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Abstract. The purpose of this study is to verify the rationality and validity of
directly adopting segmental modeling prediction of single-station regional scat-
ter data by considering space environment information comprehensively. First,
a single-station regional ionospheric model is constructed and predicted by the
long short-term memory neural network (LSTM) method based on the single-
station global positioning system total electron content (GPS-TEC) data of differ-
ent regions (low-, mid-, and high latitude regions) and the space environment data.
Then, the prediction results are compared and analyzed with the international ref-
erence ionosphere 2016 (IRI2016) model, CMONOC Regional Ionosphere Maps
(RIM) data, andGPSmeasurement data. The results show that: i) the LSTMmodel
forecasts are consistentwithGPS-TECobservations at high,mid and low latitudes,
and the forecast error is less than 3 TECu. The forecast accuracy is much better
than that of the IRI2016 model and RIM TEC, and is less susceptible to anoma-
lies. Geographically, the forecastMAE andRMSE of LSTMmodel decreases with
increasing latitude. Among them, the relative accuracy of LSTM forecasts in low
and mid latitudes is high, up to 82% or more; ii) the RIM data as a whole are more
consistent with the measured data, but the RIM TEC is overestimated during the
daytime, a phenomenon related to the discrete anomalies; iii) the IRI2016 model
only captures the general trend of TEC. The IRI model forecast values are poor in
daytime forecasting, and its overestimation becomes more obvious as the latitude
increases, while the forecast performance is better in the evening. This study is a
foundation for subsequent regional modeling and forecasting of the ionosphere,
and can provide ionospheric constraints to support navigation positioning.

Keywords: LSTM · Single-station VTEC model · RIM · IRI2016 · Accuracy
comparison

1 Introduction

The ionosphere is an ionized region in the Earth’s upper atmosphere, mainly distributed
in the range of about 60–1000 km from the ground. Radio communication systems,
satellite navigation and positioning systems, radar detection systems, etc. pass through
the ionosphere during signal propagation, which in turn will produce signal delay, signal
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refraction, etc. This ultimately affects satellite-based navigation, positioning, timing
and communication services [1–3]. Secondly, abnormal ionospheric changes are closely
related to the space environment and the Earth’s activities. Monitoring and prediction of
TEC is of great practical and academic value since the total ionospheric electric content
(TEC) is a quantitative indicator to characterize the ionosphere.

In recent years, scholars have proposed many optimized ionospheric TEC prediction
models, which can be divided into two main categories as follows. The first is empirical
ionospheric models, such as the Klobuchar model [4, 5], NeQuick model [6, 7], and one
of the most widely used models is the IRI model [8, 9]. The other type is the statistical
modeling approach for measurement data, which mathematically models TEC time
series with high accuracy. Specifically, these include ARMA models [10–12], neural
networks [13–17], etc.Given the ability of neural networks to describe complexnonlinear
input-output relations, more and more scholars have recently used neural networks for
forecasting ionospheric parameters, mainly including radial basis functions (RBF) [13],
convolutional NN (CNN) [14], and long short-term memory [15–17] (LSTM).

The process of the above prediction methods is basically: first, a single point time
series is obtained by modeling the scattered measurement data in a certain period using
polynomial or spherical harmonic models. Then, different mathematical methods are
used to make predictions based on this time series, or directly based on the IGS iono-
spheric grid data. Thesemethods cannot perform simultaneousmodeling and forecasting
of the single-station ionosphere based on the original measured data, losing some spa-
tial features of the ionosphere and artificially introducing modeling errors. Therefore,
in this paper, the segmental modeling method is introduced into the LSTM network,
and the ionospheric scatter data over a fixed period of multiple days are directly used
to construct the network model. On the other hand, the ionosphere is sensitive to solar
activity and changes in near-Earth space, and has complex spatial and temporal distribu-
tion characteristics. Its distribution characteristics depend on a variety of factors such as
geographical location (polar and auroral zones, high latitudes and equatorial regions),
solar activity levels, and geomagnetic activity conditions. It is difficult to describe the
high dynamics of the ionosphere by only single-factor modeling. Therefore, this paper
constructs a single-station regional model of ionospheric TEC based on TEC data from a
single GPS station pierce point and uses an LSTM network suitable for time-series fea-
ture learning to forecast ionospheric TEC values for the next 24 h using historical TEC
data, solar activity index and geomagnetic activity index asmodel inputs. And the param-
eter adaptive method is used to reduce the ionospheric forecast error and improve the
generalization ability of the model, to establish an accurate single-station TEC regional
model and forecast model.

2 Data Collection and Preprocessing

To better represent the modeling and prediction results of the model, this paper selects
the data set during the high solar activity year 2014, i.e., January 1 to January 17 (as
shown in Fig. 1).

TEC Dataset: For one of the datasets, the ground-based station actual measure-
ment data from the China Continental Tectonic Environment Monitoring Network
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(CMONOC) are used in this paper. Using the GPS dual-frequency data, the carrier
phase smoothing pseudorange method was used to solve the single-point VTEC values,
and the calculated expressions are shown in Eqs. 1 and 2. The final adopted VTEC data
time interval is 30 s, and the thin layer height of ionosphere is 350 km.

VTEC = − cos z′

40.28

f 21 f
2
2

f 21 − f 22

[
P̃4 −

(
DCBS + DCBr

)]
(1)

P̃4(t) = P4(t) + �L4(t) = P4(t) + L4(t) − L4(t) (2)

whereP4 = P2−P1,L4 = L2−L1,Pi(t) is the carrier phase observation at time t (i takes
1 and 2); Li is the phase observation corresponding to that epoch; Li is the average value
of the carrier phase observation; P4 is the average value of the pseudorange observation;
DCBS and DCBr are the differential code bias of the satellite and receiver, respectively,
which can be corrected directly by using the P1-C1 and P1-P2 files of the CODE Center.

The Regional Ionosphere Maps (RIM) data released by CMONOC are directly used
in this paper to compare with the LSTM model predictions. The temporal resolution
of the RIM data is 2 h. The spatial coverage is from latitude 15.0°N to 55.0°N, longi-
tude 70.0°E to 140.0°E, and the spatial resolution is 1° × 1°. The IRI model [6] is an
internationally recognized and recommended standard for the climate specification of
ionospheric parameters. To test the ability of the IRI model to predict TEC and verify the
forecasting performance of the LSTM model, the latest IRI2016 online version data is
used in this paper for a comparative study (https://ccmc.gsfc.nasa.gov/modelweb/mod
els/iri2016_vitmo.php), where the upper height limit is set to 2000 km and the thin layer
height is set to 350 km.

Space Environment Dataset: The data were screened for correlation using Pearson
correlation coefficient method and Fréchet method [19] before data selection to ensure
that the data were weakly correlated with each other. After screening, the datasets
characterizing the solar activity: sunspot number SSN, 10.7 cm radio flux F10.7, and
the geomagnetic activity level index Ap and magnetic storm ring current index Dst
characterizing the Earth’s activity were selected.

Fig. 1. Space environment data in the selected time period

https://ccmc.gsfc.nasa.gov/modelweb/models/iri2016_vitmo.php
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3 LSTM Neural Network Modeling Method

LSTM is a special type of recursive neural network that captures the most important
features from time series data and performs association modeling.

Fig. 2. Structure of LSTM neural network

The structure of the LSTM neural network model is shown in Fig. 2. With a stacked
LSTM with three hidden layers, Adam algorithm as the optimizer, and an MSE as the
loss function, the input to the model is a continuous 30-min single-station historical
observation data. In this paper, three LSTM layers are used, and the number of training
times is fixed to 50. The early stop method is used to monitor the validation set loss
value (val_loss), where the patience is set to 3. The depth size of each layer is changed
for cyclic testing, and the number of hidden layer units that make the training set loss
value (loss) and var_loss value optimal is selected. This paper sets the number of hidden
layer units to 31, and the Leaky_ReLU activation function is used for the fully connected
layer (Dense). This is to avoid the problem of gradient jaggedness in the direction of
the gradient by calculating the gradient even if the input of the Leaky_ReLU activation
function is less than zero in the back propagation process.

In this paper, single-station GPS data of different latitudes are used for modeling
experiments, and the modeling process is shown in Fig. 3. The specific process is as
follows: i) theweakly correlated geomagnetic data and solar activity data set are screened
usingPearson andFréchetmethods; ii) the single-stationGPSdata are pre-processed, i.e.,
the VTEC value, longitude and latitude of the ionospheric pierce point are calculated; iii)
the above data are integrated, and the input data sets are: Ap, Dst, F107, SSN, longitude,
and latitude. The data sets are divided into 30-min intervals, a total of 48 data sets a day,
and each data set is divided into 3 groups (training set, validation set, and prediction set)
to conduct experiments; iv) based on the experimental tests, adaptive hyperparameters
are established, and the smallest test set var_loss is used as the basis for early stopping.
Among them, the specific hyperparameter settings are shown in Table 1; v) calculate the
modeling and prediction accuracy.
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Table 1. Location of 9 selected stations of CMONOC network

Number Parameters Value

1 Loss MSE

2 Optimizer Adam

3 Number of LSTM layers 3

4 Number of dense layers 1

5 Number of Epochs 50

6 Dropout value 0.2

7 Input dimension size 6

8 Output dimension size 1

9 Size of Batch 400

10 Validation split size 15:1

11 Initial learning rate 5 × 10−i, i = 2:1:7

12 Early stopping Monitor = val_loss; patience
= 3

Fig. 3. Flow chart of LSTM model

After themodels are well trained, the prediction results (predictedi) of themodels are
compared with the TEC observation data (observedi) of the stations respectively. Three
performance indicators, mean absolute error (MAE), root mean square error (RMSE)
and mean relative precision (P), are used to evaluate the performance of the model [20],
which are calculated as shown in Eqs. 3, 4 and 5.

MAE = 1

N

N∑
i=1

∣∣(observedi − predictedi
)∣∣ (3)
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RMSE =
√√√√ 1

N

N∑
i=1

(
observedi − predictedi

)2 (4)

P = 1 −
n∑

i=1

∣∣observedi − predictedi
∣∣

observedi
(5)

4 Experiment and Analysis

The ionosphere shows complex spatial variations with latitude and longitude. To verify
the adaptability and prediction accuracy of the prediction model at different spatial
locations, three regions, low (0°–30°), mid (30°–45°), and high latitude (45°–60°), are
divided to select stations respectively. In this paper, a total of 9 stations were selected for
the experiment, and the GPS station locations and details are shown in Fig. 4 and Table
2, including 4 low-latitude stations, 3 mid-latitude stations and 2 high-latitude stations.

To represent the prediction accuracy every 30 min in more detail and intuitively, the
error bars of each time period are plotted in this paper by combining the predicted MAE
and RMSE values, as shown in Fig. 5. From Fig. 5(a), it can be seen that the errors of
most time periods at low latitude stations are within 5 TECu. The forecast errors are
larger in the 06:00 UTC-10:00 UTC (14:00 LT-18:00 LT) time period, especially for the
KMIN station, where some anomalous continuous scatter points with large deviations
can be found from Fig. 6(c), and thus may be associated with equatorial ionospheric
anomalies (EIA) [21] at low latitudes. These anomalies differ from the modeled values
by about 30 TECu, which in turn would enlarge the residual values during this time
period.

Fig. 4. The spatial distribution location of GPS stations

Figure 6 shows the predicted LSTM values of the four stations at low latitudes and
the measured GPS TEC, IRI TEC and RIMTEC values, respectively. The measured data
are selected to be within 3° difference in longitude and within 1° difference in latitude
from the station coordinates.
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Table 2. The results of 9 selected stations

Classification Station
name

Latitude
(°N)

Longitude
(°E)

Modeling
accuracy

Prediction accuracy
(TECu)

MAE RMSE MAE RMSE P (%)

Low latitude HISY 18.236 109.531 5.983 2.918 2.918 2.245 83.5

LALB 19.898 102.165 5.385 3.593 2.601 2.030 84.5

KMIN 25.030 102.798 5.385 2.601 2.867 2.279 83.8

CQCS 29.905 107.232 3.831 1.520 1.520 1.270 82.6

Middle
latitude

CQWZ 30.770 108.490 3.377 3.066 1.427 1.260 81.0

GSDX 35.554 104.605 2.379 2.073 1.047 0.829 84.0

BJGB 40.692 117.158 1.989 1.292 0.884 0.642 83.8

High latitudes NMER 50.576 123.727 1.915 1.167 0.971 0.655 71.7

HLMH 52.975 122.513 1.522 1.012 0.828 0.618 81.9

Fig. 5. The relative mean deviation of LSTM prediction; (a) low latitude station; (b) mid-latitude
station; (c) high latitude station

Fig. 6. The error bar of LSTM prediction; (a) low latitude station; (b) mid-latitude station; (c)
high latitude station
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From Fig. 6, it can be seen that: 1) the TEC tends to decrease with increasing latitude.
Among them, the forecast values of the LSTM model agree well with the measured
data, which means that the model can capture the changes of TEC well, and predict
the low-latitude ionospheric TEC better with a residual of 2–5 TECu compared with
the IRI2016 model and the CMONOC RIM; 2) the RIM data is overall more consistent
with the measured data, but the TEC values are overestimated in the time period 04:00
UTC-08:00 UTC. Comparing Figs. 6(a–d), it can be found that this overestimation of
the RIM is due to some anomalous values in this time period. The RIM value is closer to
the measured value than the IRI model value, and the forecast effect is more stable; 3)
The IRI2016 model captures only the general trend of TEC, and the IRI model forecasts
poorer values from 06:00 UTC-10:00 UTC (14:00 LT-18:00 LT), which is consistent
with the paper [22]. The difference between IRI and the measured data tends to increase
with the increase of latitude. The IRI forecasts from 20:00 UTC-24:00 UTC (04:00
LT-08:00 LT) are better, and the forecast values are consistent with the measured data.

Fig. 7. Comparison of TEC values predicted by LSTM (red solid line) and IRI2016 (magenta
solid line), and RIM (blue solid line) data and actual GPS data (green scatter) from low-latitude
stations; (a) HISY; (b) LALB; (c) KMIN; (d) CQCS

Figure 7 shows the comparison of the LSTM forecast results of the stations in the
mid-latitude region with other global ionospheric models and the measured data. The
LSTM forecast data are in good agreement with the measured data and are not easily
affected by the anomalous discrete points. The RIM data, however, overestimate TEC
due to the influence of anomalous values. IRI data still have poor daytime forecasts and
high forecast accuracy at night. Specifically, the forecast is poor from 02:00 UTC-10:00
UTC (10:00 LT-18:00 LT) and superior from 16:00 UTC-24:00 UTC (00:00 LT-08:00
LT), and its time length is extended compared to that at lower latitudes.

Fig. 8. Comparison of TEC values predicted by LSTM (red solid line) and IRI2016 (magenta
solid line), and RIM (blue solid line) data and actual GPS data (green scatter) from mid-latitude
stations; (a) CQWZ; (b) GSDX; (c) BJGB
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The forecast results for the high latitude region are shown in Fig. 9, from which it
can be seen that the GPS measured TEC values fluctuate between 1 and 5 TECu during
the period of 12:00 UTC-23:00 UTC, and the points are more scattered. This results in
the current situation that the LSTM model of NMER station forecasts TEC values with
small MAE and RMSE but low relative accuracy, which explains the result in Fig. 5(c).
The LSTM fits the measured data well throughout the time period, while the RIM data
are slightly overestimated during the day and underestimated during the night.

Fig. 9. Comparison of TEC values predicted by LSTM (red solid line) and IRI2016 (magenta
solid line), and RIM (blue solid line) data and actual GPS data (green scatter) from high-latitude
stations; (a) NMER; (b) HLMH

5 Conclusion

In this paper, single-station regional ionospheric models are constructed and forecasted
byLSTMnetworkmethod based on single-stationGPS data fromdifferent regions (high,
middle and low latitude regions) of China CMONOC network in 2014 as well as space
environment data. The forecast results are compared and analyzed with the IRI2016
model, CMONOC-RIM data, and measured GPS data. The following conclusions were
obtained: i) in terms of forecast accuracy, the MAE and RMSE are about 3 TECu and
2 TECu at low latitude, 2 TECu and 1 TECu at mid-latitude, and 1 TECu and 0.6
TECu at high latitude, and the relative accuracy of the low and mid-latitude stations are
comparable, both around 82%, while their relative accuracy decreases at high latitude,
which is about 70–80%. Overall, the time-phased LSTM single-station regional model
is feasible and has high forecast accuracy; ii) geographically, theMAE and RMSE of the
same longitude decrease with increasing latitude, and the MAE and RMSE of several
stations in the low-latitude region are the largest and the smallest in the high-latitude
region, mainly due to the different TEC content of the ionosphere at different latitudes
[23]; iii) the LSTM model forecasts for stations at low, mid, and high latitudes are in
good agreement with the measured data and can be less susceptible to anomalies; iv)
the RIM data are generally consistent with the measured data, but the TEC values are
overestimated during the daytime, and this overestimation is due to some anomalous
values during this time period; v) the IRI model only captures the general trend of TEC.
It forecasts poorly in the daytime, and its overestimation becomes more obvious as the
latitude increases, but performs better in the evening.

Therefore, this study verifies that it is feasible to train the LSTM network forecast
TEC using real measurement data in segments, and has a good forecast accuracy. This
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paper lays the foundation for subsequent regional modeling and forecasting, and its
LSTM forecast model can provide ionospheric constraint support for navigation.
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