicalTrials.
gov/show/
NCT02672267

NCT00851162 Using Mesenchymal Stem Cells
to Fill Bone Void Defects in
Patients with Benign Bone
Lesions

Withdrawn Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT00851162

NCT01803347 Clinical Trial to Evaluate the
Efficacy and Safety of Stem
Cells

Completed Phase 3 https://
ClinicalTrials.
gov/show/
NCT01803347

NCT04612465 Clinical Study to Evaluate
Efficacy and Safety of ASC and
Fibringlue or Fibringlue in
Patients with Crohn’s Fistula

Recruiting Phase 3 https://
ClinicalTrials.
gov/show/
NCT04612465

NCT02241018 MSCs Combined with CD25
Monoclonal Antibody and
Calcineurin Inhibitors for
Treatment of Steroid-Resistant
aGVHD

Unknown
status

Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT02241018

NCT04427930 Follow-Up Study for
Participants of JointStem Phase
3 Clinical Trial

Enrolling
by
invitation

Phase 3 https://
ClinicalTrials.
gov/show/
NCT04427930

NCT03633565 Comparative Study of Strategies
for Management of Duchenne
Myopathy (DM)

Not yet
recruiting

Phase 4 https://
ClinicalTrials.
gov/show/
NCT03633565

NCT03389919 Intraosseous Administration of
Mesenchymal Stromal Cells for
Patients with Graft Failure After
Allo-HSCT

Recruiting Phase 3 https://
ClinicalTrials.
gov/show/
NCT03389919

NCT04368806 A Phase 2b/3a Study to Evaluate
the Efficacy and Safety of
JointStem in Patients Diagnosed
as Knee Osteoarthritis

Not yet
recruiting

Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT04368806

NCT03370874 Clinical Study to Evaluate
Efficacy and Safety of ALLO-
ASC-DFU in Patients with
Diabetic Foot Ulcers

Active, not
recruiting

Phase 3 https://
ClinicalTrials.
gov/show/
NCT03370874

NCT03631589 MSC for Severe aGVHD Recruiting Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT03631589

NCT03280056 Safety and Efficacy of Repeated
Administrations of NurOwn® in
ALS Patients

Completed Phase 3 https://
ClinicalTrials.
gov/show/
NCT03280056
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Table 1 (continued)

NCT number Title Status Phases URL

NCT04738981 Efficacy and Safety of
UC-MSCs for the Treatment of
Steroid-Resistant aGVHD
Following Allo-HSCT

Not yet
recruiting

Phase 3 https://
ClinicalTrials.
gov/show/
NCT04738981

NCT02809781 A Pilot Study of MSCs Iufusion
and Etanercept to Treat
Ankylosing Spondylitis

Unknown
status

Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT02809781

NCT01041001 Study to Compare Efficacy and
Safety of Cartistem and
Microfracture in Patients with
Knee Articular Cartilage Injury

Completed Phase 3 https://
ClinicalTrials.
gov/show/
NCT01041001

NCT02240992 MSCs With or Without
Peripheral Blood Stem Cell for
Treatment of Poor Graft
Function and Delayed Platelet
Engraftment

Unknown
status

Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT02240992

NCT01541579 Adipose Derived Mesenchymal
Stem Cells for Induction of
Remission in Perianal
Fistulizing Crohn’s Disease

Completed Phase 3 https://
ClinicalTrials.
gov/show/
NCT01541579

NCT03905824 The Effectiveness of Adding
Allogenic Stem Cells After
Traditional Treatment of
Osteochondral Lesions of the
Talus

Recruiting Phase 3 https://
ClinicalTrials.
gov/show/
NCT03905824

NCT01233960 Evaluation of PROCHYMAL®

for Treatment-Refractory
Moderate-to-Severe Crohn’s
Disease

Completed Phase 3 https://
ClinicalTrials.
gov/show/
NCT01233960

NCT02291770 Treatment of Chronic Graft-
Versus-Host Disease with
Mesenchymal Stromal Cells

Unknown
status

Phase 3 https://
ClinicalTrials.
gov/show/
NCT02291770

NCT01929434 Efficacy of Stem Cell
Transplantation Compared to
Rehabilitation Treatment of
Patients with Cerebral Paralysis

Completed Phase 3 https://
ClinicalTrials.
gov/show/
NCT01929434

NCT01759823 Bone Marrow Derived Stem Cell
Transplantation in T2DM

Completed Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT01759823

NCT01626677 Follow-Up Study of
CARTISTEM® Versus
Microfracture for the Treatment
of Knee Articular Cartilage
Injury or Defect

Completed Phase 3 https://
ClinicalTrials.
gov/show/
NCT01626677
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Table 1 (continued)

NCT number Title Status Phases URL

NCT03404063 Cardiovascular Clinical Project
to Evaluate the Regenerative
Capacity of CardioCell in
Patients with Acute Myocardial
Infarction (AMI)

Completed Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT03404063

NCT04219241 Clinical Extension Study for
Safety and Efficacy Evaluation
of Cellavita-HD Administration
in Huntington’s Patients

Not yet
recruiting

Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT04219241

NCT04018729 Cell Therapy Associated with
Endobronchial Valve

Not yet
recruiting

Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT04018729

NCT04230902 Effects of αMAT Versus Steroid
Injection in Knee Osteoarthritis
(STα MAT-Knee Study)

Recruiting Phase 3 https://
ClinicalTrials.
gov/show/
NCT04230902

NCT03418233 Randomized Clinical Trial to
Evaluate the Regenerative
Capacity of CardioCell in
Patients with Chronic Ischaemic
Heart Failure (CIHF)

Completed Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT03418233

NCT03423732 Cardiovascular Clinical Project
to Evaluate the Regenerative
Capacity of CardioCell in
Patients with No-option Critical
Limb Ischemia (N-O CLI)

Active, not
recruiting

Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT03423732

NCT03112122 Study for the Treatment of the
Bone Marrow Edema:Core
Decompression VS Bone
Marrow Concentrate (BMC) VS
Bone Substitute

Terminated Phase 4 https://
ClinicalTrials.
gov/show/
NCT03112122

NCT02138331 Effect of Microvesicles and
Exosomes Therapy on β-Cell
Mass in Type I Diabetes Mellitus
(T1DM)

Unknown
status

Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT02138331

NCT03042572 Allogeneic Mesenchymal
Stromal Cells for Angiogenesis
and Neovascularization in
No-option Ischemic Limbs

Not yet
recruiting

Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT03042572

NCT04247945 Co-transplantation of MSC in
the Setting of Allo-HSCT

Recruiting Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT04247945

NCT04745299 Evaluation the Efficacy and
Safety of Mutiple
Lenzumestrocel (Neuronata-R®

Inj.) Treatment in patients with
ALS

Recruiting Phase 3 https://
ClinicalTrials.
gov/show/
NCT04745299
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Table 1 (continued)

NCT number Title Status Phases URL

NCT04126603 Impact of Semaglutide on CD34
+ EPC and Fat Derived MSC

Recruiting Phase 3 https://
ClinicalTrials.
gov/show/
NCT04126603

NCT04371393 MSCs in COVID-19 ARDS Active, not
recruiting

Phase 3 https://
ClinicalTrials.
gov/show/
NCT04371393

NCT04310215 Efficacy and Safety of Allogenic
Stem Cell Product
(CARTISTEM®) for
Osteochondral Lesion of Talus

Enrolling
by
invitation

Phase 3 https://
ClinicalTrials.
gov/show/
NCT04310215

NCT04138017 ViviGen Cellular Bone Matrix
for Hindfoot or Ankle
Arthrodesis

Enrolling
by
invitation

Phase 4 https://
ClinicalTrials.
gov/show/
NCT04138017

NCT03747822 Evaluation of Soft Tissue Profile
Changes Following Autogenous
Fat or Onlay
Polyetheretherketone (PEEK)
Augmentation Versus Sliding
Genioplasty for Correction of
Deficient Chin

Unknown
status

Phase 3 https://
ClinicalTrials.
gov/show/
NCT03747822

NCT04569409 Clinical Study to Evaluate
Efficacy and Safety of ALLO-
ASC-DFU in Patients with
Diabetic Wagner Grade 2 Foot
Ulcers

Recruiting Phase 3 https://
ClinicalTrials.
gov/show/
NCT04569409

NCT01926327 The Effect of Platelet-Rich
Plasma in Patients with
Osteoarthritis of the Knee

Completed Phase 3 https://
ClinicalTrials.
gov/show/
NCT01926327

NCT04864509 The Effects of Melatonin
Treatment on Bone, Marrow,
Sleep and Blood Pressure

Not yet
recruiting

Phase 4 https://
ClinicalTrials.
gov/show/
NCT04864509

NCT02448849 Autologous BM-MSC
Transplantation in Combination
with Platelet Lysate (PL) for
Nonunion Treatment

Unknown
status

Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT02448849

NCT04541680 Nintedanib for the Treatment of
SARS-Cov-2 Induced
Pulmonary Fibrosis

Recruiting Phase 3 https://
ClinicalTrials.
gov/show/
NCT04541680

NCT01529008 Study on Autologous
Osteoblastic Cells Implantation
to Early Stage Osteonecrosis of
the Femoral Head

Terminated Phase 3 https://
ClinicalTrials.
gov/show/
NCT01529008
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effects need to be addressed to optimize the clinical application of this double-edged
sword cellular medicament. This chapter updates and discusses the state of the art in
MSCs’ cell-based therapies and provides relevant information regarding factors to
consider for the clinical application of MSCs.

Biological Characteristics

Phenotypic Profile

Since Friedenstein and colleagues first isolated a colony-forming unit fibroblast
(CFU-F) from BM, BM has been widely used as a source of MSCs for many
investigations and clinical trials. In addition to BM (BM-derived MSCs), MSCs
have been isolated from different tissues, such as adipose tissue (Ad-MSCs),
umbilical cord (UCB-MSCs), dental pulp, synovial liquid, and amniotic fluid.
All these tissues vary in their cellular components, signals, and factors secreted,
resulting in different immediate microenvironment conditions, thus developing

Table 1 (continued)

NCT number Title Status Phases URL

NCT00562497 Efficacy and Safety of
Prochymal™ Infusion in
Combination with Corticosteroids
for the Treatment of Newly
Diagnosed Acute Graft Versus
Host Disease (GVHD)

Completed Phase 3 https://
ClinicalTrials.
gov/show/
NCT00562497

NCT02849613 Regenerative Stem Cell Therapy
for Stroke in Europe

Withdrawn Phase 2|
Phase 3

https://
ClinicalTrials.
gov/show/
NCT02849613

NCT04629833 Treatment of Steroid-Refractory
Acute Graft-Versus-Host
Disease with Mesenchymal
Stromal Cells Versus Best
Available Therapy

Not yet
recruiting

Phase 3 https://
ClinicalTrials.
gov/show/
NCT04629833

NCT02336230 A Prospective Study of
Remestemcel-L, Ex-Vivo
Cultured Adult Human
Mesenchymal Stromal Cells, for
the Treatment of Pediatric
Patients Who Have Failed to
Respond to Steroid Treatment
for Acute GVHD

Completed Phase 3 https://
ClinicalTrials.
gov/show/
NCT02336230

NCT02032004 Efficacy and Safety of Allogeneic
Mesenchymal Precursor Cells
(Rexlemestrocel-L) for the
Treatment of Heart Failure

Completed Phase 3 https://
ClinicalTrials.
gov/show/
NCT02032004
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several physiological niches (Hmadcha et al. 2009; Escacena et al. 2015).
Although isolated and long-term cultured MSCs of most tissues show similar
immunophenotypic characteristics, some differences have been found among
MSCs of different tissue origins according to data obtained by in vitro experi-
ments. In 2006, the International Society for Cellular Therapy (ISCT) published
the minimal criteria to define MSCs by nomenclature and by biological character-
istics to allow studies from different groups to be compared and contrasted. These
criteria include the co-expression of markers such as CD73, CD90, and CD105, a
lack of expression of hematopoietic markers (CD45, CD34, and CD14) and
HLA-DR, multipotent differentiation potential, and adherence to plastic (Horwitz
et al. 2005). However, several researchers have noted that Ad-MSCs express CD34
and CD54 in early passages and have lower expression of CD106 and that
umbilical cord blood-derived MSCs (UCB-MSCs) express CD90 and CD105.
Other markers have been used in different studies, and other differences have
emerged, such as VEGFR-2 (Flk-1) expression, which was significantly higher
in periosteum-derived cells than in adipose tissue- and muscle-derived cells, or the
rate of NGFR positivity, which was much higher in muscle-derived cells than in
other mesenchymal tissue-derived cells (Escacena et al. 2015).

Although some immunophenotypic differences have been documented, many
researchers consider that these differences could be due to distinct extraction
methods and different culture methodologies, resulting in variations of MSC surface
markers. Therefore, this chapter aimed to investigate markers and characteristics that
are more specific to select better sources of MSCs for clinical applications. Likewise,
expanding the cells in vitro is necessary to obtain the desired numbers for therapeutic
approaches. Changes in the proteomic phenotype of MSCs have been observed
during high passages, although no proper approaches to examine the state of cells
continuously during long-term in vitro culture have been established (Capra et al.
2012). Some researchers ascribe these variations to the adaptation of cells to the
environment; thus, determining the biomolecular markers that are involved in these
variations is essential for obtaining a better phenotypic characterization of these cells
and thus for achieving more effective cell therapy in the future (Escacena et al.
2015).

�

Fig. 1 (continued) article published under CC-BY terms). Abbreviations: bFGF basic fibroblast
growth factor, CXCL12 C-X-C motif chemokine 12, EPO erythropoietin, GM-CSF granulocyte-
macrophage colony-stimulating factor, HGF hepatocyte growth factor, HLA-DR major histocom-
patibility complex class II DR, iDC immature dendritic cell, IDO indoleamine-2,3-dioxygenase,
IGF1 insulin-like growth factor 1, IL-10 interleukin-10, IL-12 interleukin-12, IL-4 interleukin-4,
IL-6 interleukin-6, INF-γ interferon-γ, iNOS inducible nitric oxide synthase, KGF keratinocyte
growth factor, MCP1 monocyte chemoattractant protein 1, MIP macrophage inflammatory protein,
MMP matrix metalloproteinases, MN monocyte, NK natural killer cell, SFRP2 secreted frizzled-
related protein 2, STC1 stanniocalcin 1, TF tissue factor, TGF-β transforming growth factor beta,
TIMP tissue inhibitor of metalloproteinases, TNF-α tumor necrosis factor α, TRAIL TNF-related
apoptosis-inducing ligand, Treg regulatory T cell, VEGF vascular endothelial growth factor
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MSCs’ Proliferation

The proliferative activity of MSCs is another feature that may be affected by the
different origins of MSCs. The rate and persistence of MSC proliferation appear to
vary between source tissues. MSCs are considered adult stem cells, and unlike
embryonic stem cells (ESCs), these cells have a limited proliferative capacity.
Physiological niches maintain adult stem cells in an undifferentiated state; however,
when MSCs are cultured in vitro, they age, which affects their therapeutic properties,
such as alterations in phenotype, differentiation potential, global gene expression
patterns, miRNA profiles, and even chromosomal abnormalities, particularly after
long-term culture or when cells of multiple doublings are used (Escacena et al.
2015). Large numbers of MSCs are needed for therapeutic applications, and in vitro
expansion is required to produce the desired MSC numbers. In vivo, MSCs represent
0.0001% of nucleated BM cells, and their number decreases with the donor’s age.
The quantity of MSCs (CFU-Fs) among nucleated BM cells decreases with age from
one MSC in 104 BM cells in newborn to one MSC in 105 cells in teenagers and one
MSC in 106 cells in older individuals (Caplan 2009).

Furthermore, MSCs from older human donors differ significantly from younger
donors in morphology, replicative lifespan, doubling time, healing capacity, and
differentiation potential. Sufficient evidence has indicated that MSCs from older
donors have limited therapeutic efficacy. Some studies have suggested that the
difference between preclinical and clinical findings is due to the donor age
(Stenderup et al. 2003; Escacena et al. 2015). Therefore, considering that several
age-related diseases exist and that elderly patients are potential users of cell therapy,
understanding the molecular and biological effects of aging on MSCs is essential for
developing safe and effective MSC-based autologous cell therapy. Meanwhile, the
use of allogeneic MSCs may be a treatment option for these specific patients. As
commented below, MSCs elude allogeneic rejection, and their infusion is feasible
and well-tolerated, with no adverse effects (McAuley et al. 2014; Liang et al. 2010).

Differentiation Capacity

MSCs can differentiate in vitro into several mesenchymal lineages, including adi-
pose tissue, bone, cartilage, and muscle (Pittenger et al. 1999; Prockop 1997; Bruder
et al. 1997). Furthermore, MSCs can differentiate into ECs, neurons, and glial cells
because MSCs express genes related to specific lineages rather than those of the
mesenchymal lineage (Woodbury et al. 2002). Although multilineage differentiation
is another minimal criterion advised by the ISCT and undoubtedly represents a
fundamental property of MSCs, this ability depends primarily on the source tissue
from which these cells are derived. As such, Sakaguchi and colleagues (Sakaguchi
et al. 2005) compared human MSCs isolated from BM, synovium, periosteum,
skeletal muscle, and adipose tissue. The cells were expanded by similar processes;
synovium-derived cells had the most remarkable ability for chondrogenesis; adi-
pose- and synovium-derived cells, for adipogenesis; and BM-, synovium-, and
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periosteum-derived cells, for osteogenesis. In another comparative analysis,
UCB-MSCs showed no adipogenic differentiation capacity compared to BM- and
Ad-MSCs (Kern et al. 2006).

As discussed by Horwitz (Horwitz et al. 2002), who used differentiated MSCs in
a study to test the regeneration of damaged tissues, BM-derived MSCs can engraft
after transplantation, differentiate to functional osteoblasts, and contribute to the
formation of new dense bone in children with osteogenesis imperfecta. Most likely,
the microenvironment in which MSCs are transplanted directly influences in their
distinct differentiation pathways. New insights into the biological characteristics of
MSCs are needed to achieve future therapies.

Cellular Transformation

In general, successive passages or long-term cultures induce genetic instability and
cell transformation. Several authors have described that MSCs cultivated in vitro can
be expanded multiple times without an apparent loss of differentiation potential or
chromosomal alterations and even that long-term MSC cultures can develop chro-
mosomal abnormalities but without an obvious potential for transformation (Koç
et al. 2000; Le Blanc et al. 2004; Ringdén et al. 2006; Fang et al. 2006; Ning et al.
2008). Although no tumor formation in humans has been reported after the admin-
istration of MSCs, several factors must be considered that can contribute signifi-
cantly to the induction of cytogenetic abnormalities, such as aspects related to the
manufacturing process of the cellular medicine (e.g., culture conditions and duration
of cell expansion) and heterogeneity of the MSC population (e.g., cells in different
stages of duplication). The tumorigenic potential of a cell therapy medicament may
depend on intrinsic and extrinsic factors, such as the administration site in the patient
(due to the receptor’s microenvironment) and/or the manipulation of the culture
ex vivo.

Mechanism of Action

Cell Migration Toward Damaged Tissues

The success of an advanced therapy medicinal product initially depends on its ability
to reach target tissues. MSCs possess inherent tropism toward damaged sites con-
trolled by many factors and mechanisms, including chemoattractant signals. For
instance, the C-X-C motif chemokine ligand 12 (CXCL12) is a frequent triggering
factor at the injury site. It has been demonstrated that a subpopulation of MSCs
expresses the C-X-C chemokine receptor type 4 (CXCR4) that binds to its ligand, the
CXCL12, to mediate cell migration (Wynn et al. 2004; Ma et al. 2015). Aside from
CXCR4, MSCs express other chemokine receptors, such as CCR1, CCR2, CCR4,
CCR7, CCR8, CCR9, CCR10, CXCR1, CXCR2, CXCR3, CXCR4, CXCR5,
CXCR6, and CX3CR1 (Sordi et al. 2005; Von Lüttichau et al. 2005; Honczarenko
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et al. 2006; Ringe et al. 2007). These receptors are essential to respond to triggering
factors at the site of injury. In addition, MSCs also express cell adhesion molecules,
including CD49d, CD44, CD54, CD102, and CD106 (De Ugarte et al. 2003). These
chemokines and cell adhesion molecules orchestrate the mobilization of MSCs’
injury sites in a similar manner to white blood cells (Kolaczkowska and Kubes
2013). MSC mobilization is a multistep process that encompasses the attachment of
free circulating MSCs in the bloodstream to transmigrate between ECs with the
ultimate goal of migrating and engrafting to the target tissue.

Tissue Repair

Once recruited in the injured site, MSCs contribute to tissue repair and regenera-
tion by activating several mechanisms. A growing body of research has demon-
strated that MSCs display pleiotropic effects, which give them enormous
therapeutic potential. MSCs secrete various mediators of tissue repair in response
to injury signals, including anti-apoptotic, anti-inflammatory, immunomodulatory,
anti-fibrotic, and angiogenic agents (Caplan and Dennis 2006; Meirelles Lda et al.
2009; Maltman et al. 2011; Escacena et al. 2015). Among pleiotropic effects, anti-
inflammatory and immunomodulatory properties are mainly responsible for the
therapeutic benefits of MSCs. As sensors of inflammation, MSCs release soluble
factors, such as TGF-β, IDO, TNF-α, IL-10, and INF-γ, which interfere with the
immune system and modify the inflammatory landscape (Prockop and Oh 2012).
Pivotal studies showed that MSCs inhibit the proliferation of T and B cells
(Di Nicola et al. 2002; Corcione et al. 2006; Song et al. 2019), suppress the
activation of natural killer cells (Sotiropoulou et al. 2006), and prevent the gener-
ation and maturation of monocyte-derived dendritic cells (English et al. 2008;
Spaggiari et al. 2009). Furthermore, MSCs can promote the generation of regula-
tory T cells (Maccario et al. 2005), which exert immunosuppressive effects.
Although soluble factors play a key role in the immunosuppressive activity of
MSCs, cell-to-cell contact also influences immune responses (Ren et al. 2010; Li
et al. 2019). For instance, direct contact between MSCs and pro-inflammatory
macrophages has been shown to induce immune tolerance by inducing tumor
necrosis factor-stimulated gene-6 (TSG-6) production (Li et al. 2019). MSC
mediated modulations of the immune response set in motion essential inflamma-
tory processes that significantly promote tissue repair and regeneration by driving
healing, scarring, and fibrosis (Julier et al. 2017).

Immunomodulatory Potential

The immunomodulatory properties of MSCs and their immune-privileged condition
make these cells good candidates for use in several clinical trials related to chronic,
inflammatory, and autoimmune diseases. MSCs interact with cells of the innate or
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adaptive immune system (T cells, B cells, NK cells, monocyte-derived dendritic
cells, and neutrophils) (Di Nicola et al. 2002; Raffaghello et al. 2008). For a cell to be
recognized by the immune system, the expression of major histocompatibility
complex (MHC) and co-stimulatory molecules is necessary. MHC class I and class
II human leukocyte antigens (HLAs) are master triggers of robust immunological
rejection of grafts because they present antigens to cytolytic T lymphocytes (CTL).
Human mesenchymal stem cells (hMSCs) are characterized by low expression of
MHC class I HLAs but are constitutively negative for class II HLCs; these cells do
not express co-stimulatory molecules such as B7-1, B7-2, CD80, CD86, CD40, and
CD40L (Hmadcha et al. 2009; Le Blanc 2003). However, similar to the thymic
epithelium, MSCs express the surface markers VCAM-1, ICAM-2, and LFA-3
(Le Blanc 2003; Conget and Minguell 1999), which are crucial for T-cell
interactions.

Although a T-cell response should be expected, hMSCs can modulate the activa-
tion and proliferation of both CD4+ and CD8+ cells in vitro by arresting T cells in
G0/G1 phase (Glennie et al. 2005; Benvenuto et al. 2007). Different studies have
suggested that cell-cell interactions and certain soluble factors are the mechanisms
used by MSCs to mediate the immune response. Factors, such as IDO, TGF-β1,
IFN-γ, IL-1β, TNF-α, IL-6, IL-10, PGE-2, HGF, HLA-G5, and others, are secreted
by MSCs or released after interactions with target cells. As mentioned above, MSCs
remain in a resting state, display anti-apoptotic properties, and maintain different
cells such as hematopoietic stem cells (HSCs), thus contributing to tissue homeo-
stasis. However, in an inflammatory environment such as that created by cytokines
such as IFN-γ, TNF-α, IL-1α, and IL-1β, MSCs begin to exert their immunosup-
pressive effects and polarize, inhibiting the proliferation of effector cells and their
production of cytokines. In this regard, IFN-γ is postulated as a “licensing” agent for
MSC anti-proliferative action. MSCs may also acquire behavior as antigen-
presenting cells (APCs) under specific concentrations of IFN-γ (Stagg et al. 2006;
Uccelli et al. 2008). However, no consensus regarding what concentration of IFN-γ
is more necessary for MSCs to show inhibitory or APC functions exists.

Likewise, TNF-α is another pro-inflammatory cytokine involved in the MSC
immune response, and TNF-α enhances the effect of IFN-γ. IFN-γ, with or without
the help of TNF-α, stimulates the production of IDO by MSCs, inhibiting the
proliferation of activated T or NK cells and thus enhancing the homing potential
and reparative properties of these cells; however, some potential risks are associated
with the role of IFN-γ (Krampera et al. 2006; Sivanathan et al. 2014). Some authors
have maintained that the immunomodulatory properties of MSCs are comparable,
while others have argued that MSCs of different tissue origins or species cannot have
equivalent and comparable immunomodulatory properties (Najar et al. 2010; Yoo
et al. 2009; Ricciardi et al. 2012; Krampera 2011). For example, MSCs from
perinatal sources (umbilical cord and amniotic membrane) show a higher immuno-
modulatory capacity, differential gene expression profiles, and paracrine factor
secretion compared to BM-MSCs (Wegmeyer et al. 2013). Lee and colleagues
found that HLA-G, a specific MHC-I antigen that is critical for maintaining the
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immune-tolerant state of pregnancy and that is a contributing factor to the induction
of more substantial immunosuppression, is strongly positive only in placenta-
derived MSCs (PD-MSCs) (Lee et al. 2012a). This is in contrast to BM-derived
MSCs and Ad-MSCs and suggests that the immunophenotype of PD-MSCs may be
superior to other MSCs in terms of their immunosuppressive function (Hunt et al.
2005). Nonetheless, some authors claimed that BM-derived MSCs were more
immunomodulatory than PD-MSCs (Fazekasova et al. 2011). And others concluded
that the immunomodulatory capacities of BM-derived MSCs and Ad-MSCs are
similar but that differences in cytokine secretion cause Ad-MSCs to have more
potent immunomodulatory effects than BM-derived MSCs (Melief et al. 2013).

Bartholomew and colleagues (Bartholomew et al. 2002) showed that allogeneic
MSCs prolonged skin graft survival in baboons. Mouse MSCs have been used in
related experiments; these cells use inducible nitric oxide synthase (iNOS) for
immunosuppression instead of IDO. These findings indicate that MSCs differ
between species (Ren et al. 2009). Since then, several preclinical models have
been used to analyze the biological effects of MSCs and their ability to modulate
immune responses, considering that not all animal models mimic human diseases.
Once more, these differences could be due to isolation procedures, to culture
methodology, or, more likely, to differences in the microenvironments where cells
reside. These and other findings lead us to conclude that determining whether these
differences may be relevant for clinical applications and whether MSCs of a partic-
ular tissue type are more appropriate for specific therapies or diseases.

Preclinical Applications

Preclinical models are essential for clinicians, researchers, and both national and
international regulatory agencies to demonstrate the safety and efficacy of
MSC-based therapies (Krampera et al. 2013). Because MSCs can exert immuno-
modulatory properties and act on different immune cells in vitro and in vivo, these
cells have begun to be used against autoimmune diseases based on multiple auto-
immune experimental models. Pioneer studies in experimental autoimmune enceph-
alomyelitis (EAE), a model for multiple sclerosis, reported that MSCs derived from
numerous tissue origins show efficacy against neurodegenerative disorders (Zappia
et al. 2005; Rafei et al. 2009; Constantin et al. 2009; Bai et al. 2009; Zhang et al.
2005). BM-MSC and UCB-MSC treatments have improved clinical and laboratory
parameters in systemic lupus erythematosus (SLE) (Sun et al. 2010). Furthermore,
ameliorating effects have been observed in experimental mouse models of rheuma-
toid arthritis (RA) (González et al. 2009). Diabetes is another autoimmune disorder
in which MSCs have been employed (Jurewicz et al. 2010; Lee et al. 2006).
Although promising results and progress have been observed in this field, the
interspecies differences, and contradictory experimental outcomes, and the inability
to recreate the complete pathophysiology of some diseases make it necessary to
search for new animal models for comparable results.
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MSC-Based Therapy for Autoimmune Diseases

TheMSCs are being used to facilitate the engraftment of transplanted HSCs and treat
graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplan-
tation (HSCT) based on their immunomodulatory properties and provide appropriate
conditions. However, preclinical and clinical experiments with MSCs do not always
show similar results for the prevention and treatment of GvHD. In a study using a
mouse model of GvHD (Sudres et al. 2006), MSCs suppressed alloantigen-induced
T-cell proliferation in vitro in a dose-dependent manner but yielded no clinical
benefit regarding the incidence or severity of GvHD. Instead, when UCB-MSCs
were administered in weekly doses in a xenogenic model of GvHD, a marked
decrease in human T-cell proliferation was observed, and none of the mice devel-
oped GvHD. No therapeutic effect was obtained when UCB-MSCs were adminis-
tered at the onset of GvHD (Tisato et al. 2007). In the same line of research, serial
infusions of mouse AD-MSCs could efficiently control the lethal GvHD that
occurred in recipients transplanted with haploidentical hematopoietic grafts (Yañez
et al. 2006). Mixed results have also been achieved in human patients. One study
found that the co-transplantation of culture-expanded MSCs and HSCs from
HLA-identical sibling donors after myeloablative therapy accelerated hematopoietic
engraftment (Lazarus et al. 2005); however, a significant reduction of GvHD symp-
toms was not shown, although the incidence or severity of GvHD did not increase.
Koç and colleagues (Koç et al. 2000) reported a positive impact of MSCs on
hematopoiesis; rapid hematopoietic recovery was observed in a clinical study with
breast cancer patients who received autologous HSCT together with autologous
MSCs.

Therapeutic effects have also been reported at the onset of GvHD, such as the
case of a 9-year-old boy with severe treatment-resistant GvHD after allogeneic
HSCT for acute lymphocytic leukemia who received haploidentical MSCs derived
from his mother. He showed improvement after two administrations of MSCs
(Le Blanc et al. 2004). Similar results have been obtained in steroid-refractory
GvHD pilot studies with BM-MSCs and AD-MSCs (Ringdén et al. 2006; Fang
et al. 2006). Several infusions appear to be required to maintain the level of active
immunomodulation by MSCs. Similarly, the expression of pro-inflammatory cyto-
kines such as IFN-γ in the environment at the time of MSC administration is required
by these cells to exert their immunosuppressive effect. A lack of MSC “licensing”
can result in the absence of the desired therapeutic effect.

While evidence that MSCs are effective in combination or after HSCT in specific
hematological and non-hematological diseases has been shown, adverse reactions
and risk factors intrinsic to this practice have been reported. In a pilot study,
HLA-identical sibling-matched HSCs were transplanted with or without MSCs in
hematological malignancy patients. Although MSCs were well-tolerated and this
treatment effectively prevented GVHD, six patients (60%) in the MSC group and
three (20%) in the non-MSC group had 3-year disease-free survival rates of 30 and
66.7%, respectively. The relapse rate in the experimental group was higher than that
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in the control group, suggesting that MSCs may impair the therapeutic graft-versus-
leukemia (GVL) effect (Ning et al. 2008). In vitro and in vivo studies regarding the
relationship between the immunosuppressive properties of MSCs and the stimula-
tion of cancer growth have been performed. Mouse MSCs from the BM, spleen, and
thymus injected together with a genetically modified tumor cell vaccine could
equally prevent the onset of an anti-tumor memory immune response, thus leading
to tumor growth in normally resistant mice (Krampera et al. 2007). In another in vivo
experiment with a murine melanoma tumor model, the authors observed that the
subcutaneous injection of B16 melanoma cells led to tumor growth in allogeneic
recipients only when MSCs were co-injected (Djouad et al. 2003). The functions of
MSCs can be influenced by the existing microenvironment, making them acquire
supportive properties toward cancer cells and decrease immune reactions (Galiè
et al. 2008). Therefore, potential risks related to the growth support and enhancement
of undetected or “resident” cancer exist, and the administration of MSCs in these
patients must be thoroughly evaluated.

MSCs for Cancer Treatment

The therapeutic benefits of MSCs have prompt their use in cell-based strategies to
treat different diseases, including cancer (Hmadcha et al. 2020). Similar to damaged
tissues, tumors exert chemoattractant effects on MSCs that influence their recruit-
ment to tumor sites. The CXCL12/CXCR4 axis is one of the most frequently studied
signaling pathways in mobilizing MSCs to the tumor microenvironment (Gao et al.
2009; Xu et al. 2009; Lourenco et al. 2015; Wobus et al. 2015; Kalimuthu et al.
2017). However, the ability of MSCs to migrate toward cancerous tissue is also
controlled by other agents, including diffusible cytokines, such as IL-8, growth
factors such as TGF-β1 or platelet-derived growth factor (PDGF), and extracellular
matrix molecules, such as matrix metalloproteinase 2 (MMP-2) (Nakamizo et al.
2005; Birnbaum et al. 2007; Bhoopathi et al. 2011). Once the tumor niche is reached,
MSCs interact with cancer cells via direct and indirect mechanisms that affect tumor
development. The paracrine action of MSCs is one of the main mechanisms involved
in cancer regulation and is mediated by multiple factors, including growth factors
and cytokines. These paracrine factors affect cellular processes involving the tumor
cell cycle (e.g., cell proliferation), cell survival, angiogenesis, and immunosuppres-
sion/immunomodulation, allowing MSCs to regulate cancer.

The paracrine agents can be directly secreted into the extracellular space or
packaged into EVs for spreading in the tumor milieus (Rani et al. 2015). The
interaction of MSCs with the tumor cell cycle is the most commonly accepted
process by which MSCs exert their therapeutic effects (Fathi et al. 2019). By
inhibiting proliferation-related signaling pathways, such as the phosphatidylinositol
3-kinase/protein kinase B (PI3K/AKT), MSCs can induce cell cycle arrest and
reduce cancer growth (Lu et al. 2019). In addition, MSCs can undergo differentiation
into other cell types, such as cancer-associated fibroblasts (CAFs), to directly
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contribute to cancer progression (Jotzu et al. 2011; Barcellos-de-Souza et al. 2016;
Aoto et al. 2018).

Accumulating evidence indicates that the cross-talk between MSCs and tumor
cells results in both pro-tumor and anti-tumor effects, raising safety concerns for
clinical application in oncology (Barkholt et al. 2013). The discrepancies in the
ability of MSCs to promote or suppress tumor development may be attributable to
differences in experimental tumor models, MSC tissue source, dose or timing of the
MSC treatment, cell delivery method, control group chosen, and other experimental
conditions (Bortolotti et al. 2015; Bajetto et al. 2017). In this regard, a study
demonstrated that direct (cell-to-cell contact) or indirect (released soluble factors)
interaction between umbilical cord MSCs and glioblastoma stem cells produces
divergent effects on cell growth, invasion, and migration (Bajetto et al. 2017).
Moreover, the application of MSCs for cancer patients is a more complex situation
in which other factors have to be taken into consideration. For instance, the patho-
logical conditions of each patient may induce cellular and molecular changes in
MSCs that interfere with their therapeutic effects (Capilla-González et al. 2018;
Pérez et al. 2018; Rivera et al. 2019). Therefore, it is important to be cautious while
drawing conclusions from a single study regarding the therapeutic effects of MSCs
in cancer.

The Anti-tumor Activity of MSCs

Although compelling evidence shows a pro-tumorigenic role of MSCs, these cells
also have potent tumor-suppressive effects that have been exploited as cancer
therapeutics. Previous studies have demonstrated that MSCs release cytotoxic
agents, such as TNF-related apoptosis-inducing ligand (TRAIL) that selectively
induces apoptosis in different types of cancer (Wiley et al. 1995; Hao et al. 2001;
Takeda et al. 2001; Akimoto et al. 2013). Recently, a report indicated that
BM-derived MSCs promote apoptosis and suppress the growth of glioma U251
cells through downregulation of the PI3K/AKT signaling pathway (Lu et al. 2019).
Likewise, intravenously transplanted MSCs were found to suppress tumor growth by
blocking AKT activation in a Kaposi sarcoma mouse model (Khakoo et al. 2006). In
mammary carcinomas, umbilical cord MSCs attenuated cell growth and triggered
apoptosis through inhibiting ERK1/2 and AKT activation (Ganta et al. 2009). The
Wnt signaling pathway has also been involved in the ability of MSCs to inhibit
tumor cell proliferation (Qiao et al. 2008a, b). A mechanistic study of the inhibitory
effect of MSCs on breast cancer cells demonstrated that the protein dickkopf-1
(Dkk-1) released from MSCs blocks tumor growth via depression of Wnt signaling
(Qiao et al. 2008a). In contrast to investigations describing the pro-angiogenic effect
of MSCs (Zhang et al. 2013; Li et al. 2016), the anti-tumor activity of MSCs via the
inhibition of tumor angiogenesis has also been documented. A study reported that
BM-derived MSCs restrict vascular growth in 1Gli36 glioma xenograft through the
downregulation of the PDGF/PDGFR axis (Ho et al. 2013). In particular, the
expression of PDGF-BB protein was significantly reduced in tumor lysates when

3 Considerations for Clinical Use of Mesenchymal Stromal Cells 75



treated with MSCs, which correlated with reduced levels of activated PDGFR-b and
the active isoform of its downstream target AKT (Ho et al. 2013).

In a melanoma mouse model, transplanted MSCs inhibited angiogenesis in a
concentration-dependent manner, leading to reduced tumor growth (Otsu et al.
2009). Confirmatory in vitro studies suggested that the anti-angiogenic effect was
due to MSC-induced capillary degeneration (Otsu et al. 2009). Furthermore, MSCs
have elicited anti-tumor immune responses through released inflammatory media-
tors, such as the multifunctional cytokine TGF-β. Like several signaling molecules,
TGF-β plays a dual role in cancer development (Bierie and Moses 2006). Besides the
aforementioned pro-tumor functions, TGF-β signaling exhibits suppressive effects in
cancer (Dong et al. 2007; Guasch et al. 2007). While the expression of type III
TGF-β receptor (TbRIII) decreases during breast cancer progression, restoring
TbRIII expression suppresses tumorigenicity (Dong et al. 2007).

The Pro-tumor Activity of MSCs

The pleiotropic effects of MSCs that promote tissue repair and regeneration may also
confer pro-tumor functions to these cells. For instance, metastatic human breast
carcinoma cells were found to induce the secretion of the chemokine (C-C motif)
ligand 5 (CCL5) fromMSCs, which enhanced tumor invasion (Karnoub et al. 2007).
Seminal reports demonstrated that MSCs could also inhibit apoptosis in tumor cells
by secreting pro-survival factors such as VEGF and bFGF (König et al. 1997; Dias
et al. 2002). Numerous studies converged on the finding that MSCs contribute to
cancer pathogenesis by releasing inflammatory factors that promote immunosup-
pressive effects. For example, an in vitro study showed that MSCs isolated from
gastric tumors mediate cancer progression through the secretion of IL-8 (Li et al.
2015). This pro-inflammatory chemokine favors the recruitment of leukocytes. It is
known that recruited leukocytes, such as macrophages and neutrophils, facilitate
cancer initiation and progression (Guo et al. 2017; Powell et al. 2018). Similarly,
MSCs are able to secrete TGF-β that promotes macrophage infiltration at the tumor
site and facilitates tumor escape from immune surveillance (Kim et al. 2006; Byrne
et al. 2008). Compelling evidence indicates that MSCs can also support tumor
angiogenesis, an essential process in cancer progression that supplies tumors with
oxygen and nutrients. For instance, MSCs recruited in breast and prostate tumors
were found to increase the expression of angiogenic factors, including TGF-β,
VEGF, and IL-6, which contribute to tumor growth and vascularization (Zhang
et al. 2013).

Similarly, a correlation between increased expression of TGF-β and higher
microvessel density was observed in hepatocellular carcinomas of mice receiving
intravenous injections of human MSCs (Li et al. 2016), which further supports that
MSCs may enhance tumor angiogenesis via TGF-β. Furthermore, MSCs can also
respond to soluble factors secreted from cancer cells and differentiate into CAFs, a
cell type within the tumor microenvironment capable of promoting tumorigenesis
(Mishra et al. 2008). In particular, TGF-β secreted from cancer cells plays a critical
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role in the differentiation of MSCs into CAFs (Jotzu et al. 2011; Barcellos-de-Souza
et al. 2016; Aoto et al. 2018).

It is known that the transition of MSCs into CAFs contributes to tumor progres-
sion in part by their active secretome. Profiling of the secretome shows that it is rich
in many bioactive molecules, including immune-modulating agents (CXCL12,
granulocyte-macrophage colony-stimulating factor), pro-angiogenic factors
(VEGF, TGF-β, PDGF), pro-survival factors (hepatocyte growth factor, insulin-
like growth factor 1, interleukin 6), and extracellular matrix modulators (MMP,
tissue inhibitor of metalloproteinases) among others (Kalluri 2016). Cell engulfment
has also been identified as an interacting process between MSCs and cancer cells that
enhances tumor aggressiveness. A recent report demonstrated that breast cancer cell
engulfment of MSCs leads to changes in the transcriptome profile of tumor cells.
These changes are mainly associated with oncogenic pathways. This MSC engulf-
ment enhances epithelial-to-mesenchymal transition, stemness, invasion, and metas-
tasis of breast cancer (Chen et al. 2019).

The Imprint of Disease on MSCs

One of the strategies to obtain MSCs for therapeutic purposes is an autologous
approach. These cells are collected from patients by more or less invasive methods,
isolated, seeded in culture under good manufacturing practice (GMP) quality stan-
dards, and re-injected into the patient. Nevertheless, when body’s repair mechanisms
are insufficient or ineffective, this treatment results in a homeostatic imbalance in the
organism, producing degradation and disease and compromising the pool of endog-
enous cells, thus resulting in low efficacy. Some conditions/diseases provoke
changes in the BM microenvironment, which is one of the primary sources of
MSCs, thus producing changes in the endogenous pool of MSCs and altering their
biological features (Mazzanti et al. 2008). MSCs from patients with acute myeloid
leukemia showed abnormal biological properties, including morphological hetero-
geneity, limited proliferation capacity, and impaired differentiation and hematopoi-
esis supportability (Zhao et al. 2007).

MSCs derived from patients with multiple myeloma showed impaired immune-
inhibitory effects on T cells, decreasing their osteogenic potential (Li et al. 2010).
Poor proliferation, differentiation potential, and cytokine release defect were found
in BM-derived MSCs derived from patients with aplastic anemia, another hemato-
poietic disorder (Chao et al. 2010; Bacigalupo et al. 2005). Although the mecha-
nisms remain unknown, MSCs appear to be involved in autoimmune pathologies.
For instance, MSCs derived from patients with autoimmune diseases display the
following altered functions; MSCs from rheumatoid arthritis (RA) patients have an
impaired ability to support hematopoiesis and lower proliferative and clonogenic
potentials (Papadaki et al. 2002; Kastrinaki et al. 2008). MSCs from immune
thrombocytopenic purpura (ITP) patients have a reduced proliferative capacity and
a lower inhibitory effect on T-cell proliferation than MSCs from healthy donors
(Pérez-Simón et al. 2009). MSCs from systemic lupus erythematous (SLE) patients
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display deficient growth, abnormal morphology, and upregulated telomerase activity
(Nie et al. 2010; Sun et al. 2007). MSCs from systemic sclerosis (SSc) patients
display early senescence (Cipriani et al. 2007). In metabolic diseases such as
diabetes, alterations in autologous MSCs have also been documented.

A study using MSCs from type 2 diabetic mice showed that the number of these
cells was diminished and their proliferation and survival abilities were impaired
in vitro. Moreover, diabetic MSC engraftment produced only limited improvement
in the diabetic subjects and could not produce the same therapeutic outcomes as in
their nondiabetic counterparts in vivo (Shin and Peterson 2012). Advanced glycation
end products (AGEs) accumulate in the tissues of aged people, and these products
are involved in diabetes and musculoskeletal diseases. In 2005, Kume and col-
leagues (Kume et al. 2005) investigated the effect of AGEs on MSCs. They showed
that AGEs inhibited MSC proliferation, induced MSC apoptosis, and interfered with
MSCs’ differentiation into adipose tissue, cartilage, and bone. Type 2 diabetes-
derived Ad-MSCs have been found to have functional impairments in their multi-
lineage potential and proliferative capacity because of prolonged exposure to high
glucose concentrations (Cramer et al. 2010).

Diabetic-derived Ad-MSCs have an altered phenotype related to plasminogen
activator inhibitor-1 (PAI-1) expression levels and display reduced fibrinolytic
activity (Acosta et al. 2013), which suggests that the immunogenicity of MSCs
could have associated effects on the coagulation system (Wang et al. 2012; Moll
et al. 2012). Thus, MSC-based therapy could lead to thrombotic events in particular
recipients. Although the possibility of healing with autologous cells is desirable,
little is known regarding the influence of different disease states and concomitant
medications on MSCs (Benvenuti et al. 2007; Lee et al. 2009). Thus, although the
use of autologous MSCs for cell therapy is widespread, their use in humans must be
handled with extreme caution. Researching and analyzing both the risks and benefits
of this therapy in individual patients and for each disease are necessary.

Considerations for Clinical Applications

Several clinical trials are in progress to ensure the safety and efficacy of MSCs used
as medicaments. For cell-based products, it must be considered that cells are living
products and that their interactions with body fluids remain unclear (Acosta et al.
2013; Moll et al. 2014). Phase 1 clinical trials are the first step in investigating a new
drug. They include pharmacokinetic and pharmacodynamic studies in which the
patient’s safety plays an essential role in the development of medicaments. The
primary goal of phase 2 clinical trials is to provide preliminary information regarding
the drug efficacy and safety supplement data obtained in phase 1 trials. For efficacy
and effectiveness issues, other advanced phases are mandatory. In all cases, one
cannot consider these issues (efficacy nor effectiveness) unless phase 3 clinical trials
are developed (García-Bernal et al. 2021; Hmadcha et al. 2020; Escacena et al.
2015). Usually, safety evaluations are based on possible complications derived from
the procedure in a time-dependent manner after administering the cells. Efficacy
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parameters focus on the improvement of clinical effects at a given time. MSC-based
cell therapy is a relatively new therapeutic option for certain diseases, and data
regarding the long-term monitoring of patients remain lacking.

Nevertheless, the administration of MSCs is considered a feasible and safe
procedure with no adverse events reported. However, the risks associated with
stem cell therapy (Herberts et al. 2011) must be considered because these risks
increase the probability of an adverse event. The cell source, donor origin, product
manufacturing, and recipient disease status are important factors related to the safety
and efficacy of MSCs. In this regard, the use of bovine proteins in the medium used
to culture these cells (Horwitz et al. 2002) and the observed formation of ectopic
tissue in animal models (Breitbach et al. 2007; Kunter et al. 2007), as well as
malignant transformation (Wang et al. 2005; Røsland et al. 2009) and immune
responses, must be evaluated before wider clinical applications and registration are
accepted.

Safety Concerns

Cell therapy is incredibly complex due to the nature of the product. The mode of
action is not always clear, and the potency tests are imprecise, by which it might not
be possible to predict the risks thoroughly. When considering the use of expanded
MSCs ex vivo for clinical applications, it is necessary to consider a series of potential
risks that could affect the cellular product.

The administration of stem cells could affect the host’s immune system. These
cells could directly influence the immune system (e.g., pro-inflammatory environ-
ment) or have an immunomodulatory effect. Although MSCs have been considered
immune-privileged in this regard, long-term exposure to the culture medium can
make them more immunogenic by positively regulating the normal set of histocom-
patibility molecules (Moll et al. 2011, 2014). On the one hand, the allogeneic use of
the cells entails a greater risk of rejection by the immune system. This rejection could
lead to a loss of the function of the administered cells, and consequently, their
therapeutic activity could be compromised. The use of immunosuppressants could
limit these risks, but, in turn, could cause adverse reactions due to immunosuppres-
sive medication.

On the other hand, MSCs isolated from healthy donors have shown uniform and
consistent properties, while patients with some degenerative and inflammatory
disease differ in their biological and functional characteristics (Capilla-González
et al. 2018; Rennert et al. 2014). In this regard, studies with MSCs from diabetic
patients suggest that the hyperglycemic environment and other metabolic disorders
associated with diabetes affect the endogenous cellular reserve and their prolifera-
tion, differentiation, and angiogenic capacity, among other cellular characteristics
(Minteer et al. 2015; Rennert et al. 2014; George et al. 2018; Moll et al. 2019). Once
infused in the recipient, the cells come into direct contact with the tissues, blood-
stream, and other host cells; the cell-recipient interaction process still needs a
thorough investigation and characterization.
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Physiologically, MSCs reside in the perivascular compartment of almost every
tissue (Bianco et al. 2008; Crisan et al. 2008); however, one of the hurdles to the
sustained success of their therapeutic effect is early cell loss. This is primarily due to
the incompatibility responses after systemic infusion of cells, a reaction termed as
instant blood-mediated inflammatory reaction (IBMIR) suggesting that the immune
and inflammatory system reacts to cells that generally are not in contact with the
blood circulation (Gupta et al. 2014; Moll et al. 2011, 2014, 2019, 2020; Bianco
et al. 2008; Crisan et al. 2008; Nilsson et al. 2014). Even more, it has been further
shown that different MSC products display varying levels of highly pro-coagulant
tissue factor, a decrease in tissue plasminogen activator (tPA), or an increase in PAI-1
and may adversely trigger the IBMIR or microthrombosis in the target tissue (Acosta
et al. 2013; Moll et al. 2019). Although MSCs are considered to be safe, they can
promote fibrinolysis (Hashi et al. 2007; Neuss et al. 2010; Moll et al. 2020).

Safety and efficacy are the basic pillars that support the viability of clinical
application to treat any disease. Except for hematopoietic stem cell transplants,
stem cell therapies used to treat any disease are considered medicinal products;
therefore, their development, approval, and use must be per the specific standards
established nationally and internationally for such medicines. Thus, regulatory
authorities guarantee the safety of the studies (Fig. 2).

Cell Manufacturing for Clinical Use

Except for hematopoietic stem cell transplants, stem cell therapies used to treat any
disease are considered drugs; therefore, their development, approval, and use must
be per the specific standards established for such medicines nationally and interna-
tionally. In this context, MSCs are now considered as “cellular medicament” and are
called advanced therapy medicinal products (ATMPs) and are under regulation
No. 1394/2007 (Escacena et al. 2015; Gálvez et al. 2013). Relating production
processes and development staff, clinicians and researchers must achieve GMP
procedures under European regulations (Sensebé et al. 2013; Gálvez et al. 2014).
Currently, no standardized manufacturing platform exists, although most facilities
employ standard release criteria to measure sterility, viability, and chromosomal
stability to meet European or FDA regulations (Phinney 2012; Iglesias-López et al.
2019).

Although regulation establishes common parameters to follow, different proto-
cols are used to isolate these cells, and the processes, plating densities, and reagents
used cause the results to differ from each other. Donor selection in terms of age and
disease status is another variable to consider due to known MSC donor-to-donor
heterogeneity (Phinney et al. 1999). The cell source is another important factor
related to the efficacy of the product. As reported previously, MSCs derived from
different tissues do not consistently achieve the same level of efficacy. Additionally,
culture media used for the production of MSCs could affect the basic characteristics
of cells; thus, designing a fully defined medium free of animal and human origins is
crucial.

80 A. Hmadcha et al.



Fi
g
.
2

T
he

M
S
C
s
po

ss
es
s
a
w
id
e
ra
ng

e
of

pa
ra
cr
in
e
ef
fe
ct
s,

in
cl
ud

in
g
an
ti-
in
fl
am

m
at
or
y,

im
m
un

om
od

ul
at
or
y,

tr
op

hi
c,

an
ti-
ap
op

to
tic
,
an
d
an
ti-
fi
br
ot
ic

pr
op

er
tie
s.
T
he
se

ar
e
m
os
tly

m
ed
ia
te
d
by

m
ol
ec
ul
es

re
le
as
ed

by
M
S
C
s,
bu

t
al
so

by
di
re
ct

ce
ll-
ce
ll
co
nt
ac
ts
.
F
or

ce
ll-
ba
se
d
th
er
ap
y,

th
e
pa
ra
cr
in
e
pr
op

er
tie
s

of
M
S
C
s
ha
ve

be
ne
fi
ci
al

ef
fe
ct
s
fo
r
th
e
pa
tie
nt
.
H
ow

ev
er
,
th
e
in
te
ra
ct
io
n
be
tw
ee
n
M
S
C
s
an
d
th
e
ho

st
ca
n
le
ad

to
ad
ve
rs
e
si
de

ef
fe
ct
s.
(R
e-
pu

bl
is
he
d
fr
om

3 Considerations for Clinical Use of Mesenchymal Stromal Cells 81



Thus far, no MSC-based medicine product has marketing authorization in the
European Union, although four gene and cell-based products have a valid marketing
authorization awarded by the EMA. However, since 2011, three MSC products have
received marketing approval in other regions (Ancans 2012). The MSCs’ field
continues its upward progression, with a growing number of established companies
established and ongoing clinical trials, but remaining challenges must be overcome.
Bottlenecks exist regarding donor selection, cell sources, isolation protocols, culture
media used, open-culture systems, bioreactors, and recipient disease status.
Establishing a standardized and comparable process is also crucial to ensure biolog-
ical and functional equivalence between product lots.

Considerations for Cellular Medicament

General Considerations

The cell expansion and culture protocol are not standardized, although the regulatory
agencies (e.g., EMA, FDA) recommend a set of standards to be followed to produce
cellular drugs. Currently, there is no protocol or universal definition for stem cell
culture and expansion. The different sources of origin, and the different methodol-
ogies for obtaining tissue cells, make it very difficult to compare research groups in
search of the fastest, most effective, economical, high-yielding, efficient, and
clinical-grade quality method. Cell viability after the infusion is poor; in this regard,
it is known that very few cells survive after infusion. Although the in vivo follow-up
is ethically and technically complicated, it is necessary to continue investigating this
line to understand the intrinsic mechanisms of integrating the infused cells in the
concrete microenvironment.

The cellular dose to obtain the desired effects is also unknown. Investigations
with HSCs have revealed that the administration of sufficient cells promotes faster
cell recovery and reduces hospitalizations (Mohty et al. 2011). Preclinical studies
using murine animal models have established a minimum dose of 1� 106 cells/kg of
weight, a quantity necessary to obtain quantifiable but weak benefits (Shabbir et al.
2009; Mastri et al. 2012). The dose for cellular treatment is probably influenced by
the patient’s body weight and the biodistribution of paracrine factors secreted by
MSCs in the human body; however, most clinical trials use a similar cell dose (Tan
et al. 2012; Jiang et al. 2011). The doses used have been insufficient in most cases to
show clear therapeutic benefits. This fact leads us to design future trials to test
different cell doses. Likewise, the frequency of administration is currently unknown.

�

Fig. 2 (continued) Soria-Juan 2019, article published under CC-BY terms). Abbreviations: B-cell
B lymphocyte, CXCL C-X-C motif chemokine ligand, DC dendritic cell, G-CSF granulocyte
colony-stimulating factor, HGF hepatocyte growth factor, IL interleukin, INF-γ interferon-γ,
MSC mesenchymal stem cells, NK natural killer cells, T-cell T lymphocyte, TGF-α transforming
growth factor α, Treg regulatory T cell
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The effectiveness of cell therapy is probably related to the number of others
applications (Cobellis et al. 2008; Teraa et al. 2015; Molavi et al. 2016), similar to
that established with conventionally used medications. The timing and the ideal
number of cellular applications are still unknown. Since conventional medicines are
depending on the dose, cellular therapy may need to be adjusted accordingly. The
most suitable cell type remains a challenge for regenerative medicine. Knowing
which cell type is most appropriate for each particular pathology or if a combination
of these would be more recommended is another big issue in cell therapy.

The method for the cellular administration continues without giving conclusive
results because cell viability must be preserved as much as possible, and
compromised tissue is often associated with ischemia, fibrosis and inflammation,
which could impair cell survival, therapeutic delivery of stem cells in the distal areas
to the damaged tissue appear to offer some advantage. There are no conclusive
findings of a more significant benefit within the existing modes of administration, so
this is another variable to have into account for future clinical trials. The desired
therapeutic effect depends on many factors since mechanism of action of stem cells
in tissue regeneration is likely to be multifaceted. Cellular competition can be
dictated by the ability of injected cells to migrate, survive, integrate, differentiate,
and produce functional paracrine mediators (“cell-cell interactions”). It is known that
many diseases (e.g., diabetes, cancer, etc.) affect the phenotypic and therapeutic
properties of stem cells. Finally, for the therapy to be effective, the recipient tissue
must respond favorably to the injected cells, which would result in the activation of
endogenous regeneration mechanisms (Lee 2010). Understanding integration of the
exogenous mechanisms (injected cells) with the endogenous (host) will play a
decisive role in the future clinical use of adult stem cells (Acosta et al. 2013; Moll
et al. 2019).

Attempts to Improve the Therapeutic Outcomes of Cellular
Medicament

Advances in the production compliance under good manufacturing practices (GMP)
standards of more sophisticated cellular products are now opening up the way for the
second generation of cell therapy clinical trials. One of the reasons why unmodified
MSCs have not shown the therapeutic efficacy expected in human clinical trials is
that, after their systemic infusion (intravenous), these cells become trapped in the
vascular filters (fundamentally the liver and lung) and only a small percentage reach
the target tissues. Therefore, strategies must be designed that favor migration,
nesting, and localization in the inflammatory and/or infectious focus to increase
their effectiveness. Biodistribution and long-term follow-up of these cells in animal
models show that only a few cells remain after long periods. This will support the
idea that most of the effects of MSCs are based on a “hit and run effect.”

To increase the concentration of ATMPs in the injured tissue, the CD44 antigen on
MSCs’ cell membrane by enzymatic fucosylation has been converted into hematopoi-
etic cell E-selectin/L-selectin ligand (HCELL) glycoform (Dimitroff et al. 2001;
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Pachón-Peña et al. 2017). This molecular change favored the migration of theMSCs to
the inflamed tissues (Sackstein et al. 2008; García-Bernal et al. 2020). This method,
called glycosyltransferase-programmed stereo substitution (GPS) of cell surface gly-
cans, has been optimized for its clinical application so that the reagents used (glycosyl-
transferases and buffers) have been specifically formulated to preserve cell viability
and phenotype (García-Bernal et al. 2021). Moreover, this modification not only
increases the adhesion of the MSCs to the endothelium, but it also enhances their
transmigration through it by activating the alfa4/beta1 integrin in the absence of
chemokine stimulation (López-Lucas et al. 2018). Therefore, this modification by
fucosylation could improve the efficacy of the treatment with MSCs by increasing the
migratory capacity of the cells to the inflamed tissues after being administered
systemically (García-Bernal et al. 2020). Other strategies may include expressing
CXCR4. These strategies will help to engineer new generation of MSCs for use
when both increased migration and targeting and an increased power are required.
Expression of the CXCR4 receptor will increase the migration of the MSCs toward the
inflammatory focus (Zhu et al. 2021). On the other hand, the co-expression of the anti-
inflammatory cytokine IL-10 and/or the anti-infectious cytokine IL-7 will increase the
anti-inflammatory effect (IL-10) and even the anti-infective effect (IL-7) (Mao et al.
2017).

Furthermore, the extensive use of fetal bovine serum (FBS) in the
MSC-expansion media represents an explicit limitation for the introduction of
ATMP at the clinical level. Currently, cell expansion is carried out in culture
media supplemented with FBS (Gottipamula et al. 2013). The SFB used must be a
clinical-grade (free of animal pathogens). Associated with the growing demand for
MSCs, this has led to a series of technical and ethical conditions of production (using
a high number of bovine fetuses) and geographic (zones free of prion diseases),
which have had an impact on their price (Kinzebach and Bieback 2013; Wessman
and Levings 1999). The substitution of FBS by human serum and platelet lysate also
represents technical limitations mainly related to the supply of human material and
the absence of uniformity of the lots. All these considerations force the development
of robust processes of production of MSC in chemically defined culture media free
of animal and human components. These media are supplemented with recombinant
proteins (albumin, insulin, TGF-β, and bFGF), iron, selenium, and an antioxidant
system (2-mercaptoethanol) (Badenes et al. 2016; Jayme and Smith 2000). Although
several serum-free media are found in the literature and market (Chase et al. 2010;
Ishikawa et al. 2009), there is still no effective means of functioning.

The therapeutic efficacy of MSCs has been further optimized by genetically
modifying MSCs to produce trophic cytokines or other beneficial gene products in
numerous preclinical models by transfecting MSCs with viral or non-viral vectors
(Jiang et al. 2006; Haider et al. 2008; Kim et al. 2012a, b). These MSCs have been
successfully modified to express therapeutic peptides and proteins to express ther-
apeutic peptides and proteins in animal models (Zhou et al. 2021). For example,
MSCs expressing thioredoxin-1 (Trx1, a potent antioxidant, transcription factor, and
growth factor regulator) improved cardiac function in post-myocardial infarction rat
models (Suresh et al. 2015). Simultaneous overexpression of Akt and Ang-1 in
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BM-derived MSC not only enhanced their reparability of the infarcted myocardium
with sustained beneficial effect (Jiang et al. 2006, 2008), but it also led to
non-hypoxic stabilization of HIF-1 to enhance their endothelial commitment (Lai
et al. 2012a) and increased their proliferation potential via the involvement of
miR-143 (Lai et al. 2012b). The MSCs expressing IL-12 showed potent anticancer
activity against melanoma, breast cancer, and hepatoma (Gao et al. 2010; Han et al.
2014). In addition, interferon-γ-expressing MSCs inhibited tumor growth in mouse
models of neuroblastoma and lung carcinoma (Relation et al. 2018; Seo et al. 2011).
Similar to these advances achieved in animal models, several MSC-based therapies
are under clinical development.

Both viral and non-viral vectors, however, have some limitations (Kim and
Haider 2001). Non-viral vectors exhibit transient gene expression and low transfec-
tion efficiency. In contrast, viral transduction is associated with an increased risk of
chromosomal instability, insertional mutagenesis, and proto-oncogene activation,
despite the inherent high transfection efficiency (Cheng et al. 2019). It has been
reported that adverse immune reactions induced by viral transduction impair trans-
gene stability (Mingozzi and High 2013; Wang et al. 2018). Thus, limitations and
adverse responses must be assessed when modifying MSCs by transfection. Several
studies have sought to use MSCs derived from induced pluripotent stem cells
(iPSCs) to obtain better expansion capacity. In fact, therapeutic transgenes could
be inserted into iPSC-derived MSCs before MSC derivation. Such a strategy could
eliminate insertional mutations and ensure stable expression of transgenes during a
prolonged expansion (Zhao et al. 2015). Therefore, MSCs derived from iPSCs may
be a renewable source of MSCs for theranostic applications. It is pertinent to mention
that BM-derived MSCs have also been successfully reprogrammed to pluripotent
status and used for the efficient repair of infarcted myocardium in an experimental
animal model (Buccini et al. 2012).

Interestedly, CRISPR-Cas9 technology was used to obtain highly homogeneous
MSCs. Genetic modifications of MSCs can be performed with greater efficiency and
specificity using CRISPR/Cas9 technology (Gerace et al. 2017). This is faster, cost-
efficient, and easier to use compared to alternatives such as transcription activator
nucleases (TALENs) and zinc finger nucleases (ZFNs) (Faulkner et al. 2020).
CRISPR/Cas9 has been widely employed in the stem cell field, particularly in
MSC research, including knock-in, knock-out, gene activation, or gene silencing.
In this regard, the application of CRISPR/Cas9 in MSCs has demonstrated its
efficacy in treating diseases, such as myocardial infarction (Golchin et al. 2020).
Targeting gene knock-in further promoted the differentiation capacity of MSCs and,
in turn, improved the insufficiency of functional cells at local sites (Miwa and Era
2018). Genetically modified MSCs have been evaluated in clinical trials, such as the
“TREAT-ME-1” clinical trial, an open-label, multicenter, first-in-human phase 1/2
trial, which aimed to evaluate the safety, tolerability, and efficacy of the application
of genetically modified autologous MSCs-apceth-101 in patients with advanced
gastrointestinal adenocarcinoma (von Einem et al. 2019). Despite promising
advances in this field, further research is still needed to obtain solid evidence on
the differentiation and regenerative potentials of MSCs in vivo. Undoubtedly, the
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next-generation sequencing and genotyping techniques could serve as valuable tools
to improve the efficacy of targeting specific cell types for personalized medicine.

Besides, priming MSCs with exogenous small molecules has been found to boost
their therapeutic function. Since current MSC manufacturing cannot meet the
requirements of clinical trials in terms of production scale, the alternative is to
enhance the function of limited cells by priming MSCs. Cell priming, or cell
preconditioning, is a commonly used concept in the field of immunology and has
been adapted to the stem cell arena (Lu et al. 2010; Haider and Ashraf 2012;
Carvalho et al. 2013; Noronha et al. 2019) by ex vivo addition to MSCs of
pro-inflammatory cytokines, such as IFN-γ, TNF-α, IL-1α, and IL-1β. More priming
approaches are currently being proposed and optimized to improve MSC function,
proliferation, survival, and therapeutic efficacy (Afzal et al. 2010; Kim et al. 2012a,
b; Lu et al. 2012; Kim et al. 2018; Mead et al. 2020). In this regard and as mentioned
before, other approaches are focused on enhancing the therapeutic effects of cell
therapy products regulating their biological characteristics (Mangi et al. 2003; Mei
et al. 2007; Lee et al. 2012b; Liao et al. 2017).

The beneficial effects of PDGF-BB to restore the defective phenotype of thera-
peutic MSCs derived from type 2 diabetic patients have been demonstrated. The
pretreatment with PDGF-BB potentiates proliferation, migration, and homing of
defective MSCs and recovers their impaired fibrinolytic ability. Furthermore,
PDGF-BB has been found to exert its beneficial effects through the ERK-SMAD
pathway. Therefore, the pretreatment with PDGF-BB represents a suitable strategy
to produce more effective MSCs for autologous therapies (Capilla-González et al.
2018).

Concluding Remarks and Future Perspective

Treatments based on the use of human stem cells are novel and promising therapeu-
tic alternatives for some diseases. Currently, the use of living cells as a medicinal
product is becoming realistic. Cell therapy should be safe, pure, stable, and efficient.
Cell-based products are more complex and depend on the physiological and genetic
heterogeneity of the patient. Obtaining as much information as possible with the
appropriate and available technology at our disposal is essential for ensuring the
safety, reliability, quality, and effectiveness of the manufactured product. MSCs are
leading the way into a new era of regenerative medicine, and their multifaceted
features make them powerful candidates to become tools to treat several diseases.
However, their indiscriminate use has resulted in mixed outcomes in preclinical and
clinical studies. While MSCs derived from diverse tissues share some common
properties, they markedly differ in terms of their differentiation abilities, growth
rates, healing capacity, and gene expression profile.

Similarly, the disease status of donors and recipients is a critical factor to consider
when using MSCs as therapeutic agents because factors such as the MSC behavior
with body fluids and specific disease environments remain unclear. Available data
suggest that some tissue-specific MSCs are more appropriate than others according
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to particular pathologies. Although no severe adverse effects related to the applica-
tion and testing of MSCs in humans have been reported to date, some evidence has
indicated that specific patient profiles are not suitable to be treated with these
therapies. Thus, multiple bottlenecks for the standardization of therapeutic protocols
exist. Future well-designed clinical trials, advanced-phase clinical trials (phase 3/4),
and long-term monitoring of patients are crucial for obtaining additional information
regarding the therapeutic use of MSCs.
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