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Abstract. To improve the accuracy of the satellite rapid clock bias, a modified
Elman neural network clock bias prediction method based on particle swarm opti-
mization (PSO) algorithm is proposed. The Elman recurrent neural network is
introduced to predict the clock bias, its weights and thresholds are improved by
PSO algorithm to improve the training speed and prediction accuracy. Then, the
optimization method is applied to the rapid clock bias prediction, and the steps of
using this method for the rapid clock bias prediction are given. Finally, the opti-
mization method is compared with common quadratic polynomial model, gray
model and ultra rapid clock bias product IGU-P. The results show that the PSO-
Elman model achieves high accuracy and stability for four different types of GPS
satellite clock, and its prediction accuracy and stability improved by 85%, 74%,
89% and 71%, 53%, 28% compared with QPM, GM(1,1) and IGU- P products,
respectively.

Keywords: Satellite atomic clock · Clock bias prediction · Elman neural
network · Particle swarm optimization

1 Introduction

The Global Navigation Satellite System (GNSS) carries out positioning through time
measurement. Precision time and frequency is the basic guarantee for its normal opera-
tion andproviding accurate services. Satellite atomic clockbias prediction is an important
prerequisite for high-precision positioning and navigation [1]. At present, the Interna-
tional GNSS Service (IGS) provides GPS final precision ephemeris products with the
accuracy at 75ps, but there is a lag of about two weeks, which can not meet the real-time
needs of users; Broadcast ephemeris and ultra rapid clock bias products can provide
real-time services, but their accuracy is about 5 ns and 3 ns respectively, so it is difficult
to achieve high-precision positioning and timing.

Thephysical characteristicmodel representedbyquadratic polynomialmodel (QPM)
and its extended model, the data-driven model represented by grey system model GM
(1,1) and summation autoregressive moving average model (ARIMA), and the machine
learning model represented by support vector machine and limit learning machine are

© Aerospace Information Research Institute 2022
C. Yang and J. Xie (Eds.): China Satellite Navigation Conference
(CSNC 2022) Proceedings, LNEE 910, pp. 361–371, 2022.
https://doi.org/10.1007/978-981-19-2576-4_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-2576-4_32&domain=pdf
https://doi.org/10.1007/978-981-19-2576-4_32


362 Y. Liang et al.

mainly used for clock bias prediction. Because the characteristics of satellite atomic
clock are affected by periodic motion, environmental change and random factors, the
traditional model has some limitations in clock bias prediction: QPM is simple and
suitable for short-term prediction, but the error of long-term prediction is divergent; GM
(1,1) is more suitable for small data modeling, and the exploration of historical data
is limited; Arima modeling and prediction steps are cumbersome [2, 3]. For the above
reasons, neural network model has been gradually applied to clock bias prediction in
recent years.WangGuocheng used radial basis function (RBF) neural network to predict
GPS satellite clock bias [4].WangYupu proposed awavelet neural network (WNN) clock
bias prediction model and achieved ideal accuracy [5]. However, WNN’s topology is
difficult to determine, and the selection of RBF sample interval is lack of theoretical
basis.

In recent years, recurrent neural network (RNN) with good generalization ability has
shown strong adaptability in time series data analysis. As a typical structure of RNN,
compared with the traditional BP neural network structure, Elman neural network adds
a receiving layer that receives the feedback signal and connects the output state of the
hidden layer at the previous time. It is used as the hidden layer input together with the
current time network input, so it has the characteristics of local feedback and dynamic
memory [6]. However, Elman adopts the gradient descent method similar to BP neural
network, which is prone to slow training speed and falling into local minima. Therefore,
this paper uses particle swarm optimization (PSO) to optimize the weight and threshold
of Elman neural network, establishes PSO-Elman data prediction model, and applies
this method to rapid clock bias prediction. Based on the rapid clock bias data provided
by IGS center, the accuracy and stability of the proposed method are compared with
quadratic polynomial model, grey model and IGU-P.

2 The Common Clock Bias Prediction Model

Among the commonly used clock bias prediction models, Arima modeling is complex,
which is usually used to predict the long-term parameter change of clock or the residual
error of clock bias fitting; Kalman filter prediction needs sufficient clock bias data.
The interference of satellite clock working environment is easy to lead to the problem of
filter divergence in the prediction process. Themodeling process of quadratic polynomial
model and grey model is concise and suitable for rapid clock bias prediction, so they are
selected as the main comparison method.

2.1 Quadratic Polynomial Model (QPM)

Generally, the time difference model of satellite atomic clock can be expressed as:

x(t) = x0 + y0t + 1

2
dt2 + A

2π f0
sin(2π f0 + ϕ)

∣
∣t
0

+ σ1W1(t) + σ2

∫ t

0
W2(s)ds (1)
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Among them, x0 represents the initial phase difference, y0 represents the initial
frequency difference, and the frequency drift d is often taken as 0 for cesium atomic clock
with insignificant drift rate, which is the main trend component in the time difference.
As the navigation satellite clock is affected by rotation, illumination and temperature in
space, its phase change has a certain periodicity,which expressed as A

2π f0
sin(2π f0+ϕ)

∣
∣t
0 ,

is the periodic component of phase. Two independent Wiener processes W1(t), W2(t)
are used to represent dominant atomic clock noises, which is the random term part of
the time difference.

Since the order of magnitude of the trend term is significantly larger than the peri-
odic term, QPM based on phase, frequency and frequency drift parameters is used to
approximately characterize the physical model of satellite atomic clock. The observation
equation is:

Li = a0 + a1(ti − t0) + a2(ti − t0)
2 +

∫ ts

t0
f (t)dt (2)

The corresponding error equation can be obtained as follows:

error = a0 + a1(ti − t0) + a2(ti − t0)
2 − L (3)

a0, a1, a2 can be estimated and solved by the least square method, and then extrap-
olated to realize the clock bias prediction. QPM has simple modeling, clear physical
meaning and good short-term prediction effect, but the long-term prediction accuracy
will diverge at any time when the clock parameters change. In addition, the QPM with
additional periodic term is closer to the atomic clock TDOAmodel in form, but because
the determination of periodic term requires long data, it has general effect in short-term
prediction [7].

2.2 Gery System Model (GM(1,1))

The Grey system theory was proposed by Professor Deng Julong in 1982. It is mainly
used to study the uncertain system of “small data and poor information”, which is more
in line with the characteristics of time difference. Since the clock bias data is a single
variable, the corresponding grey model is GM (1,1) model. The original measurement
data can be set as:

x(0) = {x(0)(1), x(0)(2), . . . , x(0)(n)} (4)

The main methods of studying intrinsic grey system are accumulation and subtrac-
tion. Accumulation generation can enhance the regularity of data, improve the random-
ness of modeling results, and have good anti noise ability. Subtraction is mainly used
for data restoration. Accumulate the original measurement data at one time to generate
an accumulation sequence, which is recorded as:

x(1) = {x(1)(1), x(1)(2), . . . , x(1)(n)} (5)
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In the formula, x(1)(k) =
k∑

i=1
x(0)(i), k = 1, 2, . . . , n expressed the whitening

equation. The background value is generated immediately adjacent to the data for the
primary accumulation sequence to generate the following data:

z(1) = {z(1)(2), z(1)(3), . . . , z(1)(n)} (6)

where z(1)(k) = 0.5 × (x(1)(k) + x(1)(k − 1), k = 1, 2, . . . , n according to the newly
generated sequence x(1) and z(1), the differential equation and whitening differential
equation are established:

dx(1)(t)

dt
= ax(1)(t) + b (7)

x(0)(k) = az(1)(k) + b (8)

The solution A = [a b ]T is fitted by the least square method, and then combined
with the measured initial value. Finally, the original data can be predicted by reverse
differential processing of the primary accumulation sequence:

x(0)(k + 1) = (1 − e−a)(x(0)(1) + b/a)eak (9)

From the above model, it can be seen that GM (1,1) mainly summarizes the system
operation behavior and evolution law by mining some known information. It requires
small amount of data, fast operation speed and relatively ideal medium and long-term
prediction accuracy in clock bias prediction.

3 Basic Principle of PSO-Elman

3.1 Elman Neural Network

Elman neural network is composed of input layer, hidden layer, receiving layer and
output layer. Its principle is explained in combination with the structural diagram shown
in Fig. 1: the input data information of the input layer is transmitted to the hidden layer
with linear and nonlinear excitation functions. The receiving layer remembers the output
value of the neural unit at the previous moment, and its delay and memory make the
output and input of the hidden layer related, Therefore, it is sensitive to historical data
and finally weighted in the output layer [8].

Assuming that the network input layer nodes is r, the hidden layer and the receiving
layer nodes are n, the output layer nodes is m, and the external input is u(t − 1), the
Elman neural network structure can be expressed as:

x(t) = f (ω1xc(t) + ω2(u(t − 1))) (10)

xc(t) = x(t − 1) (11)

y(t) = g(ω3x(t)) (12)
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Fig. 1. Structural diagram of the Elman neural network

Among which u(t) is the initial input vector, y(t) is the final output vector, x(t) is the
node element vector of themiddle layer and xc(t) is the feedback state vector.ω1 ∈ Rn×n,
ω2 ∈ Rn×r , ω3 ∈ Rm×n respectively represent the connection weight matrix between the
three levels. The output neuron transfer function g(ω3x(t)) and the hidden layer neuron
transfer function f (ω1xc(t) + ω2(u(t − 1))) tend to use S, such as hyperbolic tangent S
and logarithmic S, and the training function is traingdx [8].

3.2 The Principle of PSO Algorithm

Particle swarm optimization algorithm was jointly proposed by Dr. Eberhart and Dr.
Kennedy in 1995, whose basic core is to use the information sharing of individuals in
the group to make the movement of the whole group produce an evolution process from
disorder to order in the problem-solving space. PSO algorithm updates particle velocity
and position by tracking individual optimal particles pmbest and group optimal particles
gmbest during operation. The main iterative formulas are as follows:

vm+1
id = ωvmid + c1r1(p

m
best − xmid ) + c2r2(g

m
best − xmid ) (13)

xm+1
id = xmid + vmid (14)

d = 1, 2, ...K is the dimension of search space, i = 1, 2, ...N is the population size, r1,
r2 are random numbers between (0, 1) and c1, c2 are learning factors which represent
the ability of particles to learn from themselves and other particles; ω is the inertia
weight constant, which is used to adjust the diversity of particles; particle velocity is
v ∈ [vmin, vmax];m is the algebra of the current population. xmid , v

m
id respectively represent

the current position and velocity of particles. Because there is no crossover and mutation
operation process, PSO algorithm runs fast, so it is selected as the optimization method
of rapid clock bias prediction.
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3.3 Construction of PSO-Elman Clock Bias Prediction Model

The time series of satellite atomic clock bias is {x1, x2, ...xN }, the clock bias of the past
n is used to predict the clock bias of the time n+ 1, the corresponding relationship with
{x1, x2, ...xn} and xn+1 is established, and then trained by Elman neural network. With
the increase of the prediction epoch, the influence of the data farther away from the
prediction epoch point on the model accuracy is gradually weakened, so the updated
prediction data are continuously used for Elman neural network training.

Combined with the above flow chart, the specific steps of PSOElman neural network
clock bias prediction are introduced:

1) Because the original phase data of clock bias is not sensitive to small gross error, it
is first converted into frequency data through one-time difference, then preprocessed
the selected data (Set 5 times themean square error) by using the gross error detection
method based onmad, eliminated the gross error in the frequency series, interpolated
the mean value, and then converted into clock bias data (Fig. 2);

Starting
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Fig. 2. Flow chart of the clock bias prediction model of the PSO-Elman neural network

2) The clock bias data set after eliminating gross errors is divided into training set and
test set according to the prediction requirements, and normalized to improve the
network training speed;

3) The composition of each level of Elman neural network is determined according
to the number of input and output parameters, and then the particle length in PSO
algorithm is determined;



Elman Neural Network Based on Particle Swarm Optimization 367

4) The indirect weights and thresholds between all neurons in Elman network structure
are encoded into individuals represented by real numbers, the absolute value of
prediction error is taken as the individual fitness value, and the individual extreme
value and global extreme value are calculated according to the fitness value;

5) Judge whether the fitness value after each iteration reaches the optimal value or
whether the number of iterations reaches the maximum value. If the conditions are
met, the parameter optimization process is terminated; If not, go to step 4;

6) Decode the particles corresponding to the global extreme value, take it as the initial
weight and threshold of Elman network, establish the clock bias prediction model,
obtain the prediction value, carry out inverse normalization processing, and analyze
and evaluate the accuracy of the final output data.

4 Example Analysis

4.1 Data Sources

The precision orbit and clock bias products released by IGS center mainly include the
final precision ephemeris product IGS, whose nominal accuracy is 75ps (3σ ), with a
delay of 12–18 days, which is generally regarded as the true value; Fast ephemeris
product IGR nominal accuracy 75ps (2σ ), delay 17–41 h; The observation part of the
ultra rapid ephemeris product igu-o has a delay of about 3–9 h and an accuracy of 0.15 ns.
The prediction part igu-p forecasts the clock bias of the day after the observation of one
day, and releases it every six hours. It has strong real-time performance. However, due
to the limited operation time, the accuracy is about 3ns.As of March 2, 2021, GPS on
orbit satellite clock type, launch interval and corresponding number are as follows (data
source: https://en.wikipedia.org/wiki/List_of_GPS_satellites) (Table 1).

Table 1. Statistical of GPS satellite atomic clock information

Type of satellite clock Launch interval Serial number

Block IIR Rb 1997.07–2004.11 2, 13, 16, 19, 20, 21, 22, 28

Block IIRM Rb 2005.09–2009.08 5, 7, 12, 15, 17, 29, 31

Block IIF Rb 2010.05–2016.02 1, 3, 6, 8, 9, 10, 25, 26, 27, 30, 32

Block IIF Cs 2012.10 24

Block III Rb 2018.12–2020.11 4, 18, 23, 14

Four different types of rubidium atomic clocks G02 (GPS block IIR), G05 (GPS
block IIRM) and G32 (GPS block IIF) and G18 (GPS block III) with advanced design
indicators are randomly selected. Among them, satellite clocks G02 and G05 have a
long running time and stable working condition, and G32 and G18 are put into use later
The design index is advanced and fully representative. According to the demand of GPS
rapid clock bias prediction, the IGR product data of four satellite clocks for 11 days from
February 20, 2021 to March 2, 2021 are taken as the test object, which are divided into

https://en.wikipedia.org/wiki/List_of_GPS_satellites
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10 sections of clock bias data of two adjacent days for prediction, and the mean value is
taken as the prediction accuracy index.

4.2 Experimental Verification

Experiment 1: the traditional quadratic polynomial model was used to fit the clock bias
data of the first day and extrapolate the clock bias of the next day;

Experiment 2: the grey system GM (1,1) model was used to model the clock bias
data of the first day and predict the clock bias of the next day;

Experiment 3: the PSO Elman clock bias prediction model established in this paper
is used to train the data of the first day and predict the clock bias of the next day.

After the test is completed, the 10 prediction mean values of the corresponding
accuracy (RMS) and stability (range) of the prediction duration of each satellite clock
in 6 h, 12 h and 24 h of each method are statistically analyzed. In addition, the error
index between igu-p products and IGR products in corresponding days will be listed as a
reference for clock bias prediction accuracy. The prediction errors of different methods
of the four satellite clocks are shown in Fig. 3 (a)–(d), followed by satellite clocks G02,
G05, G32 and G18.The prediction accuracy and stability indexes are shown in Table 2
and 3 respectively.

Fig. 3. The clock bias forecast error plot
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The following conclusions can be drawn:

(1) The comparison of the four predictionmethods shows that the prediction accuracy of
the quadratic polynomialmodel at 6 h, 12h and24hhas anobvious divergence trend,
and the prediction accuracy of a single day varies greatly, with a span of 0.540–
4.672 ns; The variation range of grey model prediction and igu-p product error
is relatively stable. The single day prediction accuracy of grey model is between
0.369–1.592 ns, and the single day error of igu-p product is between 1.936–3.982 ns.
The prediction error of PSO Elman for each satellite clock is in a small range,
ranging from 0.202 to 0.499 ns;

(2) The prediction errors of the four atomic clocks show that the quadratic polyno-
mial model has large prediction errors for G02 and G05 satellite clocks with poor
performance, and the prediction accuracy of single day is 2.639 ns and 4.672 ns
respectively. The prediction accuracy of G32 and G18 satellite clocks with high
design indexes is 0.369 ns and 0.944 ns; The grey model has slightly higher pre-
diction accuracy for G02 and G05 atomic clocks with long operation and stable
working conditions, and slightly worse prediction accuracy for G32 and G18 satel-
lite clocks with short operation time, which is relatively stable as a whole; The igu-p
product is similar to the grey model. The single day prediction accuracy of G02 and
G05 satellite clocks is about 2 ns, and the prediction error of G32 and G18 satellite
clocks with short operation time is close to 4 ns; The prediction accuracy of PSO
Elman is positively correlated with the clock performance. Its prediction accuracy
of G02 and G05 is slightly worse than G32 and G18, which can reflect the clock
performance to a certain extent;

Table 2. RMS of clock bias prediction error statistics (11 day average)

Type of satellite clock Prediction accuracy (RMS)

PSO-Elman QPM GM IGU-P

G02 IIR Rb 6 h 0.360 0.595 0.499 2.279

12 h 0.281 1.259 0.535 2.367

24 h 0.351 2.639 0.540 2.323

G05 IIRM Rb 6 h 0.467 0.933 0.983 1.633

12 h 0.468 1.783 0.953 1.563

24 h 0.499 4.672 0.960 1.592

G32 IIF Rb 6 h 0.199 0.398 0.727 3.168

12 h 0.231 0.315 0.818 3.237

24 h 0.202 0.369 1.536 3.617

(continued)
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Table 2. (continued)

Type of satellite clock Prediction accuracy (RMS)

PSO-Elman QPM GM IGU-P

G18 III Rb 6 h 0.208 0.405 0.673 3.004

12 h 0.232 0.414 0.862 3.182

24 h 0.229 0.944 1.936 3.982

Mean 6 h 0.309 0.583 0.721 2.521

12 h 0.303 0.943 0.792 2.587

24 h 0.320 2.156 1.243 2.878

(3) The average prediction accuracy of igu-p products is 2.878 ns, which is in line with
the nominal accuracy of 3 ns. It can be seen from the error curve that the 6 h, 12 h
and 24 h prediction error divergence trend of igu-p products is flat, but there is
obvious starting point deviation, which may be caused by the difference between
clock reference and IGR. Therefore, the prediction stability indexes of each method
are counted. It shows that the prediction stability of igu-p products reaches 1.639 ns,
which is obviously better than quadratic polynomial and grey model, but still lags
behind PSO Elman model;

Table 3. Analysis of clock bias forecast stability statistics (11 day average).

Type of satellite clock Stability of prediction(Range for 1d)

PSO-Elman QPM GM IGU-P

G02-IIR 1.097 4.660 2.291 0.800

G05-IIRM Rb 2.055 9.293 2.138 1.797

G32-IIF 0.740 0.735 2.453 1.495

G18-III 0.809 1.682 3.186 2.463

Mean 1.175 4.093 2.517 1.639

(4) In terms of the overall prediction index, the clock bias prediction of PSO Elman
model can achieve high accuracy and stability, with an average prediction accuracy
of 0.320 ns, which is 85.1%, 74.2% and 88.9% higher than the commonly used
quadratic polynomial prediction model, grey prediction model and igu-p products
respectively; The prediction stability is 1.175 ns, which is 71.3%, 53.3% and 28.3%
higher than the above three methods respectively. It shows that the predictionmodel
better represents the nonlinear characteristics of clock bias time series, and the
divergence of prediction residuals is significantly reduced.
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5 Conclusion

The characteristics of existing GPS clock bias products and prediction models are intro-
duced. Aiming at the low accuracy of rapid clock bias prediction, dynamic recursive
Elman neural network is introduced into clock bias prediction. In order to further improve
the speed and accuracy of clock bias prediction, the Elman neural network is optimized
by PSO algorithm, and the PSO Elman clock bias prediction model is established. The
results show that the average prediction accuracy of this method for 6 h, 12 h and 24 h
can reach 0.309 ns, 0.303 ns and 0.320 ns respectively. Compared with the common
quadratic polynomial model, grey model and igu-p product, the single day prediction
accuracy is improved by 85%, 74% and 89% respectively. The error divergence trend
of this method is not obvious. The average stability of single day prediction is 1.175ns,
which is 71%, 53% and 28% higher than the above three methods respectively.
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