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Abstract This paper presents Gaussian Process-based Feedback Linearization 
Control for quad-tiltrotor to compensate for aerodynamic uncertainty. Unlike the 
quadrotor platform, the quad-tiltrotor with wing shape is affected by aerodynamic 
force and moment, which cause unstable behavior in hover and transition modes. 
The proposed control scheme uses the Bayesian non-parametric method without 
prior knowledge to estimate the uncertainty with strong nonlinearity. First, we derive 
the mathematical modeling of the quad-tiltrotor, including an allocation matrix 
to consider the tilt-angle. Second, feedback linearization controller is designed 
by choosing desired target response model. Third, Gaussian process-based feed-
back linearization is proposed to enhance stable flight performance under situa-
tions of uncertainty. Lastly, numerical simulation is performed to compare proposed 
controller with feedback linearization with integral action. 

Keywords Quad-Tiltrotor · Gaussian Process Regression (GPR) · Feedback 
Linearization (FL) 

1 Introduction 

Recently, the multi-rotor type UAV has been used for various missions, including 
transport payload, relay communication, and scanning. However, requirements in 
such missions usually include a wide range and long operational time. But, a multi-
rotor type UAV is not an adequate system because it is known to have short range 
and endurance, unlike conventional fixed-wing type UAVs. To solve this problem, a 
Quad-Tiltrotor type UAV has been developed by combining multi-rotor type UAV 
and fixed-wing to use the advantages of both: vertical take-off and landing ability 
and long endurance and range.
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The structure of the quad-tiltrotor has additional tilt-able motors attached to the 
conventional fixed-wing UAV. Depending on the tilt angle of the motors, the quad-
tiltrotor changes the operating modes among hover, transition, and forward flight. In 
all three modes, the quad-tiltrotor is influenced by aerodynamic forces and moments 
from the wings. In hover mode, the quad-tiltrotor experiences a high angle of attack 
and side-slip angle more frequently than is the case for conventional fixed-wing 
aircraft, during which highly nonlinear aerodynamic force and moment occur. And, 
the quad-tiltrotor has a transition mode between hover and forward flight. During 
transition mode, the quad-tiltrotor influences the aerodynamic force and moment 
because tilted motor increases total velocity. Both wind tunnel experiments and 
Computational Fluid Dynamics (CFD) analysis, used for estimating aerodynamic 
coefficients, are performed to acquire aerodynamic coefficients at different angles 
of attack (AOA) and side-slip angles (AOS). The problem with these methods of 
obtaining aerodynamic characteristics is that at the stall AOA and AOS regions of 
the wing or the aircraft, analysis tends to show inaccurate results, making it hard to 
find exact governing functions in that range. This poses another problem inherent in 
the quad-tiltrotor platform compared to the quadrotor system in hover mode: it has 
a fixed-wing aircraft body and easily experiences high angle of attack and side-slip 
angle. 

Among many previous studies, the backstepping and Nonlinear Dynamic Inver-
sion (NDI) methods have been used to overcome the strong nonlinearity of the quad-
tiltrotor. When the motor is tilted, backstepping is applied to the altitude controller to 
overcome the deteriorating performance [1]. In transition mode, nonlinear dynamic 
inversion is applied to the attitude controller for the quad-tiltrotor for stable flight [2]. 
However, these model-based control methods have a limitation because obtaining 
model parameters like the aerodynamic coefficients of the quad-tilt rotor is very 
difficult and hence stable flight cannot be guaranteed. The Model Reference Adap-
tive Control (MRAC) scheme has also been attempted to solve this problem [3], but 
this method also has the disadvantage that knowledge of the function of the uncer-
tainty is necessary. The neural network-based Model Reference Adaptive Control 
including Radial Basis Function (RBF) was also proposed, but it has the limitation 
that selecting the center of the RBF is very sensitive to the performance [4]. 

Therefore, we propose an adaptive controller that uses Gaussian Process Regres-
sion (GPR) to estimate uncertainties adaptively with a feedback linearization control 
law as a baseline controller. GPR is a Bayesian non-parametric regression method 
to estimate a posteriori a state with an unknown function. We implemented GPR in 
the control law for stable flight performance and robustness without prior domain 
knowledge of uncertainty or its governing function. 

The contribution of our work is that when the aerodynamic coefficient is not accu-
rate, Gaussian Process-based Feedback Linearization (GP-FL) exactly compensates 
for the uncertainty, allowing stable flight without prior information on uncertainties 
from aerodynamics. 

The remainder of this paper is organized as follows: Sect. 2 presents modelling of 
the quad-tiltrotor dynamics. Section 3 demonstrates the proposed controller, which 
integrates feedback linearization and GPR for uncertainties in attitude and altitude
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control. Section 4 provides simulation results of the proposed control law under 
aerodynamics uncertainties. Finally, Sect. 5 is devoted to concluding remarks. 

2 Mathematical Modelling 

This section demonstrates the mathematical modelling of the quad-tiltrotor. The 
shape of the quad-tiltrotor is shown in Fig. 1. As mentioned, the quad-tiltrotor struc-
ture is a conventional fixed-wing UAV with an additional thrust motor that can be 
tilted. The quad-tiltrotor we designed used a servo motor to change the operational 
mode by tilting only the front two motors. 

2.1 Kinematics of Quad-Tiltrotor 

Before obtaining the kinematics of the Quad-Tiltrotor, the inertial frame and body-
fixed frame should be defined. The inertial frame {I} is defined as the North-East-
Down frame (NED). And, the body-fixed frame {B} is located at the geometric center 
of quad-tiltrotor. The rotation matrix transforms any vector in the body-fixed frame 

to the inertial frame. η = [
x y  z  

⎤T 
and � = [

φ  θ  ψ  
⎤T 

represent the position and 

Euler angles, measured in the inertial frame. V = [
u v  w  

⎤T 
and ω = [

p q  r  
⎤T 

represent the velocity vector and angular rate, measured in the body-fixed frame. 

Fig. 1 Dynamic model of tiltrotor
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RB 
I = 

( 
RI 
B 

)T = R1(φ)R2(θ )R3(ψ) = 

⎡ 

⎣ 
cψcθ cθ sψ −sθ 

cψsφsθ − cφsψ cφcψ + sφsθ sψ cθ sψ 
sφsψ + cφcψsθ cφsθ sψ − cψsφ cφcθ 

⎤ 

⎦ 

(1) 

S(�) = 

⎡ 

⎣ 
1 sφ tθ cφ tθ 
0 cφ −sφ 
0 sφ/cθ cφ/cθ 

⎤ 

⎦ (2) 

η̇ = RI 
B V , �̇ = S(�)ω (3) 

2.2 Dynamics of Quad-Tiltrotor 

The dynamics model of the quad-tiltrotor can be derived using the linear momentum 
and angular momentum equations.

∑
F = 

d 
d t  

(mV )I = 
d 
d t  

(mV )B + m(ω × V B) 
⎡ 

⎣ 
u̇ 
v̇ 
ẇ 

⎤ 

⎦ = 

⎡ 

⎣ 
rv − qw 
pw − ru  
qu  − pv 

⎤ 

⎦ + 
1 

m 

⎡ 

⎣ 
Fx 

F y 
Fz 

⎤ 

⎦ (4)

∑
M = 

d 

dt  
(H )I = 

d 

dt  
(H )B + (ω × H ) 

⎡ 

⎣ 
ṗ 
q̇ 
ṙ 

⎤ 

⎦ = 

⎡ 

⎢ 
⎣ 

1 
I xx

[( 
I yy  − I zz  

) 
qr  + l 

⎤ 

1 
I yy

[
(I zz  − I xx) pr + m 

⎤ 

1 
I zz

[( 
I xx  − I yy  

) 
pq + n 

⎤ 

⎤ 

⎥ 
⎦ (5) 

where m is the quad-tiltrotor mass and I is the inertia matrix F = [
Fx Fy Fz 

⎤T 
and 

M = [
l m  n  

⎤T 
are the force and moment exerted at the body-fixed frame {B}. 

2.3 Force and Moment of Quad-Tiltrotor 

The force and moment exerted at the frame {B} are affected by the gravity, thrust, 
and aerodynamics. Assuming the center of gravity of the quad-tiltrotor is the origin 
the body-fixed frame, we can ignore the moment exerted by gravity.

F = Fgravi t y  + Fthrust  + Faero
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Fig. 2 Configuration of thrust system 

M = Mthrust  + Maero (6)

The gravity force can be expressed as: 

Fgravi t y  = RB 
I 

⎡ 

⎣ 
0 
0 
mg 

⎤ 

⎦ = 

⎡ 

⎣ 
mgsθ 

−mgcθ sφ 
−mgcθ sφ 

⎤ 

⎦ (7) 

The thrust force and moment can be obtained through the allocation matrix, which 
converts the force and moment into the motor thrusts T1, T2, T3, T4 (Fig. 2). 

Fthrust  = 

⎡ 

⎣ 
(T1 + T2) cos iT 

0 
−(T1 + T2) sin iT − (T3 + T4) 

⎤ 

⎦ 

Mthrust  = 

⎡ 

⎣ 
dy[(T2 − T1) sin iT + T3 − T4] + cT [(T1 − T2) cos iT ] 

dx [(T1 + T2) sin iT − (T3 + T4)] 
dy[(T2 − T1) cos iT ] + cT [(−T1 + T2) sin iT + (−T3 + T4)] 

⎤ 

⎦ 

(8) 

where iT is the tilt angle, dx , dy are the length from the center of gravity, and cT is 
the moment-thrust coefficient ratio. 

Assuming no ambient wind environment, the velocity vector at the body-fixed 
frame becomes the relative wind velocity. So, we can obtain the angle of attack and 
the side of slip angle as follows. 

VT = u2 + v2 + w2
√

,  α  = tan−1
(w 
u 

⎫ 
,  β  = tan−1

(
v 
VT 

⎫ 
(9)
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The aerodynamic force and moment are defined as: 

⎡ 

⎣ 
D 
Y 
L 

⎤ 

⎦ = 
1 

2 
ρV 2 T S 

⎡ 

⎣ 
CD(α, q,  δe) 

CY (β, p, r,  δa,  δr ) 
CL (α, q,  δe) 

⎤ 

⎦, Faero = 

⎡ 

⎣ 
cαcβ −cαsβ −sα 
sβ cβ 0 
sαcβ −sαsβ cα 

⎤ 

⎦ 

⎡ 

⎣ 
D 
Y 
L 

⎤ 

⎦ 

Maero = 
1 

2 
ρV 2 T S 

⎡ 

⎣ 
bCl (β, p, r,  δa,  δr ) 

cCm(α, q,  δe) 
bCn(β, p, r,  δa,  δr ) 

⎤ 

⎦ 

(10) 

where CD, CY , CL , Cl , Cm and Cn are aerodynamic coefficients, c is the wing chord 
length, b is the wing span, S is the wing area, and ρ is the air density. 

3 Gaussian Process-Based Feedback Linearization Control 

3.1 Feedback Linearization Control 

The proposed controller consists of a baseline controller and adaptive controller to 
compensate for the uncertainty caused by the aerodynamic coefficient at high angle 
of attack and side of slip angle. The feedback linearization method is used for the 
baseline controller because this can be designed as a linear control method by using 
nonlinear dynamic inversion. Feedback Linearization controller can be divided into 
an outer-loop controller and inner-loop controller. The outer-loop controller consists 
of the altitude controller and attitude controller. Target response will be designed 
using an arbitrary first-order or second-order system (Fig. 3). 

Fig. 3 Structure of feedback linearization control
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φ̇ = 
1 

τ φ 
(φc − φ), θ̇ = 

1 

τ θ 
(θ c − θ ) 

ψ̇ = 
1 

τ ψ 

( 
ψ c − ψ 

) 
, ż = 

1 

τ z 
(zc − z) 

(11) 

where τ φ, τ θ , τ ψ , τ z is the time constant of target Euler angles response. 
By nonlinear dynamic inversion, we can obtain the desired angular rate command. 

pc = 
1 

τ φ 
(φc − φ) − qsφ tθ − rcφ tθ , qc =

1 

τ θ cθ 
(θ c − θ ) + rtθ 

rc = cθ 

τ ψ cφ 

( 
ψ c − ψ 

) − qtφ, żc = 
1 

τ z 
(zc − z) 

(12) 

Assuming the target response of the inner-loop is also a first-order system, the 
desired force in the z-axis direction and the moment of each axis can be induced as 
follows: 

l c = 
I xx  
τ p 

( 
pc − p 

) + 
( 
I zz  − I yy  

) 
qr, mc = 

I yy  
τ q 

( 
qc − q 

) + (I xx  − I zz) pr 

nc = 
Izz  
τr 

(rc − r ) + 
( 
Iyy  − Ixx  

) 
pq, Fz = 

m 

cφcθ

(
1 

τż 
(żc −  ̇z) − g 

⎫ (13) 

3.2 Gaussian Process-Based Feedback Linearization Control 

To estimate the uncertainty caused by the aerodynamics in hover mode, we use the 
Gaussian Process, a non-parametric regression method in machine learning. The 
Gaussian Process is a collection of random variables, any finite number of which 
have a joint Gaussian distribution [5]. Therefore, if each point can be the Gaussian 
distribution, we can obtain the mean and variance for a specific point like a function. 
Hence, if model is uncertain, mean function and covariance function are defined as 
follows (Fig. 4): 

m(z) = E[�(z)] 

k 
( 
z, z') = E

[
(�(z) − m(z)) 

(
�

( 
z') − m 

( 
z'))⎤ (14) 

where z, z' is different input data. 
Therefore, we can represent � as follows:

�(z) ∼ GP  
( 
m(z), k 

( 
z, z')) (15)
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Fig. 4 Structure of Gaussian process-based feedback linearization 

The Gaussian Process involves mapping from input-space to output-space. Before 
the prediction, we need enough training data to make up input data sets and measure-
ment data sets. In the quad-tiltrotor system, we should define the data sets to estimate 
the uncertainty caused by the aerodynamic coefficient. Since the angular rate, angle 
of attack, side of slip angle, and control input is directly related the uncertainty, the 
input data set can be obtained as follows: 

zl,k+1 =
[
p r  β V 2 T lc 

⎤ 
, Zl =

[
zl,1 zl,2 · · ·  zl,k−1 zl,k 

⎤ 

zl,k+1 =
[
q α V 2 T mc 

⎤ 
, Zm =

[
zm,1 zm,2 · · ·  zm,k−1 zm,k 

⎤ 

zn,k+1 =
[
p r  β V 2 T nc 

⎤ 
, Zn =

[
zn,1 zn,2 · · ·  zn,k−1 zn,k 

⎤ 
(16) 

since �̇ is not available, we can obtain these values from the fixed-point smoother 
[6]. 

The output dataset can also be obtained.

�l,k+1 = Ixx  ṗ − 
( 
Izz  − Iyy  

) 
qr − lc, Yl =

[
�l,1 �l,2 · · · �l,k−1 �l,k 

⎤

�m,k+1 = Iyy  q̇ − (Izz  − Ixx  )pr − mc, Ym =
[
�m,1 �m,2 · · · �m,k−1 �m,k 

⎤

�n,k+1 = Izz ṙ − 
( 
Ixx  − Iyy  

) 
pq − nc, Yn =

[
�n,1 �n,2 · · · �n,k−1 �n,k 

⎤ 
(17) 

The Gaussian Process was performed by updating 1000 datasets over time to add 
new data by removing the oldest data to reduce the computational time and memory 
burden. The uncertainty estimated using the Gaussian Process is obtained through 
the kernel function. The kernel function was chosen as the most commonly used 
squared-exponential covariance function.

[
�(·),k

�(·),k+1 

⎤ 
∼ N

(
0,

[
K 

( 
Z(·), Z(·) 

) + σ 2 n I K  
( 
z(·), Z(·) 

) 

K 
( 
Z(·), z(·) 

) 
K 

( 
z(·), z(·) 

) 
⎤⎫ 

(18)
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K 
( 
z, z') = σ f exp

(∥∥z − z'∥∥2 

2l2 

⎫ 

(19) 

where σn,  σ  f are the data and noise variance and l is the diagonal length scale matrix. 
Therefore, we can obtain the estimated aerodynamic mean and variance of 

uncertainty: 

�̂l,k+1 = K 
( 
zl,k+1, Zl 

)T ( 
K (Zl , Zl ) + σ 2 n 

)−1 
Yl 

�̂m,k+1 = K 
( 
zm,k+1, Zm 

)T ( 
K (Zm, Zm) + σ 2 n 

)−1 
Ym 

�̂n,k+1 = K 
( 
zn,k+1, Zn 

)T ( 
K (Zn, Zn) + σ 2 n 

)−1 
Yn 

(20)

∑

l,k+1 
= K 

( 
zl,k+1, zl,k+1 

) − K 
( 
zl,k+1, Zl 

)T (
K (Zl , Zl ) + σ 2 n 

⎫−1 
K 

( 
zl,k+1, Zl 

)

∑

m,k+1 
= K 

( 
zm,k+1, zm,k+1 

) − K 
( 
zm,k+1, Zm 

)T (
K (Zm , Zm ) + σ 2 n 

⎫−1 
K 

( 
zm,k+1, Zm 

)

∑

n,k+1 
= K 

( 
zn,k+1, zn,k+1 

) − K 
( 
zn,k+1, Zn 

)T (
K (Zn , Zn ) + σ 2 n 

⎫−1 
K 

( 
zn,k+1, Zn 

) 
(21) 

The proposed controller is composed of baseline control input and adaptive control 
input, as follows: 

u = ubaseline + uadaptive 
ubaseline = g(x)−1 ( ̇x − f (x)) 
uadaptive =  −  ̂� (22) 

4 Simulation Results 

To verify the performance of the Gaussian process-based feedback linearization, 
numerical simulation is performed by MATLAB software and GPML Toolbox. The 
control and model parameters used in this simulation are listed in Table 1. The

Table 1 Quad-tiltrotor model parameters and control parameters 

Parameter Value Units Parameter Value Units Parameter Value Units 

m 1.575 kg τz 0.9 1/s τp 0.1 1/s 

Ixx 0.0281 kg · m2 τφ 0.3 1/s τq 0.1 1/s 

Iyy 0.0286 kg · m2 τθ 0.3 1/s τr 0.2 1/s 

Izz 0.0551 kg · m2 τϕ 0.6 1/s τmotor 0.03 1/s 

Ixz 0.00137 kg · m2 τż 0.3 1/s kT 2.6 · 10−6 N · s2 
dx 0.27 m dy 0.27 m kQ 4.47 · 10−8 N · m · s2
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maximum magnitude of the Euclidean norm of the sensor noise is represented in 
Table 2 [7]. The simulation results of proposed controller are compared to feedback 
linearization with integral action.

The pink line separates the hovering and transition mode of quad-tiltrotor. Figure 5 
shows the Euler angles results obtained by feedback linearization with integral action 
and Gaussian process-based feedback linearization. In the hovering and transition 
modes, the Euler angles of feedback linearization with integral action does not reach 
the desired command and has a bias toward significance. However, the Gaussian 
process based on feedback linearization follows commands exactly, while uncertainty 
is effectively compensated for except along the yaw axis in the period of 0–10 s. The 
cause of this phenomenon is that the allocation method has the priority to guarantee 
the roll and pitch axis stability first. Figure 6 shows the angular rate and desired 
angular rate commands for the Gaussian process-based feedback linearization. 

Figure 7 presents the true uncertainty and estimated uncertainty by Gaussian 
process-based feedback linearization. In the hover mode, the uncertainty can be

Table 2 Norm of sensor noise 

z(m) φ(rad) θ (rad) ϕ(rad) ż(m/s) p(rad/s) q(rad/s) r (rad/s) 

Variance 0.05 0.05π 
180 

0.05π 
180 

0.05π 
180 0.02 0.5π 

180 
0.5π 
180 

0.5π 
180 

Fig. 5 Responses of Euler angles using FL and GP-FL
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Fig. 6 Responses of angular rate using GP-FL

effectively compensated. However, estimated uncertainty has oscillation in the tran-
sition mode because velocity increases sharply. Figure 8 indicates that the tilt-angle 
changes according to the total velocity.
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Fig. 7 Responses of true uncertainty and estimated uncertainty 

Fig. 8 Results of total velocity and tilt-angle 

5 Conclusions 

This paper proposed Gaussian process-based feedback linearization to compensate 
for aerodynamic uncertainty for quad-tiltrotor in hover mode and transition mode. 
The simulation results show that the proposed controller follows commands accu-
rately, compensating for uncertainty. Moreover, our proposed controller is a typically 
combination of baseline and adaptive controllers, ensuring stable and reliable control
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performance any conditions; adaptive controllers eliminate aerodynamic uncertainty. 
Our future work will be to perform experiments to ensure controller performance. 
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