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Abstract. In GNSS navigation and positioning, ionospheric delay error is one
of the sources of error that cannot be ignored. The BDS Klobuchar (BDSKIlob)
and BDGIM model parameters are broadcast by the BDS Navigation Satellite
System in the broadcast ephemeris to correct for ionospheric delay errors, which
can meet the basic navigation and positioning needs of users. However, in the face
of the growing demand for autonomous positioning and navigation accuracy, it
is necessary to further improve the accuracy of the model and reduce the impact
of the space environment on positioning. In this paper, a Back Propagation (BP)
neural network optimized by Atrtificial Bee Colony Algorithm (ABC) is used to
compensate for the error prediction of the BDS broadcast ionosphere model from
7 to 13 September 2021. For BDSKlob and BDGIM, a number of grid points in the
Chinese region and worldwide are selected for experimental analysis. BDSKlob
and BDGIM respectively selected several grid points in China and the world
for experimental analysis. The results show that the prediction compensation of
the BDS broadcast ionosphere model errors using ABC-BP neural network can
achieve better accuracy results. For BDSKlob, the model correction rate improved
to 81.66% in China after using the predicted values to compensate for the model
values. For BDGIM, the accuracy was significantly improved in the global mid
and high latitudes, with model correction rates of 74.25%, 82.05% and 82.13%
for the high, mid and low latitudes respectively after compensation.

Keywords: BDS - Artificial Bee Colony Algorithm - Neural Networks -
Klobuchar - BDGIM - Error compensation

1 Introduction

For autonomous navigation, the influence of the space environment, which refers to the
sum of elements that affect human production and life in the vast expanse of cosmic space
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above an altitude of tens of kilometres from the ground, cannot be ignored [1, 2]. As an
important part of the space environment, the ionosphere can produce reflection, refraction
and scattering effects on radio signals, causing changes in the propagation speed and
direction of navigation signals, resulting in ionospheric delay error, which is one of the
important error sources in GNSS measurements [3—5]. For standard point positioning,
ionospheric delay is mainly corrected in real time using the broadcast ionospheric model.
BDS-2 uses BDS Klobuchar model (BDSKIlob), and the BDS-3 adds the independently
designed and developed BeiDou global broadcast ionospheric delay correction model
(BDGIM), both of which attenuate ionospheric delay errors to a certain extent.

BDSKIlob is mainly applicable to the mid-latitudes of the Northern Hemisphere,
with a higher correction accuracy in the mid-latitudes than in the high-latitudes and
low-latitudes. The model parameters are mainly calculated from tracking station data
in China, and are most suitable for the Chinese region, but only up to about 70%;
the correction accuracy in the Northern Hemisphere is higher than in the Southern
Hemisphere, mainly because the model uses symmetry with the Northern Hemisphere
when calculating the ionospheric TEC in the Southern Hemisphere, so itis less applicable
to the Southern Hemisphere [6-9]. BDGIM is a global ionospheric correction model,
which, according to related studies [9—11], has a slightly improved correction accuracy at
low and mid-latitudes and a larger improvement at high latitudes compared to BDSKlob.
Because the BDGIM background ionospheric constraint information is mainly built
using Northern Hemisphere information, the BDGIM model is usually significantly
better than other regions in the Northern Hemisphere at low and mid-latitude corrections,
and the BDGIM correction rate can reach up to 70% or more on a global scale [6, 12].
The broadcast ionospheric model is convenient to apply, but it cannot meet the increasing
demand for positioning accuracy. Some scholars have improved the Klobuchar model by
analysing the physical mechanism of the ionosphere and increasing the model parameters
[13—15], while others have optimised the Klobuchar model using time series analysis
methods or neural network models [5, 16], which have improved the model accuracy to
varying degrees.

Neural networks can infinitely approximate complex non-linear relationships and
have been shown to achieve good results in ionospheric TEC prediction and satellite
orbit modelling [16-26]. Back Propagation Neural Network (BP) is a typical non-linear
prediction model, but BP neural network itself has some shortcomings, such as sensitive
to the setting of the initial parameters of the network, easy to fall into the local minimum
value. In this paper, the Artificial Bee Colony Algorithm (ABC), a swarm intelligence
optimization algorithm, is used to optimize the network parameters of BP neural network,
and based on this, an error prediction method is proposed for the BDS ionospheric model
to forecast and compensate the error of BDSKlob and BDGIM to improve the model
accuracy.

2 ABC-BP Neural Network

2.1 BP Neural Network

The essence of neural network learning is to find a certain hypothesis function in the
hypothesis space that satisfies the sample inputs and outputs by training on the basis of
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a training dataset with a specified optimization method so that the corresponding loss
function of the current model on the training dataset is minimized [28].

BP networks have a strong non-linear mapping capability and a 3-layer BP neural
network can approximate any non-linear function but it also has limitations. Firstly,
there are many parameters in the network, and each time a large number of thresholds
and weights need to be updated, so the convergence speed is slow; BP algorithm is
essentially a one-time convergence learning algorithm, there is inevitably the problem
of local minima, and even oscillation near the extreme value point, which does not
converge smoothly to the optimal solution.

2.2 ABC-BP Model

The ABC-BP model incorporates the ABC algorithm into the BP neural network, replac-
ing the way of training and adjusting the weights and thresholds of the BP neural network
from the fastest gradient descent algorithm to the ABC algorithm. The incorporation of
the population intelligence optimisation algorithm ABC into the BP neural network can
improve the global search capability of the network, speed up the convergence of the
algorithm and prevent the algorithm from falling into local extremes.

ABC Algorithm

The ABC algorithm make up of four parts: the nectar source (potential solution), the
leader bee, the follower bee and the scouter bee, as well as two actions: recruiting the
follower bee and discarding the nectar source [29], where the location of the nectar
source is used to represent the solution, and the pollen count of the nectar source is
used to represent the adaptation value of the solution [30]. Lead bees and follow bees
each account for half of the total bee colony. The leader bees are responsible for the
initial search for nectar sources and sharing information, the followers are responsible
for staying in the hive and collecting nectar according to the information provided by
the leader bees, and the scouter bees are responsible for randomly finding new nectar
sources to replace the original ones when they are abandoned. The ABC algorithm is
iterative and, after initialisation of the colony and honey source, iteratively performs
three processes, the leader bee, follower bee and scouter bee phases, to find the optimal
solution to the problem. Each stage is described as follows:

(1) Initialization of bee colony. The parameters of the ABC algorithm are initialised,
these are the number of nectar sources SN, the number of times the nectar sources
are determined to be discarded LIMIT, and the number of iterations terminated.
In the standard ABC algorithm, the number of nectar sources SN is equal to the
number of leader bees and the number of follower bees. The equation for generating
nectar is

Xjj = Xminj + rand [0, 1](Xmax;j — Xmin;) (1)

Among them, x;; represents the jth dimension value of the ith nectar, 1 < i <
SN, 1 <j < D, Xmax; and xmin; represents the minimum and maximum value of
the dimension respectively. Initialising a nectar source means assigning a random
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value within a range of values to all dimensions of each nectar source using the
above formula, thus generating a random initial nectar source for SN.

(2) Leader Bee Stage. In this stage, the leader bee uses Eq. (2) to find a new nectar
source and uses a greedy algorithm to compare the old and new nectar adaptation
values and select the superior.

vij = xij + @i (X — Xkj) )

Among them, x; represents the neighborhood nectar, 1 < k < SN, and k # i; ¢;; is
arandom number, and —1 < ¢;; < L.

(3) Follower bee stage. In this phase, the follower bee analyses the nectar source infor-
mation of the leader bee and selects a nectar source with a higher adaptation value
to be followed and mined, again using Eq. (2) for the mining process. The honey
source has the parameter trail, which is O when the update is retained, and 1 when
it is not, so that the number of times a honey source is retained can be counted.

(4) Scouter bee stage. When a nectar source has not been renewed after several exploits,
i.e. the trial value is too high and exceeds a predetermined threshold limit, then the
source is discarded and the corresponding leader bee is transformed into a scouter
bee, using Eq. (3) to find a new nectar source.

Xminj + rand |0, 1](xmaxj - xminj)» trail > lim it

3)

Xij = . .
Xjj, trail > lim it

ABC Optimizes Network Parameters

The BP neural network connection weights are optimized using the ABC algorithm, the
BP loss function is used as the adaptation value function of the ABC algorithm, each
connection weight is used as a dimension of the solution, and the infinite number of
combinations corresponding to the connection weights are used as the solution space
of the ABC algorithm, so as to construct a BP model optimized by the ABC algorithm,
which reduces the probability of the BP model falling into a local optimum by using
the advantage of ABC in global search, thus improving the effectiveness of parameter
learning of the BP neural network [28].

3 Error Modeling Method of Ionospheric Model

3.1 Error Prediction Method

The following procedure is used to create a BDS ionospheric model error prediction
model based on a 3-layer ABC-BP neural network:

(1) Obtain a sample data set. The ionospheric vertical delay of the target puncture point
is calculated using the BDS ionospheric model, the GIM (Global Ionospheric Map)
product published by Center for Orbit Determination in Europe (CODE) is used
as the TEC reference value, and the model error value is calculated as the sample
data, with a temporal resolution of 1 h.
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(2) BP neural network settings. The number of nodes in the input layer and in the
implicit layer of the model are both set to 5, and the number of nodes in the output
layer is set to 1. The input layer corresponds to the sample data for the first five
moments and the output layer corresponds to the sample data for the next moment,
organised in a stepwise manner in order to make full use of the sample data.

(3) ABC algorithm parameter setting. For the 3-layer BP neural network, the number
of problem dimensions N of the ABC algorithm is 36, the number of nectar sources,
i.e. the number of swarms SN, is set to 100, the limit is set to 1 and the maximum
number of iterations is set to 5.

(4) Model training and prediction. The sample data is normalised and pre-processed,
and the ABC-BP neural network is used for training and prediction to obtain pre-
dicted values of the BDS ionospheric model error and compensate for the model
values, the overall process is shown in Fig. 1.
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Fig. 1. ABC-BPNN algorithm flow Fig. 2. Grid point distribution in China
chart

Using the above method, 15 grid points were error compensated and the RMSE
before and after compensation was counted for each grid point over a 7-day period, as
shown in Fig. 3 and 4. It can be seen that after compensating for the BDSKIob, the
RMSE is reduced to varying degrees for most grid points, with a maximum reduction
of 4.22 TECu occurring at (45°N,130°E).

Figure 5 shows the prediction of the BDSKlob model error for some grid points
on September 7. As can be seen from the figure, the BDSKlob model error prediction
values are in most cases more closely matched to the true values, with only a few cases of
large deviations. The correction rates for all grid points before and after compensation
for these 7 days were calculated and the data are shown in Table 1. Among the 15
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Fig. 4. RMSE for BDSKlob+ABC-BPNN

grid points, 14 of them have improved their BDSKlob model correction rate to varying
degrees, among which the accuracy of the grid points in the mid-latitude region has
improved significantly, with five points improving by more than 20%.
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Fig. 5. Error prediction of BDSKIob for partial grid points

Table 1. BDSKIob correction rate before and after compensation (%)

BDSKIlob BDSKlob+ABC-BPNN

90°E 110°E 130°E 90°E 110°E 130°E
45°N 60.24 52.54 31.78 80.09 80.89 77.94
35°N 62.79 58.00 50.66 83.14 81.45 80.47
25°N 77.63 77.43 75.80 83.46 77.99 80.61
15°N 77.56 81.64 81.58 82.99 82.18 81.16
5°N 73.88 77.24 80.54 83.13 82.17 87.23

Table 2. Accuracy statistics of BDSKlob in China

BDSKIlob BDSKlob+ABC-BPNN
RMSE/TECu Correction rate RMSE/TECu Correction rate
4.92 67.95% 3.66 81.66%
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The mean value of the correction rate of all grid points was calculated to obtain the
correction rate of the BDSKIlob before and after compensation, and the correction rate
of the Chinese region increased from 67.95% to 81.66%, as listed in Table 2.

4 BDGIM Error Compensation Results

For the BDGIM, the same approach was used to predict and compensate for model
errors from 7 to 13 September 2021. Considering the needs of maritime navigation and
positioning, and in order to test the prediction effect of ABC-BP neural network more
comprehensively, this paper does not treat land and sea differently, but selects 96 grid
points evenly around the world for experimental analysis, so the accuracy of BDGIM
model calculated in this paper is slightly lower than the existing evaluation results, and
the specific distribution of grid points is shown in Fig. 6. Due to the length of the paper,
specific forecasts for grid points are not shown.
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Fig. 6. Global grid point distribution

The RMSE before and after compensation are given and shown in Fig. 7 and Fig. 8
respectively. It can be visually seen that the RMS is significantly reduced in the mid and
high latitudes after adjustment.
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Fig. 7. RMSE for BDGIM Fig. 8. RMSE for BDGIM+ABC-BPNN

In order to analyse the improvement in the correction rate in more detail, the improve-
ment in the correction rate of all grid points over the 7 days was counted and the number
of grid points in the different improvement intervals was obtained. Out of the 96 grid
points, the correction rate of 74 grid points improved to varying degrees, with 37 of them
improving by 0-10%, 22 by 10-20%, 9 by 20-30% and 6 by more than 30%; 22 grid
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Table 3. Accuracy statistics of BDGIM in different latitudes of the world

Region BDGIM BDGIM+ABC-BPNN
RMS/TECu Correction rate RMS/TECu Correction rate

High-latitude 2.19 56.41% 1.78 74.25%

Mid-latitude 3.20 71.54% 2.68 82.05%

Low-latitude 2.47 81.14% 2.18 82.13%

Global 2.84 71.36% 2.18 80.13%

points showed a decrease in the correction rate, but the maximum decrease was only
9.81%.

The accuracy of the model before and after grid point compensation for different
latitude regions was counted to obtain Table 3. It can be seen that after the error prediction
compensation using ABC-BP, the accuracy of the model is significantly improved in
the high and middle latitudes and not significantly improved in the low latitudes. For
high latitudes, the BDGIM model accuracy improved from 2.19 TECu to 1.78 TECu
and the correction rate improved from 56.41% to 74.25%; for mid-latitudes the model
accuracy improved from 3.20 TECu to 2.68 TECu and the correction rate improved from
71.56% to 82.05%, with a global an improvement of 8.77%. ABC-BP neural network
for error prediction of BDGIM is more suitable for middle and high latitudes because
the ionospheric electron content varies more at low latitudes compared to middle and
high latitudes, and BDGIM error varies more randomly.

5 Conclusion

In this paper, the CODE GIM product is used as a reference to obtain the BDS Klobuchar
and BDGIM model errors, and a BP neural network optimized by an artificial bee colony
algorithm is used for training to predict the model errors from 7 to 13 September 2021
and to compensate for the model values to improve the model accuracy.

After using ABC-BP neural network to compensate for the error of the BDS
Klobuchar model, the model accuracy improved significantly, with the model error RMS
in China improving from 4.92TECu to 3.66TECu and the correction rate increasing from
67.95% to 81.66%

The use of ABC-BP neural networks to compensate for errors in the BDGIM model:
(1) can improve the overall accuracy of the BDGIM model. The correction rates of 74 out
of 96 grid points worldwide were improved to different degrees; (2) is more applicable
to middle and high latitudes. After performing error compensation, the model accuracy
and correction rate improved from 2.19 TECu, 56.41% to 1.78 TECu, 82.05% for global
high latitudes; from 3.20 TECu, 71.54% to 2.68 TECu, 82.05% for global mid-latitudes,
and from 71.36% to 80.13% for global correction rate.
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In standard point positioning, the ionospheric correction model ultimately serves

the positioning needs of single-frequency users. The subsequent positioning experi-
ments will be conducted using the ABC-BP neural network-based compensated BDS
ionospheric model to analyse its effect on positioning accuracy improvement.
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