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Abstract

In 2006, Shinya Yamanaka generated induced pluripotent stem cells (iPSCs),
which has been the major scientific event of the decade that caught the eye of
many scientists, politicians, and bioethicists. The use of human embryonic stem
cells (hESCs) has previously been limited by ethical issues related to the
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destruction of embryos. However, with iPSCs, scientists can now reprogram
virtually any human somatic cells through the expression of a combination of
embryonic transcription factors to a pluripotent embryonic stem-cell-like state,
thereby avoiding the contentious destruction of human embryos. Although the
clinical realities of human-induced pluripotent stem cells (hiPSCs) appear very
promising, they are still laden with some ethical concerns that scientists and legal
authorities in the field of iPSC research must recognize. This chapter briefly
reviews some ethical issues associated with the use of hiPSCs and suggests ways
to address these challenges.
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Abbreviations

CNV Copy number variations
ESCs Embryonic stem cells
FACS Fluorescence-activated cell sorting
hESCs Human embryonic stem cells
HFEA Human Fertilization and Embryology Authorities
hiPSCs Human-induced pluripotent stem cells
iPSCs Induced pluripotent stem cells
IVF In vitro fertilization
MACS Magnetic-activated cell sorting
SCNT Somatic cell nuclear transfer
SNV Single nucleotide variation

Introduction

For decades, ethical debates regarding stem cell technology have focused mainly on
human embryonic stem cells (hESCs). These cells are harvested from the inner cell
mass of blastocysts (preimplantation embryos) and obtained with consent from
couples receiving in vitro fertilization (IVF) treatment, from aborted fetuses, or
from donated oocytes (Thomson et al. 1998; Smith 2001; Zhang et al. 2006). The
embryonic origin of hESCs raises a mix of serious moral and ethical controversies
about the onset of human personhood, treatment, and harm to embryos; concerns
about the safety and health risks of women donating eggs, the potential exploitation
of their ova, and their informed consent; and concerns about respect for human life,
human dignity, and justice toward humankind. These ethical debates reveal deeply
rooted individually diverging opinions about the nature and origin of human per-
sonhood, leading to differing policies and regulations of hESC research worldwide
(De Trizio and Brennan 2004; Solo and Pressberg 2007; Dhar and Hsi-En Ho 2009).
Furthermore, due to this diversity of opinions and cultural differences, an
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international consensus regarding the regulation of hESC research does not exist
(Dhar and Hsi-En Ho 2009). The resulting restrictions and prohibitions on hESC
research have contributed largely to the slowness in the progress on the translation of
hESC technology into clinical therapy. Hence, there was an urgent need for another
substitute for hESCs with the same pluripotency potential that can bypass these
ethical issues.

Shinya Yamanaka’s 2006 discovery of induced pluripotent stem cells (iPSCs) was
a notable breakthrough in stem cell research, which has given it a new impetus
(Takahashi and Yamanaka 2006; Takahashi et al. 2007; Omole and Fakoya 2018).
Scientists and bioethicists were excited at the ability to fabricate a surrogate cell with
a pluripotent embryonic stem cell (ESC)-like state by the genetic reprogramming of
somatic cells through the ectopic expression of a specific combination of transcrip-
tion factors (Ibrahim et al. 2016). Enchanted by the extraordinary initial work of
Takahashi and Yamanaka, many research groups followed their transcription factor-
based reprogramming approach and reproduced the results in mice using cells from
diverse tissue sources (Yu et al. 2007; Wernig et al. 2007; Maherali et al. 2007;
Ahmed et al. 2011a; Buccini et al. 2012) and humans (Lowry et al. 2008; Park et al.
2008). The reprogramming technique provided an unparalleled and distinctive
opportunity to researchers in the field of stem cells and regenerative medicine for
possible applications, including pediatric applications, to manufacture patient-
specific stem cells for human-disease modeling, drug screening and development,
and customized cell therapy (Cagavi et al. 2018; Omole and Fakoya 2018; Çetinkaya
and Haider 2020).

Since iPSCs appear to end the disputes over the destruction of embryos in hESC
research, human-induced pluripotent stem cells (hiPSCs) have been touted by
scientists and ethicists alike as ethically and morally uncomplicated alternatives to
hESCs and are tipped as surrogate ESCs, and the ethics surrounding hiPSCs have
been primarily evaluated in comparison with hESCs. However, even if future
investigations demonstrate that hiPSCs fulfill the expectation that they could be
possibly viable and superior substitutes for hESCs in disease research, regenerative
medicine, and drug discovery, further scrutiny of the reprogramming technology and
the resulting ethical concerns might potentially reduce some of the hiPSC-associated
ethical advantages over hESCs (Zacharias et al. 2011). In the earliest report on iPSC
generation, tumor formation was noticed in more than 20% of the iPSCs due to the
reactivation and overexpression of c-Myc oncogene (Okita et al. 2007; Ahmed et al.
2011; Buccini et al. 2012).

There is also the safety risk of insertional mutagenesis from virus-dependent
delivery methods, which can lead to tumor formation (Takahashi and Yamanaka
2006; Takahashi et al. 2007; Yu et al. 2007). Ethical and legal challenges are
also associated with the potentiality of using hiPSCs for the development of
human-animal chimeras, human reproductive cloning, and the derivation of human
gametes (Lo et al. 2010; Ishii et al. 2013; Wu et al. 2016; Zheng 2016; Volarevic et al.
2018; Moradi et al. 2019). Additionally, such concerns as the application of intel-
lectual property rights or hiPSC patents, donor information, and consent pose
considerable challenges to the advancement of iPSCs and iPSC-based research
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(Lo and Parham 2009; Zarzeczny et al. 2009; King and Perrin 2014; Orzechowski
et al. 2020). While many of these ethical challenges are not unique to iPSCs but are
also shared by hESCs, the ease of accessibility and the simplicity of procuring
starting cell sources for iPSC development, the rapid progress in iPSC research
witnessed in the last decade, and the remarkable expectations placed on iPSC
technology make it very timely and crucial to consider the ethical and legal issues
associated with it. Notably, hiPSCs may provide a renewable source of cells for
theranostic applications with moral and ethical advantages over their counterpart
pluripotent stem cells. Indeed, hiPSCs have some serious ethical concerns that
scientists and bioethicists must recognize. This chapter summarizes some of the
primary ethical issues associated with the use of hiPSCs, such as safety, reproduction,
patenting, and informed consent/donor’s right, which generally remain unfamiliar to
a common reader in the field.

Safety

There remains significant uncertainty regarding the properties of hiPSCs, how they
are reprogrammed, and their ability to form teratomas. The early iPSC lines were
generated by transducing somatic cells using retroviral-vector-carrying gene
encoding for various transcription factors (Takahashi and Yamanaka 2006;
Takahashi et al. 2007). However, insertional mutagenesis using an integrative gene
delivery system is a substantial safety risk of this approach, which may even result in
tumorigenicity (Takahashi and Yamanaka 2006; Takahashi et al. 2007; Yu et al.
2007; Omole and Fakoya 2018). About 20% of the offspring generated in the
original report on germline-competent iPSCs subsequently developed tumors,
which were attributed to the reactivation of c-Myc transgene (Okita et al. 2007).
Such data prompted many research groups to eliminate c-Myc from the classical
quartet of transcription factors to enhance their safety profile (Nakagawa et al. 2008;
Martinez-Fernandez et al. 2009). These safety risks are unique to iPSCs due to the
combined effect of the overexpression of reprogramming factors and the integrative
viral-vector-based delivery method used in the protocol for iPSC generation. Fur-
thermore, incorrect or incomplete patterning and genetic instability can increase the
risk of tumorigenicity (Yamanaka 2020).

Incorrect or incomplete patterning involves the persistence of undifferentiated
and immature cells in the end product of the reprogramming (iPSCs) as well as the
differentiated cells derived from hiPSCs. These undifferentiated contaminating cell
population has been associated with teratoma formation. The risk of genetic muta-
tions altered biology, and the attainment of tumorigenic potential from incomplete
patterning and genetic abnormalities is not unique to iPSCs but relatively common to
all cells, which require long-term expansion in vitro (Wang et al. 2013; Izadpanah
et al. 2008; Røsland et al. 2009). Genetic alterations like chromosomal aberrations,
single nucleotide mutations, and copy number variations are common during
reprogramming (Turinetto et al. 2017; Yoshihara et al. 2017a; González and Haider
2021). Chromosomal alterations can either exist in the somatic cells prior to their use
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for iPSC generation or originate during the reprogramming process (Yoshihara et al.
2017b; Liu et al. 2020). Indeed, the first hiPSC clinical trial in 2014 was momen-
tarily halted after discovering mutations in the hiPSCs of the second patient,
although mutations were absent in the primary somatic cells (Kimbrel and Lanza
2015; Attwood and Edel 2019). Following the transplantation of hiPSCs, the
expectation is that the cells should develop normally, maintain average growth,
function in the in vivo environment, and adequately replace the injured or lost
cells in the diseased patient.

Nevertheless, these cells may proliferate and increase uncontrollably, creating a
tumor at the implantation site. This risk of tumorigenicity might trigger extensive
safety and ethical concerns about the use of hiPSCs, hence slowing the progress of
its application in stem-cell-based clinical therapy. Interestingly, stem cell scientists
have made some progress in addressing some of these limitations caused by tumor-
igenicity. The c-Myc transgene has been shown to be dispensable for reprogramming
(Nakagawa et al. 2008). Thomson’s group developed their iPSCs using a different
set of four reprogramming factors: Oct3/4, Sox2, Nanog, and Lin28 (OSNL),
substituting Nanog and Lin28 for c-Myc and Klf4 in Yamanaka’s “OSKM” cocktails
(Yu et al. 2007). Nonviral delivery methods (plasmid vectors, transposons), non-
integrative delivery methods (Sendai virus, lentivirus, and adenovirus), and pro-
tocols based on small molecular treatment of somatic cells have been employed to
eliminate the limitations caused by insertional mutagenesis (Pasha et al. 2011; Chen
et al. 2013; Driscoll et al. 2015; Lee et al. 2020; Kim et al. 2020; Yoshimatsu et al.
2021).

Further intensive studies are fundamental for refining the reprogramming tech-
niques of somatic cells and discovering how to prevent the tumorigenicity of
hiPSCs. Another approach in this regard is to develop protocols for the direct
reprogramming of somatic cells to the lineage of interest without passing through
a pluripotency state (Ahmed et al. 2012). Reliable safety assays should be developed
to evaluate the potential of hiPSCs before their application for cell therapy. The
development of more effective protocols for iPSC differentiation must first be
ensured to generate purified populations of hiPSCs before they are used clinically.

Regarding incorrect patterning, stem cell researchers are developing means to
address tumorigenicity to meet the safety standards required for clinical therapy
using iPSCs. Some purification methods have been adopted to identify and remove
the residual undifferentiated pluripotent stem cells (PSCs). They include techniques
such as directed differentiation and positive/negative selection markers using anti-
body cell sorting systems, such as fluorescence-activated cell sorting (FACS) and
magnetic-activated cell sorting (MACS) (Abujarour et al. 2013; Wuputra et al.
2020). The researchers in the clinical study on spinal cord injury are contemplating
the use of the suicide gene method as an additional method to prevent tumorigenicity
(Kojima et al. 2019). All these methods will assist the investigators in carefully
selecting iPSC lines with the highest level of purity that will be safe for the purpose
of clinical application.

Regarding genomic alterations, traditional methods like chromosomal
karyotyping can detect abnormalities like deletion, duplication, and rearrangement,
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and iPSC products with such abnormalities can be discarded. Minimal genetic
alterations, like single nucleotide variation (SNV) and copy number variations
(CNV), can be detected by next-generation sequencing technology (like whole-
genome sequencing) (Yamanaka 2020). However, analyzing such minimal genetic
abnormality can be difficult due to the present difficulty experienced; currently, we
have to sequence a significant portion of our genome and accurately analyze and
interpret the risks from the mutations detected (D’Antonio et al. 2018). The under-
standing and assessment of the mutational burden of iPSCs are important for their
use for therapeutic applications. Indeed, it is challenging to ensure whether a
mutation/mutations detected in the iPSC products will significantly increase the
risk of tumorigenicity after transplantation (Yamanaka 2020). At present, extensive
tests must be carried out on the iPSC products to detect significant mutations, and
only stem cells that pass the test should be forwarded for clinical use. Furthermore,
after successful transplantation of the iPSCs, patients should be monitored for the
possibility of developing a tumor. More clinical research work is needed to accu-
rately predict the tumorigenic possibilities of a detected mutation.

Reproduction

Indeed, one of the most distinct and ethically worrisome potential uses of iPSCs is
the production of human embryos through human reproductive cloning. The use of
iPSCs for human cloning is illegal and is prohibited worldwide. Generating full-term
mice (considered the most stringent criterion of pluripotency) has been fulfilled
using iPSCs through tetraploid complementation assays (Kang et al. 2009; Zhao
et al. 2009, 2010). This assay involves the injection of iPSCs into the blastocysts of
tetraploid mice, embryos that cannot develop into a fetus by themselves. The union
results in reconstructed embryos that later develop into fetuses, confirming that
iPSCs can form new lives. Sir John Gurdon achieved the first example of cloning
using a method where somatic cells were reprogrammed to the embryonic pluripo-
tent states with the same genetic makeup, which is termed somatic cell nuclear
transfer (SCNT) (Gurdon 1962). This was followed by Sir Ian Wilmut, who used the
same SCNT method to generate the first mammalian – Dolly the sheep – by somatic
cloning (Wilmut et al. 1997).

SCNT involves the transfer of somatic nuclei into enucleated oocytes to recon-
struct embryos (Matoba and Zhang 2018). Theoretically, this procedure is applicable
to humans. Yes, human cloning from hiPSCs is technically possible despite associ-
ated safety risks (Wilmut et al. 2015). In both tetraploid complementation and SCNT,
normal human oocytes or embryos will be destroyed. In tetraploid complementation,
human tetraploid embryos will be generated by the fusion of human diploid
embryos. Thus, the normal diploid embryo will be destroyed in the process. The
low viability rate during this process will require generating many reconstructed
embryos to ensure an increased birth rate of the cloned offspring. Hence, the
destruction of many diploid human embryos in the process remains a limitation.
Likewise, in SCNT, the enucleated oocytes are also destroyed. This is tantamount to
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sacrificing many lives for one life, thus raising ethical concerns that are comparable
to that of hESCs. These concerns include controversies about the onset of human
personhood and the treatment and harm to embryos, concerns about the safety and
health risks of women donating eggs and their potential exploitation for their ova and
their informed consent, and concerns about harm to respect for human life, human
dignity, and justice toward humankind. In addition, people may also choose to use
genetically modified hiPSCs in human cloning to develop offspring with unique
characteristics, therefore treating the cloned offspring as a tool for genetic modifi-
cation or diversity. This type of gene customization of offspring will not show
respect for human life. Good surveillance and regulatory processes are essential to
monitoring research projects involving SCNT and tetraploid complementation.
Regulations must be developed to ban human reproductive cloning explicitly.

Another ethically fraught potential use of iPSCs is the derivation of human
gametes (sperm and eggs) and human-animal chimeras. The “first generation” of
iPSCs did not contribute to the germline or produce adult chimeras. Yamanaka
and others later modified the induction protocols, leading to the generation of
iPSCs that were fully reprogrammed and proficient for adult chimera and
germline transmission (Okita et al. 2007; Takahashi et al. 2007; Yu et al. 2007).
Much progress has since been made in the differentiation of pluripotent stem cells
into human sperms and oocytes. Protocols have now been established to success-
fully differentiate and develop male and female gametes from iPSCs (Panula et al.
2011; Hayashi et al. 2011, 2012; Irie et al. 2015; Sasaki et al. 2015; Yamashiro
et al. 2018). It is pertinent to mention that gamete derivation from iPSCs may
serve as a powerful research tool to improve our understanding of human
development and assisted reproductive techniques for the management of infer-
tility disorders (Fang et al. 2018; Zhang et al. 2020). Nevertheless, the chance
that they may be considered for reproductive intents poses ethical concerns about
cloning, safety, donors’ consent, and the right of the unborn child to know the
parents (Advena-Regnery et al. 2018). Other ethical concerns include the poten-
tial risk of changing the natural reproduction method, the generation of gametes
for same-sex reproduction, and asexual reproduction (Mathews et al. 2009).
Furthermore, since the induction of the hiPSCs into gamete cells is not presently
a highly efficient process, an attempt to make embryos from such will result in the
extensive destruction of many poor-quality embryos, thus raising the same
ethical concerns as for hESCs (Mathews et al. 2009).

Chimeras are single organisms containing cells from two or more organisms –
that is, it contains two or more sets of DNAs, with the genetic code to make two or
more separate organisms. Human-animal chimeras have been used enormously by
scientists to improve our understanding of gene function and regulation and
disease mechanisms and for testing experimental drugs and gene therapies (Levine
and Grabel 2017). They are excellent models of human tissues than nonchimeric
animals because they are improved systems for human disease modeling. They
provide the opportunity to research human cells and tissues in vivo without the
necessity for human experimentation. The technology of interspecies blastocyst
complementation has already been used to develop rat organs in mice and vice
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versa (Kobayashi et al. 2010; Isotani et al. 2011; Yamaguchi et al. 2017), though
human-mouse chimera research is the routine.

Recent advances in genome-editing and stem-cell technology have led to
extending this research to larger animals, such as pigs. The combination of gene-
editing technology and interspecies blastocyst complementation has made it possible
to use hiPSCs to generate individualized human organs, thus raising the opportunity
of addressing the dire shortage of organs for transplantation (Wu et al. 2017).
However, the growing amounts of human tissues in these chimeras and the potential
availabilities of these tissues in morally significant sites, such as the brain, raises
strong ethical concerns and questions about the moral status of these animals
(Savulescu 2016). How many human cells are considered “too many” in a human-
animal chimera’s brain? How many human cells are considered “too many” in the
human-animal chimera’s body altogether? How many would human cells make a
mouse brain start thinking human thoughts? What would happen if an animal with
human nervous tissues become self-aware and start thinking and feeling like a
person? How do we know if we have crossed the commonly accepted dividing
line of human decency, dignity, and morality regarding human-animal chimera
research? No one knows the answers to these questions, at least not yet.

Nevertheless, these questions reveal the main ethical dilemmas that bioethicists
are worried about – that chimeric animals with humanized organs may develop
human-like consciousness, which will be ethically unacceptable (Bourret et al. 2016;
Kwisda et al. 2020). For further in-depth analysis and detailed arguments and public
debates on these concerns, please refer to the works reported by Marino, Knoepfler,
Palacios-Gonzalez, DeGrazia, and Greely (Degrazia 2007; Palacios-González 2015;
Knoepfler 2016; Marino et al. 2017; Koplin and Wilkinson 2019; Greely and
Farahany 2021). Going forward, further debates and research are essential to tackle
this major ethical dilemma connected with human-animal chimerism. Therefore, we
strongly recommend the practical recommendations for chimeric research contrib-
uted by Hyun and colleagues (2007).

Overall, the ethical objections to all the issues raised concerning reproduction
include the sanctity of human life, human dignity, safety, manipulation of genetic
diversity, violation of the clone’s rights, etc. (Pattinson 2007). Despite these ethical
objections, the Human Fertilization and Embryology Authorities (HFEA) in 2007
agreed for a cytoplasmic hybrid research program to proceed in the United Kingdom
(Editorial (Lancet) 2007; Mayor 2008). Meanwhile, in the United States (September
2015), the National Institutes of Health (NIH) announced the discontinuation of the
research funding of iPSC-derived chimeras due to additional controversial ethical
issues, which require the attention of enforced policies (NIH, Human Pluripotent
Cells into Non-human Vertebrate Animal 2015a, Web, July 1, 2021; NIH, Staying
Ahead of the Curve on Chimeras 2015b, Web, July 1, 2021). The authors agree that
all aspects of stem cell research should be covered by legislation and strict licensing
procedures to curtail the potential for the abuse of this technology. However, we also
believe that a flexible, less restrictive regulation that considers the proper justifica-
tion for embryo research will eventually benefit all.
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Patentability

A patent gives an inventor the monopoly right to commercialize an invention for a
limited period. Comparable to other property types, a patent makes the inventor the
owner of the invention, while the intellectual property right remains valid. This
concept of ownership has sparked ethical debate in relation to the patentability of
life, centered on the objectification and commercial exploitation of living creatures
(Schrecker et al. 1997). Intellectual property rights, when efficiently applied, can
present a stumbling block to the progress of iPSC research. There are many
approaches used for the generation of iPSCs. If investors hold several patents for
these many iPSC generation methods, this can impede the translation of the tech-
nology from bench to bedside. Although European patent law (Fig. 1) is set up to
protect a person’s dignity, the development of iPSCs has opened a worrying loophole
(Meskus and de Miguel Beriain 2013). The European Union Court of Justice, on
October 18, 2011, delivered a crucial judgment in the aspect of human embryo

Fig. 1 UK and European legal framework for stem cell line patenting
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protection in the case C-34/10 Oliver Brüstle vs. Greenpeace eV. By referring to the
meaning of Article 6(2)(c) of Directive 98/44/EC, this case law clarified that those
inventions, which involved human embryo destruction at any point, could not be
patented (Spranger 2012). However, iPSCs were not in the contemplation of
lawmakers when the Biotechnology Directive (Council Directive 98/44/EC and
Parliament, from July 6, 1998) was drafted in 1999 (https://eur-lex.europa.eu/
legal-contenEN/TXT/?uri=celex%3A31998L0044). Based on the ruling, patents on
stem cells generated from excess embryos from IVF or SCNT or through partheno-
genesis will be banned. However, since iPSCs were not derived from embryos, the
ruling leaves the door open to patents on iPSCs. Subsequently, in the United
Kingdom, regulatory guidance has been offered, which opens the door for the
patenting of iPSCs, potentially reviving ethical concerns (UKIPO. Inventions
involving human embryonic stem cells, 2015, March 25, 2015).

The authors recommend a participatory, inclusive, and transparent process in
establishing a workable iPSC patent system that considers the different moral values
of all stakeholders in the stem cell field. Creating such a system may not be an easy
task, considering the different moral values of all stakeholders. However, if accom-
plished, this will facilitate the bridging of a moral divide and ensure a consensus that
benefits all. More debate and research are essential if we are to close the gap between
patents and innovations.

Informed Consent and Donors’ Right

Like any other research involving humans, consent is vital for hiPSC research,
whether humans participate as research subjects or donors. Usual ethical standards
require that participants are fully informed about the specific details of the proposed
study, and they are expected to provide voluntary and well-informed consent to
participate in the study. Informed consent ensures that the rights, interests, and
dignity of patients are protected and respected. Individuals donating somatic cells
for iPSC generation should have enough information and answers to address their
concerns. The UK Stem Cell Toolkit (USCTK) summarizes iPSC applications
concerning legislation (NIH, UK Stem Cell Toolkit 2018, July 1, 2021). These
regulations can be used to determine what to include in a consent form. Informed
consent should state if the donated cells involved research or clinical applications,
genetic modification, animal testing, in vitro or in vivo trials, and whether it will be
involved in a therapeutic or diagnostic product with any potential licensing and if
there will be risks, complications, and uncertainties. Donors should refuse specific
applications, and the right to withdraw one’s cell lines should be discussed clearly in
the form. If other applications were not mentioned in the initial document,
consenting the donor to be recontacted for such an effect could prevent conflict
(Zarzeczny et al. 2009; Aalto-Setälä et al. 2009; Orzechowski et al. 2020). Clear
explanations and consent will need to be provided as well for patients treated with
iPSCs.
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Under what circumstances can the participants withdraw from a study? Should a
time limit be considered for patient withdrawal? It can get quite complicated when it
comes to withdrawal in stem cell research or cell therapy trials. All the steps
involved, from obtaining somatic cells from donors to using them to generate
iPSCs, are very expensive and time-consuming. So imagine a worse scenario
where several donors request a withdrawal after establishing iPSC lines and, at the
point, where the iPSCs are to be employed for a clinical study. Such a withdrawal
will be very damaging to the research project, and it will be a complete waste of time,
money, and other resources (Sugarman 2008). Although the usual standards of
research ethics require that participants withdraw from the study at any time, and
thus this right must be recognized, there can be “points of no return” that research
participants should be informed about (Zarzeczny et al. 2009; Moradi et al. 2019).
Points of no return can be when transplanted cells (in cell therapy trials) cannot be
removed from the patient’s body, thus receiving an irreversible treatment. Even cells
donated for research (e.g., to a stem cell bank) may be challenging to withdraw if
they have already been used to create a cell line. If there are any such points of no
return relevant to given research projects, prospective participants should be
informed about them. All this vital information, and the time limit for withdrawal,
should be well specified in the consent form (Caulfield et al. 2007). It is indeed a
challenge to balance the varied interest linked with iPSC research, considering the
prospective benefits of the investigation as well as the interest of the donor. Never-
theless, the apparent policy positions should be adopted and followed through
consistently to avoid unnecessary impediments to the research while ensuring the
respect and protection of donors’ rights.

Closely related to informed consent is the donor’s right to control the scope of the
research carried out on their cells as well as the scientific and commercial uses of
stem cell lines derived from their cells. The stem cell lines will carry the
deoxyribonucleic acid (DNA) of the donor, which contains a wealth of information,
including the genetic susceptibility of the donor to disease. The disclosure of such
information could inappropriately breach the donors’ right to their privacy
(Sugarman 2008). In the USA, the federal law termed “Genetic Information Non-
discrimination Act of 2008” is a typical example of a legislative way of addressing
such issues (Taylor 2012). Donors’ rights regarding iPSC research may be exercised
in various ways. Some donors may not permit their cells to be injected into humans,
and they may oppose all animal research or the mixing of human and animal genetic
materials. These objections may lead to friction between obtaining the benefit of
iPSC research and respecting the donor’s autonomy.

One excellent way to address this issue is to preferentially utilize somatic cells
only from donors willing to support and allow all forms of basic research into stem
cells. However, this strategy has its risks. There is a danger of introducing bias in
research if one decides to select only cells from donors who allow all forms of basic
research. Additionally, what if those cells do not exhibit the properties needed for the
research project? What if the recruitment of this type of subjects who agree to all
forms of research takes considerable time and slows down the research project?
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Another approach is for researchers to ensure they give precise and thorough
explanations about the nature of stem cell research when obtaining informed con-
sent. Although an informed consent procedure that provides complete and relevant
information, which enables autonomous decision-making, should be the goal of
every recruitment process, this standard is probably not generally lived up
to. Providing comprehensive explanations about the nature of stem cell research to
the prospective participant can be a difficult task. Information about stem cell
research can be quite complicated, and some details may not be understood if one
does not provide some background details. In general, whatever approach is con-
sidered, the pros and cons should be thoroughly debated before recruiting patients
for the study.

Conclusion

The use of stem cells remains a controversial topic despite the advent of hiPSCs.
While their generation does not involve the destruction of an embryo, as with ESCs,
debates on how they should be used are still relevant (Hug and Hermerén 2011). To
address all the issues considered in this chapter and ensure that hiPSCs are not
exploited or used unethically, pertinent regulations must be implemented. Perhaps
the recent workshop held by the NIH can serve as a model for proactive policy
evaluation (NIH VideoCast –Workshop on Animals Containing Human Cells 2015;
NOT-OD-15-158: NIH Research Involving Introduction of Human Pluripotent Cells
into Non-human Vertebrate Animal Pre-gastrulation Embryos). If stem cell scien-
tists, bioethicists, and policy makers can maintain an open dialogue about the current
state of research, then potential ethical issues on the horizon can be tackled in
advance. Such an approach would allow hiPSCs for human treatment to be appro-
priately moderated without blocking vital research progress that will benefit all.
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