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Abstract. When the observation value is abnormal, the traditional robust esti-
mation method only reduces the weight of the abnormal observation value, but
does not repair the abnormal residual, and the abnormal residual statistics seriously
limit the accuracy of noise variance estimation. Aiming at the above problems, this
paper proposes an adaptive observation noise variance algorithm based on innova-
tion repair. First, use the IGG IIImethod to construct an equivalent weight function
to reduce or give up weight from abnormal observations. Secondly, considering
that abnormal observed values will lead to abnormal innovation, this paper uses
the zero-mean constraint of innovation to estimate the sum of abnormal innova-
tion, and then distributes it according to the ratio of abnormal innovation variance,
to reduce the influence of abnormal innovation on statistical information. At the
same time, considering that the innovation will approach the real situation grad-
ually with the convergence of filtering, the innovation variance is calculated by
combining the forgetting factor function to improve the accuracy of its statistical
information. Finally, the observation noise variance is estimated in real-time by the
function relationship between the innovation variance and the observation value
variance. Simulation results show that the proposed method can guarantee the
accuracy of noise variance estimation even with gross error and prior observation
noise deviation. The accuracy of the filtering result is improved.

Keywords: Observation noise estimation · Innovation repair · Forgetting factor ·
Robust

1 Introduction

As the core algorithm of GNSS data processing, Kalman filter (KF) results are optimal
with minimum mean square error, unbiasedness, and consistency under the assumption
that the error is Gaussian distribution, the mathematical model is determined and the
noise statistical characteristics are known prior [1, 2]. However, in the actual GNSS
measurement, the observation value of gross error is inevitable, which greatly limits the
filtering estimation accuracy. Simultaneous observation noise is usually determined by
empirical models, such as the height Angle model and the signal-to-noise ratio model
[3–5]. The imprecise noise level will affect the determination of the gain matrix and it
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is difficult to guarantee the optimality of filtering results. Therefore, in GNSS precision
positioning and data processing, to ensure the accuracy and reliability of data processing
results, it is necessary to weaken the influence of gross error as much as possible and
obtain a more accurate prior noise variance matrix. Therefore, robust algorithms and
adaptive noise variance algorithms are particularly important.

The essence of robust is to construct outlier tests by using residuals and their variances
for hypothesis testing, and reduce or give up weight the failed data according to certain
rules, to weaken the contribution of abnormal data and ensure the parameters estimation
accuracy [6]. The key lies in the construction of equivalent weight functions, commonly
used equivalent weight functions include the Huber function [7], the Hampel function
[8] and the IGGIII function [9]. All of these functions obtain the weight reduction factor
of the residual difference constant observation value through weight selection iteration
to obtain the equivalent weight to ensure the estimation accuracy of parameters, but do
not repair the abnormal observation value or residual. At the same time, an inaccurate
observation noise covariance matrix will also affect the accuracy of the gross error test,
resulting in errors and omissions of gross error, thus affecting the robust effect [10].

The essence of noise variance estimation is that the statistical variance based on
residuals does not accord with the theoretical variance, and the noise variance is adjusted
adaptively. The specific method is to calculate the variance of observation noise in real-
time by the functional relationship between the variance of observation and the variance
of innovation under the maximum likelihood estimation criterion. However, when the
observed values appear gross error, it will cause innovation anomaly, and the abnormal
innovation statistics seriously restrict the accuracy of noise variance estimation.

It can be seen that to weaken the influence of gross error as much as possible and
obtain a more accurate prior noise variance matrix, it is not the superposition of the
robust algorithm and the observation noise variance adaptive algorithm. According to
the above problem, this paper proposes an adaptive observation noise variance algorithm
based on innovation repair. Finally, the effectiveness of the proposed algorithm is verified
by simulation.

2 Adaptive Observation Noise Variance Algorithm Based
on Innovation Repair

In this paper, based on the robust algorithm, the constraint of zero-mean and variance
ratio of the innovation is considered to repair the abnormal innovation, and the forgetting
factor function is combined to reflect the current state of the innovation, so as to ensure
the accuracy of noise estimation, and accurate observation noise variance matrix can
also improve the robust effect. The specific formula principle will be described below.

2.1 Robust Kalman Filtering

Kalman filter is a linear model, which can estimate system state by inputting observation
data, function model and prior noise covariance matrix. Its basic formula is as follows:{

Xk = AXk−1 + Wk−1 Q

Zk = CXk + Vk R
(1)
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where, Xk−1 is the state vector of k − 1 epoch, Zk is the observed value of k epoch,
A is the state transition matrix, C is the observation coefficient matrix, Wk−1 is the
process noise, Vk is the observed noise, suppose Wk−1 and Vk is white gaussian noise
with variances Q and R respectively. Robust Kalman filter introduces equivalent weight
observation noise variance based on Kalman filter, in the following form:

R(i, i) = 1

αi
R(i, i) (2)

where, R(i, i) is the i-th row and i-th column element of theRmatrix, αi a is the adaptive
downgrading factor and takes a value in the range of (0, 1]. Through adaptive factors,
the weight of observation value can be adjusted adaptively, to reduce the contribution
of gross error observation value and suppress the influence of gross error treatment on
estimation parameters.

Because the abnormal observation value will lead to the abnormal innovation, and
normally, the innovation follows the zero-mean white noise distribution, the detection
and recognition of gross error can be realized through the innovation sequence. The
innovation Yk and its variance-covariance matrix is calculated:

Yk = Zk − CX−
k (3)

DY = CP−
k C

T + R (4)

where,X−
k andP−

k are the state predicted value and their variance of k epoch respectively.
In actual GNSS observation, it is usually unequal precision observation, so it is necessary
to unify the accuracy of innovation and calculate standardized innovation:

Yk(i) = Yk(i)/
√
Dv(i, i) (5)

After obtaining the standardized innovation vector of k epoch, the hypothesis testing
can be constructed by the mean square error. However, the gross error will affect the
calculation of the mean square error, so median is used to calculate the mean square
error [11]:

σ = median(Yk)/0.6745 (6)

The test quantity is:

Ỹk = Yk/σ (7)

This paper falling weight factor calculated with the IGG III method:

αi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
∣∣∣Ỹi∣∣∣ ≤ k0

k0∣∣∣Ỹi∣∣∣
(

k1−
∣∣∣Ỹi∣∣∣

k1−k0

)2

k0 <

∣∣∣Ỹi∣∣∣ < k1

1 × 10−10
∣∣∣Ỹi∣∣∣ > k1

(8)

where, Ỹi is the i-thmember of the Ỹk vector, k0 is constant, usually 1.5–3.0, k1 is constant,
usually 3.5–8.0. By iteration to convergence, the best adaptive weight reduction factor
can be obtained to resist gross error.
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2.2 Abnormal Innovation Repair Program

The above robust method only reduces the weight of abnormal innovation, but does not
repair it, which will affect its statistical information and then affect the noise estimation
result. Therefore, this paper proposes an innovation restoration method considering the
innovation variance ratio and the innovation zero-mean distribution constraints.

First, the innovation was regarded as abnormal innovation and marked as a group Y ′,
and the rest as a normal innovation group Y ′′. Under normal circumstances, the inno-
vation follows the zero-mean distribution, so the zero-mean constraint can be expressed
as:

0 =
∑

Ŷ ′ +
∑

Y ′′ (9)

where, Ŷ ′ is the optimal valuation of abnormal innovation, that is repaired innovation.
The Eq. (9) can be used to calculate the sum of the abnormal innovation after repair,

and then allocate it according to the variance ratio of the abnormal innovation, so that
the result of each abnormal innovation after repair can be obtained:

Ŷ ′
j =

DY ′
j

tr(DY ′)

∑
Ŷ ′ (10)

The restored innovation series regains the characteristics of the zero-mean distribu-
tion, while the innovation value coupons is strictly assigned according to their respective
precision. The innovation with large variances also have larger values after restoration
than the rest of the innovation, in line with the distribution of the actual innovation and
thus with the correct statistical significance.

2.3 Observation Noise Estimation Method Based on Abnormal Innovation
Repair

The observation noise level changes slowly in the actual GNSS navigation and position-
ing, and the earliest historical information cannot well describe the current observation
level. Therefore, to adapt to the contribution of old and new innovation, the forget-
ting factor function is added to calculate the innovation variance. The forgetting factor
function is expressed as follows:

βi = i2

k(k + 1)(2k + 1)
, i = 1, 2, . . . k (11)

Use Ŷ to represent the innovation vector after repair, the optimal estimation of the
innovation actual variance of the k + 1 epoch over a window with length k is:

D̂Yk+1 =
k∑

j=1

βjŶ jŶ
T
j (12)

Compared with the traditional statistical variance method, after adding the forgetting
factor function the new innovation has a larger weight ratio and the old innovation has
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a smaller contribution, which can weaken the influence of the initial period jitter of
filtering on the innovation, and its statistical information can better reflect the current
innovation state.

After obtaining the optimal valuation of the innovation variance, let DY = D̂Y ,
through the functional relationship between the innovation varianceDY and the observed
noise variance R, obtain the optimal valuation of the observed noise R̂:

R̂ = D̂Y − CP−
k C

T (13)

Since the noise of carrier phase/pseudo-range observation values between different
satellites is not correlated, to avoid estimation results exceeding the actual situation, the
following constraints should be applied in actual GNSS measurement [10]:

R̂′(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

R̂(i, j) m1 ≤ R̂(i,j)
R(i,j) ≤ m2, i = j

m1R(i, j) R̂(i,j)
R(i,j) ≤ m1, i = j

m2R(i, j) R̂(i,j)
R(i,j) ≥ m2, i = j

0 i �= j

(14)

where, i and j represent the rows and columns of thematrix respectively;R is the observed
noise variance under the empirical model; m1 is 0.1 ∼ 0.5; m2 is 2–5. Users can select
the value based on actual observation.

The proposed algorithm firstly uses the variance expansion method to weaken the
contribution of abnormal observations, and does not directly eliminate abnormal obser-
vations is to improve the utilization rate of data and ensure the reliability of the algorithm
(for example, when only four satellites can be observed, deleted data will not be able to
position). Secondly, abnormal innovation is repaired, and combine the forgetting factors
to calculate the innovation variance that matches the current state. Finally, the covariance
matching method is used to estimate the observed noise variance, and the estimation is
limited within a reasonable range.

3 Experiments

To verify the correctness and effectiveness of the proposed method in this paper, a
constant velocity target tracking experiment is designed. The observed value is assumed
to be 10 dimensions, and the target’s motion state includes position and velocity. The
filtering model is as follows:

Xk+1 =
[
1 T

0 1

]
Xk +

[
1 0

0 1

]
Wk (15)

Zk =

⎡
⎢⎢⎣

1 0

...
...

1 0

⎤
⎥⎥⎦Xk + Vk (16)
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where, T is the sampling interval, set to 1s here, the length of the design data is 5000

epoch, and the initial truth value of the state is: X1 =
[
1

0.1

]
, the initial displacement

is 1m and the initial velocity is 0.1 m/s, maintaining uniform motion. GNSS actual
measurement with satellite and observation environment changes, the observation noise
exists slow change process, to more intuitive reflect the algorithm of this paper can track
the change of the environment, the observation noise is set to the form of order variation,
therefore, the a priori noise covariance matrix is designed as:

Q = q

[
T 3

/
3 T 2

/
2

T 2
/
2 T

]
(17)

R =

⎡
⎢⎢⎢⎣
1 + r 0 · · · 0
0 1 + r · · · 0
...

...
. . .

...

0 0 · · · 1 + r

⎤
⎥⎥⎥⎦
10×10

(18)

where, state parameter: q = 1 × 10−8, r is the amount of observed noise variation,
which is 0 initially and increases by 0.25 every 1000 epoch. The innovation variance
was counted from the first epoch, and the observation noisewas estimated online from the
500th epoch. The RMSE of the state valuation quality is used as an evaluation indicator
for the experimental results:

X̂ k
RMSE =

√√√√1

k

k∑
i=1

(
X̂k − Xk

)2
(19)

where k denotes the kth epoch; X̂k denotes the state valuation of the kth epoch; Xk
denotes the state truth value of the kth epoch.

3.1 Analysis of Variance Estimation Results of Observation Noise

To verify the correctness of the estimation of the variance of the observation noise
proposed in this paper, the gross error is not added temporarily, and the diagonal matrix
with the variance of the initial observation noise is set as 10, and two experimental
schemes are set:

• Scheme 1: Processing with the Kalman filter;
• Scheme 2: Processing with the method in this paper.

Figure 1 shows the noise estimation results of the second observation component of
Scheme 2, and the other observation noise estimation results are similar. Table 1 shows
the RMSE of filtering results under the two schemes.



226 L. Cheng et al.

Fig. 1. Observation noise R(2,2) estimation results

Table 1. Comparison of RMSE between the two schemes

Displacement (m) Speed (m/s)

Scheme 1 0.1028 0.0025

Scheme 2 0.0800 0.0024

As can be seen from the above results:

(1) When the prior observed noise is biased, the noise variance estimation result of
the method in this paper is close to the true value. When the real observed noise
variance changes, the estimation result of this method also begins to change and
gradually approaches the true value, but with a certain lag, requiring a convergence
space of about 300 epochs. It can be concluded that the observation noise variance
estimation algorithm proposed in this paper is correct, and can track the changes of
the observation environment and adapt to the noise variance matrix.

(2) After the proposed algorithm adaptively observation noise matrix, RMSE of state
component in filtering result is improved by 22.18% compared with Scheme 1, and
velocity component is slightly better than that of Scheme 1. It can be concluded
that the adaptive observation noise variance can significantly improve the filtering
accuracy, and the wrong prior observation noise variance will seriously affect the
filtering result. Therefore, the adaptive observation noise is of great significance in
the application of precision data processing.

3.2 Analysis of the Effect of Resisting Abnormal Innovation

To verify the effectiveness of the method of repairing abnormal innovation in this paper,
the gross error was added to the observation value, a diagonal matrix with the variance
of initial observation noise of 10 was set, and two experimental schemes were set:

• Scheme 1: Adding gross error and prior observation noise deviation, do not repair
abnormal innovation, robust and noise estimation processing;
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• Scheme 2: Adding gross error and prior observation noise deviation, using the method
presented in this paper.

The method of adding gross errors is as follows: starting from 1000 epoch, normal
distribution random gross errors with root mean square error of 100 are added into
the second and seventh observation components every 100 epoch. Figure 2 shows the
innovation time series of the second observed components with gross errors in the two
schemes. Figure 3 shows the estimation results of the observed noise variance of the
second observed component with gross errors in the two schemes. The RMSE of the
two schemes is given in Table 2.

Fig. 2. Innovation Y(2) time series

Fig. 3. Observation noise R(2,2) estimation results

As can be seen from the above results:

(1) When the observed value has a gross error, its corresponding innovation will also
appear abnormal. Traditional robust methods do not repair the abnormal innovation,
and there are still many anomalies in the innovation sequence. In Scheme 2, the
innovation repair method proposed in this paper was used, and abnormal innovation
was successfully repaired without any abnormal situation similar to Scheme 1, and
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Table 2. Comparison of RMSE between the two schemes

Displacement (m) Speed (m/s)

Scheme 1 0.0915 0.0025

Scheme 2 0.0800 0.0024

the innovation sequence after the overall repair was relatively stable. It can be
concluded that the innovation repair method proposed in this paper is effective and
can successfully repair all abnormal innovations.

(2) When innovation is abnormal, the estimation result of observation noise will have
serious deviation, as shown in Fig. 3Without innovation repair, the estimation result
of observation noise variance has reached about 60, seriously deviating from the
truth value, and the estimation result of noise variance is significantly affected by the
gross error, with many order changes. In Scheme 2, abnormal innovation is repaired
by the method presented in this paper, and the estimation result of observation
noise variance is still close to the real situation, and the change of observation
environment can be tracked, and the result of noise estimation is close to that of the
observation value without gross error. It can be concluded that abnormal innovation
will seriously affect the estimation result of observation noise, and the estimation
accuracy of observation noise is guaranteed after the innovation is repaired by the
method in this paper.

(3) The proposed algorithm is used to repair abnormal innovation and perform obser-
vation noise estimation. The RMSE of the state component of the filtering result is
0.0800, which is equivalent to the filtering accuracy without gross error and 16.39%
higher than that of Scheme1. TheRMSEof the velocity component is 0.0024,which
is equivalent to the filtering accuracy without gross error and slightly better than
the result of Scheme 1. Can be concluded from this, not repairing the abnormal
innovation directly estimate the observation noise can seriously affect the filtering
result. The method proposed in this paper can effectively weaken the gross error
influence on the observation noise variance estimation, in the presence of gross
error in the observations and the prior observation noise variance has a deviation,
still can ensure the accuracy of filtering, enough to verify the method is correct and
effective.

4 Conclusion

In this paper, the effect of gross error observation on noise estimation is studied, and it is
concluded that abnormal observation values will cause abnormal innovation, and the sta-
tistical information of abnormal will seriously restrict the accuracy of noise estimation.
And proposes an adaptive observation noise variance algorithm based on innovation
repair, simulation experiments have verified the correctness and effectiveness of the
method proposed in this paper, it can effectively weaken the abnormal innovation on the
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effects of observation noise variance estimation, the observation noise variance estima-
tion results close to the true value, and can be adaptive changes in the observed noise,
filtering precision is improved.

Acknowledgements. This research was funded by the National Natural Fund of China grants
(grant number 41801389) and the Sichuan Provincial Science and Technology Department Project
(grant number 2020YJ0115).

References

1. Simon, D.: Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches. Wiley-
Interscience (2006)

2. Lin, X.: Adaptive Kalman Filter and Its Applications in Airborne Vector Gravimetry. Wuhan
University (2014)

3. Zhao, Q., Guo, J., Liu, S., et al.: A variant of raw observation approach for BDS/GNSS precise
point positioning with fast integer ambiguity resolution. Satell. Navig. 2, 29 (2021)

4. Wang, D.: Research on Theory and Method of Precise Single Epoch Data Processing by
GNSS. Southwest Jiaotong University (2017)

5. Dai, W., Ding, X., Zhu, J.: Randommodel analysis of GPS observations based on observation
quality index. Geomatics Inf. Sci. Wuhan Univ. 07, 718–722 (2008)

6. Yang, Y.: Robust estimation of geodetic datum transformation. J. Geodesy 73(5), 268–274
(1999)

7. Mahboub, V., Ebrahimzadeh, S., Saadatseresht,M., et al.: On robust constrainedKalman filter
for dynamic errors-in-variables model. Surv. Rev. 52(372), 253–260 (2020)

8. Jayaram, V., Patwardhan, S.C., Biegler, L.T.: Development of robust extended Kalman filter
and moving window estimator for simultaneous state and parameter/disturbance estimation.
J. Process Control 69, 158–178 (2018)

9. Zhang,X., Guo, F., Zhou, P.: Improved precise point positioning in the presence of ionospheric
scintillation. GPS Solut. 18, 51–60 (2014)

10. Chen, H., Shun, R., Qiu, M., Mao, J., Hu, H., Zhang, L.: Satellite location fault detection
method based on adaptive noise variance. J. Beijing Univ. Aeronautics Astronautics, 1–24,
2021–11–28

11. Yang, L., Shen, Y., Lou, L.: Equivalent weighted tolerance estimation method based on initial
value of median parameter. Acta Geodaetica et Cartographica Sinica 40(01), 28–32 (2011)


	Adaptive Observation Noise Variance Algorithm Based on Innovation Repair
	1 Introduction
	2 Adaptive Observation Noise Variance Algorithm Based on Innovation Repair
	2.1 Robust Kalman Filtering
	2.2 Abnormal Innovation Repair Program
	2.3 Observation Noise Estimation Method Based on Abnormal Innovation Repair

	3 Experiments
	3.1 Analysis of Variance Estimation Results of Observation Noise
	3.2 Analysis of the Effect of Resisting Abnormal Innovation

	4 Conclusion
	References




