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Abstract Formation flight of Unmanned aerial vehicles (UAVs) has become a 
research hotspot in recent years. How to plan a flyable path for UAV formation 
when flying with a given configuration to the destination safely is an important tech-
nology. Therefore, this paper proposes a path planning method based on Pythagorean 
Hodograph (PH) curves and Delaunay triangulation to generate a flyable reference 
path for UAV formation. Firstly, the kinematic constraints of the formation path are 
derived, while the formation moves. Secondly, the Delaunay triangulation and the 
Warshall-Floyd algorithm are used to obtain the best waypoints array from starting 
point to destination. Thirdly, the PH curves are applied to connect each two neigh-
bour waypoints for meeting the kinematic constraints. The multi-population hybrid 
particle swarm genetic algorithm is proposed to generate an optimal flyable forma-
tion path. Finally, simulations are carried out considering a formation with three 
UAVs in a complicated environment. The simulation results show that the paths 
planned are connected by several PH curves, and all the paths can meet the kine-
matic constraints, avoid the obstacles and threat zones. Furthermore, the single popu-
lation particle swarm genetic algorithm is also applied in the same simulation, and 
the simulation results show that the multi-population hybrid particle swarm genetic 
algorithm proposed in this paper has faster convergence speed and better stability. 

Keywords Unmanned aerial vehicles (UAV) · Formation flight · Path planning ·
Delaunay triangulation · PH curve 

1 Introduction 

Unmanned aerial vehicles (UAVs) are widely used in both civilian and military fields, 
such as search and rescue, environmental monitoring, surveillance and attacks. Based
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on the multi-agent theory and applications [1], a group of UAVs flying in a formation 
rather than a single UAV can obtain higher combating effectiveness, deliver greater 
coverage, and will have wider applications in the future. Therefore, UAV formation 
flight has become a research hotspot in recent years [2, 3]. How to plan a safe flyable 
path for UAV formation when flying with a given configuration to the destination is 
one of the most important technologies for UAV formation flight. 

The current research about UAV formation flight rarely involves the planning 
of the formation reference path, and it is usually assumed that the formation refer-
ence path is known in advance [4, 5]. The path planning problem in commercial 
intercontinental aviation formation flight has been studied to determine the optimal 
formation scheduling plan. However, there is less research on path planning in the 
formation maintenance phase [6]. The motion equations of flexible virtual structure 
formation have been deduced when moving along a reference path as a whole [7]. 
However, the Dubins path used has discontinuous curvature. The comprehensively 
improved particle swarm optimization (PSO) algorithm has been proposed for UAV 
formation path planning under environmental and collision avoidance constraints in 
[8]. However, the UAVs’ kinematic constraints have not been considered. 

The Pythagorean hodograph (PH) curve [9] is parameterized by polynomials as 
a function of the length and provides closed-form polynomials for curve length 
and curvature. In addition, the position and the direction at the initial and the final 
locations are directly considered as boundary conditions, trading off the curve length 
and its curvature to meet the maximum-curvature constraint. Therefore, the PH curve 
is gradually being used for UAV path planning research [10, 11]. 

In this paper, the focus is on generating a safe flyable reference path for UAV 
formation when flying with a given configuration to the destination. Based on the 
PH curves and Delaunay triangulation, the multi-population hybrid particle swarm 
genetic algorithm is proposed to generate an optimal flyable formation reference 
path that considers the path’s kinematic constraints, length, smoothness, stealth and 
safety. The rest of this paper is organized as follows: The problem formulation is 
presented in Sect. 2. The kinematic constraints of the formation path are derived in 
Sect. 3. Section 4 describes the proposed path planning method for the UAV formation 
reference path. The simulation results are presented in Sect. 5. The summary and 
conclusions are provided in Sect. 6. 

2 Problem Formulation 

2.1 Reference Path Planning for UAV Formation Flight 

In this paper, the UAV formation configuration is defined with the virtual structure 
approach [12], which means the path of the virtual point O f (or formation center) can 
be defined as the formation’s reference path. Therefore, the formation reference path 
planning is equivalent to the virtual point path planning. Assume that the obstacles
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and the no-fly zones in the environment are described by rectangles, the radar threats 
are described by circles, and the threat information is known in advance. 

Normally, the starting pose (position and direction) at the initial location of UAV 
formation is known as ps = (xs, ys, χs), and the formation pose pd = (xd , yd , χd ) 
at the destination is also known in advance. The formation reference path planning 
can be mathematically represented as: 

ps = (xs, ys, χs) 

∐ 
min J 

r f (q) 

−→ pd = (xd , yd , χd ) (1) 

where r f (q) is the formation reference path, q is defined as a path parameter, and∐ 
represents the constraints including formation kinematic constraints and safety 

requirements, while J is the comprehensive performance index of the path, consisting 
of fuel consumption, smoothness, stealth, and safety. 

2.2 Pythagorean Hodograph Curve 

The PH curve is defined by a parameterized polynomial curve that has hodographs 
satisfying a Pythagorean condition. The definition is given as: 

Definition 1. (PH curve [9]). Suppose that r(q) = {x(q), y(q)} is a polynomial 
curve parameterized by q. r(q) is a PH curve, if the first derivatives of its components 
satisfy the following Pythagorean condition: 

x '2 (q) + y'2 (q) = σ 2 (q) (2) 

where x(q), y(q) and σ(q) are polynomials about q. 
In view of numerical stability, the PH curve can be written in the Bernstein-Bézier 

form [9] as:  

r(q) = 
n⎲ 

k=0 

pk 

( 
n 
k 

) 
(1 − q)n−k qk , q ∈ [0, 1] (3) 

where pk represent the control points of the curve, and n is the order of the curve. 
According to [13], the lowest order of PH curve that has an inflection point is the 
fifth, called the quintic PH curve. The inflection point provides sufficient flexibility 
in path shape to be appropriate for UAV’s path planning. Therefore, the quintic PH 
curve is applied for UAV formation path planning in this paper. 

Generally, the poses ps and pd are known beforehand, namely boundary condi-
tions r (0), r '(0), r (1) and r '(1). Then, a PH path is determined by m0 = 

II 
IIr'(0) 

II 
II 

and m1 = 
II 
IIr'(1) 

II 
II, considered as the control variables. Hence, appropriate m0 and 

m1 are optimized to ensure that the formation maximum curvature constraints are 
satisfied. The detailed solving process of the PH curve can be found in [14]. The path
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length L(q) and the curvature κ(q) of the PH path can be solved by the following 
equations. 

L(q) = 
⎰ 

II 
IIr'(q) 

II 
II , q ∈ [0, 1] (4) 

κ(q) = 
I 
Ir'(q) × r''(q) 

I 
I 

|r'(q)|3 (5) 

where r'(q), and r''(q) are the first and the second derivatives of r(q), respectively. 
Obviously, the length and the curvature of a PH path are rational polynomials. To 
quantitatively describe the smoothness of a PH path, the elastic energy is defined as 
the integral of squares of the arc length, namely: 

E = 
⎰ 

κ2 ds (6) 

2.3 Delaunay Triangulation 

The Delaunay triangulation, also named Delaunay graph, is widely used in battlefield 
environment modeling and path planning due to its good division characteristics of 
planes [15]. It has the following important properties: 

(1) Uniqueness: for a given vertex set, starting from any vertex in the region, the 
resulting Delaunay graph is unique. 

(2) Hollowness: the circumcircle of any triangle in the Delaunay triangulation does 
not contain other vertices in the vertex set. 

(3) Maximize the minimum angle characteristic: the triangle in the Delaunay 
triangulation is as close as possible to an equilateral triangle. 

(4) Regional: adding or moving a vertex will only affect the triangles adjacent to 
the vertex. 

In the plane of formation flight, the Delaunay triangulation is constructed with 
the centers of the no-fly zones, obstacles and radar threats. Then, the connection 
diagram of the interconnection of each threat is obtained. Each connection is called 
Delaunay edge. The Delaunay edges with the shortest distance between the threats 
less than the diameter of the formation are directly eliminated. 

In the traditional path planning research based on Delaunay triangulation, the 
midpoint of the Delaunay edge is used as an alternative waypoint. However, the 
generated waypoint may be too close to a larger threat. Therefore, the following 
improvements are made in the Delaunay triangulation: the alternative waypoint is 
located on the Delaunay edge, and the distances from the two threats connected to 
this waypoint are proportional to the size of the two threats. Figure 1 shows the
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Fig. 1 Improved Delaunay triangulation 

distribution of alternative waypoints generated after adopting the improved strategy, 
where ‘◯’ represents the generated alternative waypoints. 

3 Kinematic Constraints of UAV Formation 

Assume that the speed and the turning angle rate of each UAV in the formation 
are known to be constrained as 0 < Vi,min ≤ Vi ≤ Vi,max and |ωi | ≤ ωi,max, with 
i = 1, 2, · · ·  , N , respectively, while N is the number of UAVs in the formation. 
Since the formation can be approximated as a virtual rigid body when flying in a 
fixed configuration, to derive the kinematic constraints of the overall movement of the 
formation, namely, the minimum turning radius or maximum curvature constraints 
of the formation, the following assumptions are made: 

Assumption 1. Assume that any UAV formation in a fixed formation can be regarded 
as a virtual rigid body, and the instantaneous movement of the rigid body at any point 
on the reference path of the formation is a fixed axis rotation around a certain virtual 
axis, as shown in Fig. 2. 

where Ogxgyg is the inertial system, O f is the formation center (or virtual point), 
O f x f y f is the motion coordinate system fixed to the virtual point, namely the forma-
tion system, and (xd f i  , yd f i  ) is the desired relative position of UAV i in the formation 
system.
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Fig. 2 Schematic diagram of formation instantaneous movement 

Generally, the formation reference path can be expressed as r f (q) = 
{x f (q), y f (q)}, where q ∈ [0, 1] is the path parameter, and the corresponding 
velocity and curvature types are {V f (q), κ f (q)}. According to Assumption 1 and 
the desired formation configuration, the curvature κi (q) and speed Vi (q) of the UAV 
i can be obtained as: 

κi (q) = sign(κ f (q)) 
/ 

(1 
/ 

κ f (q) − yd f i  )2 + x2 d f i  
(7) 

Vi (q) = 
V f (q)κ f (q) 

κi (q)
= V f (q) 

/ 
(1 − κ f (q)yd f i  )2 + (κ f (q)xd f i  )2 (8) 

Definition 2. (Flyable formation reference path). For any given desired formation 
configuration {(xd f i  , yd f i  ), i = 1, 2, · · ·  , N }, if there is a path r f (q) with continuous 
curvature that satisfies |ωi (q)| ≤ ωi,max and 0 < Vi,min ≤ Vi (q) ≤ Vi,max, i = 
1, 2, · · ·  , N , q ∈ [0, 1], at any point q on the path, then the path is called a flyable 
formation reference path. 

(1) To satisfy |ωi (q)| ≤ ωi,max, i = 1, 2, · · ·  , N , q ∈ [0, 1], it can be known from 
the assumption that: 

I 
IV f (q)κ f (q) 

I 
I ≤ min{ω1,max, · · ·  , ωN ,max} (9) 

Let ωmax = min{ω1,max, · · ·  , ωN ,max}, V f max = sup 
q 

V f (q), then Eq. (9) is  

rewritten as: 

I 
IV f (q)κ f (q) 

I 
I ≤ 

I 
IV f max 

I 
I I Iκ f (q) 

I 
I ≤ ωmax (10) 

For fixed-wing UAV formations, V f (q) >  0, so the following can be 
obtained: 

I 
Iκ f (q) 

I 
I ≤ κmax 1 = 

ωmax 

V f max 
, q ∈ [0, 1] (11)
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(2) To satisfy 0 < Vi,min ≤ Vi (q) ≤ Vi,max, i = 1, 2, · · ·  , N , q ∈ [0, 1], from  
Eq. (8), the following can be obtained: 

Vi,min ≤ V f (q) 
/ 

(1 − κ f (q)yd f i  )2 + (κ f (q)xd f i  )2 ≤ Vi,max (12) 

Let xd f i  = D f i  cos ϕ f i  , yd f i  = D f i  sin ϕ f i , D f i  ≥ 0, ϕ f i  ∈ [−π, π], and 
substitute them into Eq. (12): 

( 
Vi,min 

V f (q) 

)2 

− 1 ≤ (κ f (q)D f i  )
2 − 2κ f (q)D f i  sin ϕ f i  ≤ 

( 
Vi,max 

V f (q) 

)2 

− 1 (13) 

Assume that the safety radius of the formation Ruavs is much smaller than the 
turning radius of the formation R f (q), namely: 

D f i  ≤ Ruavs << R f (q) = 1 
/ 

κ f (q) (14) 

Then κ f (q)D f i  << 1, ignoring the second-order small quantity in Eq. (13), the 
following can be obtained: 

1 − 
( 
Vi,max 

V f (q) 

)2 

≤ 2κ f (q)yd f i  ≤ 1 − 
( 
Vi,min 

V f (q) 

)2 

(15) 

Let Ci = inf 
q 
min 

⎨ ( 
Vi,max 

V f (q) 

)2 − 1, 1 − 
( 

Vi,min 

V f (q) 

)2 ⎬ 
, so if  

I 
I2κ f (q)yd f i  

I 
I ≤ Ci , then 

Eq. (15) is established. Further, if yd f i  = 0, then  Eq. (15) is naturally established, if 
yd f i  /= 0, then there is: 

I 
Iκ f (q) 

I 
I ≤ Ci I 

I2yd f i  
I 
I , i = 1, 2, · · ·  , N , q ∈ [0, 1] (16) 

Let κmax 2 = min 
⎨ 

C1 |2yd f 1| , · · ·  , CN |2yd f N | 
⎬ 
, the following can be obtained: 

I 
Iκ f (q) 

I 
I ≤ κmax 2 , q ∈ [0, 1] (17) 

Therefore, the maximum curvature constraint for the formation to maintain a 
given formation is: 

I 
Iκ f (q) 

I 
I ≤ κmax = min{κmax 1, κmax 2}, q ∈ [0, 1] (18) 

It can be seen from the derivation that Eq. (18) is only applicable to the situation 
where the formation scale is much smaller than the turning radius of the formation 
and is not suitable for large-scale formation.
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4 Formation Reference Path Planning 

4.1 Intermediate Waypoints Search 

After generating the candidate waypoints, the next step is to search for the optimal 
waypoint sequence from the start point to the destination point. Firstly, construct a 
path graph G∗ = (V∗,E∗) with the start point, end point and alternative waypoints as 
the vertex set V∗, and the connection of each vertex as the edge set E∗. Assign a cost 
value to each edge in the graph G∗ to evaluate the pros and cons of the path edge, 
and obtain the cost matrix W∗, where the cost value wi, j can be written as: 

wi, j = αdi, j + β Ri, j + Jsafe,i, j (19) 

where α and β are the weights, di, j is the length of the side, Ri, j and Jsafe,i, j are the 
radar threat cost and the security penalty cost of the side, respectively, if the side 
passes through the no-fly zone or obstacle, Jsafe,i, j = +∞, otherwise Jsafe,i, j = 0. 
Set the starting point as 1, and the destination point as n. 

After obtaining the cost matrix W∗, the Warshall-Floyd algorithm is used to search 
for the optimal waypoint sequence from the start point to the destination point. The 
steps are as follows: 

Step 1. According to W∗, for all i = 1, 2, · · ·  , n and j = 1, 2, · · ·  , n, set  ci, j = 
wi, j , k = 1; 
Step 2. For all i = 1, 2, · · ·  , n and j = 1, 2, · · ·  , n, if there is ci,k + ck, j < ci, j , 
set ci, j = ci,k + ck, j ; 
Step 3. If k = n, go to Step 4, otherwise go to Step 2, k = k + 1; 
Step 4. Set t = 1, P(t) = n, t t  = n; 
Step 5. For i = 1, 2, · · ·  , n, set  e1,i = c1,t t  −wi,t t , if  e1,i = c1,i , then P(t+1) = i , 
t t  = i , t = t + 1; 
Step 6. If t t  = 1, stop and output the optimal waypoint arrangement P, otherwise, 
go to Step 5. 

4.2 Path Optimization 

The path searched by the Warshall-Floyd algorithm is composed of a set of straight-
line segments, so it is not the optimal flyable path for the formation. Thus, further 
optimization processing is required. Firstly, it is assumed that the searched inter-
mediate waypoints can slide on the corresponding Delaunay side, and the multi-
population hybrid particle swarm genetic algorithm (MHPSGA) is used to optimize 
the positions of the intermediate waypoints. Then, the PH curves are used to connect 
the waypoints, and the MHPSGA is used to optimize the PH curve parameters. The 
solution process of the MHPSGA is shown in Fig. 3.
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Fig. 3 The solution process of the multi-population hybrid particle swarm genetic algorithm 

The evolution mechanism of each subpopulation is the hybrid particle swarm 
genetic algorithm (HPSGA), which introduces the crossover and mutation operations 
from the genetic algorithm. This algorithm searches for the optimal solution by 
crossing the particles with the individual extremums or group extremums, as well as 
the particle mutation. In addition, the subpopulations evolve independently and only 
replace the worst individuals with the extreme individuals of other subpopulations 
every certain generation (immigration operation). The crossover and the mutation 
probabilities of each subpopulation are randomly generated in the interval (0.7, 0.9) 
and (0.01, 0.1) respectively. 

4.2.1 Optimization of Intermediate Waypoint Position 
Suppose the waypoint sequence searched by the Warshall-Floyd algorithm is P = 
( p1, p2, · · ·  , pn), where p1 and pn are the start and the end points, respectively. For 
the intermediate waypoints pi , i = 2, · · ·  , n − 1, suppose the two threat bodies 
connected by the Delaunay side are Ti1 and Ti2. According to the formation config-
uration and the size of threat bodies, the coordinates of the two closest points on the 
edge close to the two threats can be obtained as pi1 and pi2. Therefore, the sliding 
interval of the waypoint must be between pi1 and pi2, and is described as:
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pi = pi1 + ti (pi2 − pi1), ti ∈ [0, 1], i = 2, · · ·  , n − 1 (20)  

According to Eq. (20), each group {ti , i = 2, · · ·  , n − 1} corresponds to a new 
straight path, so the particles to be optimized can be written as z = (t2, t3, · · ·  , tn−1). 

The quality of the path is characterized by the fitness of the particles. The 
path performance indicators mainly include fuel consumption performance, smooth 
performance, stealth performance, and safety. Therefore, the particle fitness function 
can be designed as: 

J = 1 
/ 

(αL + β E + γ Jr + Jsafe) (21) 

where α, β and γ are the weights, L is the length of the path, which is equal to the sum 
of the lengths of the straight lines connecting the waypoints, E is the path bending 
cost that is related to the turning angle of each waypoint, Jr is the radar threat cost 
and Jsafe is the penalty cost that is used to ensure the safety of each path segment. 
The path bending cost E can be obtained as: 

E = 
n⎲ 

k=1 

(1 − cos ϕk) (22) 

where ϕk is the turning angle at waypoint k. 
The radar threat cost of the entire formation is equal to the sum of the radar threat 

cost of each UAV. According to the radar threat characteristics [15], the radar threat 
cost can be expressed as: 

Jr = 
Nr⎲ 

i=1 

N⎲ 

j=1 

⎰ Sj 

0 

1 

d4 
i j  (s) 

ds (23) 

where Nr is the number of radars, N is the number of UAVs in the formation, Sj is 
the path length of UAV j, and di j  is the distance from a point on the path to radar i. 
For simplification, each path segment is uniformly discretized into Np points. For 
each radar, only the threat cost of the path segment located in the threat circle is 
calculated. In addition, the crossover and the mutation operations in the algorithm 
adopt arithmetic crossover and uniform mutation, respectively. 

4.2.2 Optimization of PH Curve Parameters for Each Waypoint 
Assume that the optimal waypoint arrangement after optimization is P ' = 
(p1, p'

2, · · ·  , p'
n−1, pn), then the PH curves will be further used to connect the 

waypoints, and the PH curve parameters are optimized through the MHPSGA to 
ensure that the path meets the formation kinematics constraints. 

To obtain a PH curve between any two waypoints, it is necessary to determine the 
direction χ and the direction vector modulus m of each waypoint. Since the directions 
of the start and the end points are known, only the direction vector modulus needs to be 
determined. Therefore, the particle form of the formation PH path to be optimized is
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z = (m1, m2, χ2, · · ·  , mn−1, χn−1, mn). It should be noted that if n = 2, namely the 
path does not contain any intermediate waypoints, the particle will be z = (m1, m2). 

To avoid blind search, a heuristic method is used to limit the search range of 
particles. The value ranges are given by the following formulas: 

mi ∈ [0.05dis, dis], dis  = 

⎧ 
⎪⎨ 

⎪⎩ 

d1,2 , i = 1 
(di−1,i + di,i+1) , i = 2, · · ·  , n − 1 
dn−1,n , i = n 

(24) 

χi ∈ [χ ∗ 
i − π 

/ 
4, χ  ∗ 

i + π 
/ 
4] , i = 2, · · ·  , n − 1 (25) 

where di,i+1 is the straight-line distance between the waypoints p' 
i and p

' 
i+1, and χ ∗ 

i 
is the heading of the vector connecting the waypoints p' 

i−1 and p
' 
i+1. 

The particle fitness function has the same form as Eq. (21). The difference is that 
the path length L is equal to the sum of the path lengths of each PH curve, and the 
path bending cost E is equal to the sum of the bending energy of each PH curve. 
The penalty cost Jsafe not only guarantees path safety but also ensures the maximum 
curvature constraint of the path. 

5 Simulation Results 

To verify the effectiveness of the method proposed in this paper, simulations are 
carried out with three UAVs flying in formation. The programming environment is 
MATLAB 8.0. The obstacles, no-fly zones and radar threats are randomly placed 
in the flight environment. The desired formation configuration is (xd f 1, yd f 1) = 
(0.5, 0)km, (xd f 2, yd f 2) = (−0.3, 0.4)km, (xd f 3, yd f 3) = (−0.3, −0.4)km, and the 
formation safety radius is Ruavs = 0.6 km. The speed of each UAV and the maximum 
turning angle rate are constrained to 80 m/s ≤ Vi ≤ 125 m/s and ωi,max = 0.1 rad/s, 
i = 1, 2, 3, respectively. Assume that the formation center maintains a constant speed 
V f = 100 m/s in the path planning. Therefore, the maximum curvature constraint of 
the formation path can be obtained from Eq. (18) as  0.45 km−1 . 

The number of subpopulations is Npop = 5, the number of particles in each 
population is M = 20, and the maximum number of evolutions is T = 50. The  
migration operation is performed every 5 generations. The weights in Eq. (21) are  
α = 0.03, β = 0.03, and γ = 0.1. 

The simulation first performs formation reference path planning under 4 different 
starting and ending positions of the formation, as shown in Table 1. The planning 
results are shown in Fig. 4, where ◼ and ★ represent the starting and the ending points, 
respectively. The solid straight lines connecting the starting and ending points are 
the optimal paths searched by the Warshall-Floyd algorithm. The thick black curves 
are the optimal flyable paths optimized by the MHPSGA combined with the PH 
curves, in which the optimized intermediate waypoint is represented by ●. Figure 4
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Table 1 Four different formation poses at starting and ending positions 

Pose Starting pose (xs , ys , χs )/(km, km, rad) Ending pose (xd , yd , χd )/(km, km, rad) 
Pose 1 (12, 10, −π 

/ 
9) (105, 13, −π 

/ 
3) 

Pose 2 (5, 35, −π 
/ 
6) (110, 38, π 

/ 
8) 

Pose 3 (0, 50, −π 
/ 
6) (100, 45, 0) 

Pose 4 (8, 70, −π 
/ 
12) (120, 55, −π 

/ 
6) 

Fig. 4 Formation reference paths under different starting and ending poses 

shows that all the planned formation reference paths can avoid the no-fly zones and 
the obstacles in the environment, and can well avoid the radar threat zones. Figure 5 
shows that all four paths can meet the maximum curvature constraint of the formation. 

Furthermore, the single population particle swarm genetic algorithm is applied 
in the same simulation as path 1 for comparison, and five simulation experiments

Fig. 5 Curvature of the four paths
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(a) MHPSGA                                                                            (b) HPSGA 

Fig. 6 The evolution process of five simulation experiments with MHPSGA and HPSGA 

are conducted. The evolution process of the five simulation experiments is shown in 
Fig. 6. It can be seen from the figure that the MHPSGA evolves for 30 generations to 
obtain better results, while the single population algorithm requires 90 generations. 
This means that the MHPSGA converges faster than the single population algorithm.

6 Conclusion 

This paper studies the problem of formation reference path planning in complicated 
environments, that is, planning a safe optimal flyable path for a UAV formation in 
a given configuration. Firstly, the formation is regarded as a virtual rigid body, and 
the kinematic constraints of the formation are deduced. Then the environment is 
modelled based on the improved Delaunay triangulation, and the Warshall-Floyd 
algorithm is used to search for the optimal waypoint sequence. Finally, the multi-
population hybrid particle swarm genetic algorithm is used to optimize the position 
of the intermediate waypoints and the PH curves are used to connect the waypoints 
to meet the formation kinematics constraints. The simulation results demonstrate 
and verify the effectiveness of the method proposed in this paper. Compared with 
the single-population hybrid particle swarm genetic algorithm, the multi-population 
hybrid particle swarm genetic algorithm has a faster convergence rate and better 
searching stability. In future study, the authors will expand the proposed method to 
three-dimensional path planning problems. 

Acknowledgements This research was funded by National Key R&D Program in Shaanxi Province 
(2021ZDLGY09-08). 

References 

1. Burlacu A, Kloetzer M, Mahulea C (2019) Numerical evaluation of sample gathering solutions 
for mobile robots. Appl Sci 9(4):791



168 Z. Shao et al.

2. Zheng Y, Li T, Niu P et al (2019) Cooperative formation control technology for 
manned/unmanned aerial vehicles. In: Zhang X. (eds) The proceedings of the 2018 Asia-
pacific international symposium on aerospace technology (APISAT 2018), APISAT 2018. 
Lecture notes in electrical engineering, vol 459. Springer, Singapore 

3. Shao Z, Yan F, Zhou Z et al (2019) Path planning for multi-uav formation rendezvous based 
on distributed cooperative particle swarm optimization. Appl Sci 9(13):2621 

4. Zhou C, Shao LZ, Lei M et al (2012) UAV formation flight based on nonlinear model predictive 
control. Math Probl Eng 2012(1024-123X):181–188 

5. Shao Z, Zhu XP, Zhou Z et al (2016) Distributed formation keeping control of uavs in 3D 
dynamic environment. Control Decis 31(6):1065–1072 

6. Xu XH, Meng LH, Zhao YF (2015) Geometric approach for intercontinental formation flight 
path planning. J Beijing Univ Aeronaut Astronaut 41(7):1155–1164 

7. Low CB, Ng QS (2011) A flexible virtual structure formation keeping control for fixed-wing 
UAVs. In: IEEE conference on control application, pp 621–626 

8. Shao SK, Yu P, He CL et al (2020) Efficient path planning for UAV formation via 
comprehensively improved particle swarm optimization. ISA Trans 97:415–430 

9. Farouki RT, Sakkalis I (1990) Pythagorean hodographs. IBM J Res Dev 1990(34):736–752 
10. Choe R, Puignavarro J, Cichella V et al (2016) Cooperative trajectory generation using 

Pythagorean hodograph Bézier curves. J Guid Control Dyn 39(8):1–20 
11. Alves Neto A, MacHaret DG, Campos MFM (2010) On the generation of trajectories for 

multiple UAVs in environments with obstacles. J Intell Rob Syst 57(1–4):123–141 
12. Shao Z, Zhu XP, Zhou Z et al (2015) A formation keeping feedback control for formation flight 

of UAVs. J Northwest Polytech Univ 33(1):26–32 
13. Walton DJ, Meek DS (2002) Planar G 2 transition with a fair Pythagorean hodograph quintic 

curve. J Comput Appl Math 138(1):109–126 
14. Farouki RT, Al-Kandari M, Sakkalis T (2002) Hermite interpolation by rotation-invariant spatial 

Pythagorean-hodograph curves. Adv Comput Math 17(4):369–383 
15. Wang Y (2014) Cooperative path planning for attack unmanned aerial vehicles (AUAVs). 

Northwestern Polytechnical University, Xi’an, China


	 Reference Path Planning for UAVs Formation Flight Based on PH Curve
	1 Introduction
	2 Problem Formulation
	2.1 Reference Path Planning for UAV Formation Flight
	2.2 Pythagorean Hodograph Curve
	2.3 Delaunay Triangulation

	3 Kinematic Constraints of UAV Formation
	4 Formation Reference Path Planning
	4.1 Intermediate Waypoints Search
	4.2 Path Optimization

	5 Simulation Results
	6 Conclusion
	References




