
Unmasking the Malware Using Android
Debug Bridge

Himanshi, Harjas Kalsi, Annu, and Akanksha Dhamija

Abstract The growing number of malware puts security in peril, several studies
highlight the stark consequences of malware, so the abstraction of malware is crucial
to keep personal information confidential. Themotive of this research is the detection
and abstraction of malware present on an android device using the Android Debug
Bridge (ADB), Android debug bridge is utilized for communicating with an android
device and acquiring information about the device. The detection process is achieved
by creating a shell script and executing it on a Unix terminal. Hereafter, if malware
is detected the script will automatically abstract them and exhibit the number of
malware detected. Along with detection, a comparative analysis is performed which
indicates various advantages over free anti-malware software one of them is a sanc-
tion, the antiviruses present on the Google Play Store can share or store data and
shows superfluous ads, these antiviruses require many sanctions from the user before
scanning, while in this research no third party software is required user can itself run
the script without involving any third party tool or without compromising security.
This research unveils malware from android devices in a security-friendly way.

Keywords ADB · USB · Shell script · Terminal

1 Introduction

The ADB is a multipurpose command-line tool which when connected with an
android device through USB cable allows communication and various other actions

Himanshi (B) · H. Kalsi · Annu · A. Dhamija
BPIT, GGSIPU, New Delhi, India
e-mail: himanshi0875@gmail.com

H. Kalsi
e-mail: harjaskalsi12@gmail.com

Annu
e-mail: annugoel1234@gmail.com

A. Dhamija
e-mail: akankshadhamija12@gmail.com

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
S. Maurya et al. (eds.), Cyber Technologies and Emerging Sciences, Lecture Notes in
Networks and Systems 467, https://doi.org/10.1007/978-981-19-2538-2_9

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-2538-2_9&domain=pdf
mailto:himanshi0875@gmail.com
mailto:harjaskalsi12@gmail.com
mailto:annugoel1234@gmail.com
mailto:akankshadhamija12@gmail.com
https://doi.org/10.1007/978-981-19-2538-2_9


96 Himanshi et al.

like installing and debugging applications using a Unix shell. Its three components
are:

1. Client—It sends and runs commands on a development computer. By issuing a
command from a command-line terminal, one can invoke the client.

2. Daemon—It runs in the background, executes commands on an android device.
3. Server—It runs as a background process on the development computer and

establishes communication between the daemon and the client [1].

A study conducted by InternationalDataCorporation (IDC) states that theAndroid
platform is still dominating the smartphone industry with a share of more than 86%.
Its popularity is incrementing rapidly with more developing sensitive operations
and features being integrated [2]. But along with this, Android malware is also
growing, and that too with more complex anti-analysis techniques and logic [3].
Mobile malware is a malicious software which specifically targets mobile operating
systems. Nowadays, malware can be utilized for numerous purposes like for tracking
user activity, spreading spam, stealing data, etc. [4]. It is generally used for more than
1 purpose. To explain malware classification, we require two terms: Malware type
(Based on its General functionality, what it does) and Malware family (based on its
particular functionality, how it acts) [5, 6].

2 Literature Review

The paper named “M0droid: An android behavioural-based malware detection
model” [7] represents a model used for detection of malware codes or harmful scripts
on an Android device. The process flow of the model given in the paper was to install
an application on a mobile device and then analyze the data on the server. The results
from the experiments conducted demonstrates that the detection rate of the model
used is 60.16% where false positives percentage was 39.43%.

SAndroid [8], the tool which enhanced the malware and harmful scripts detec-
tion by application signatures [9, 10], over detection and tracking of malicious and
harmful process signatures [11, 12]. Though, there are some disadvantages of this
method like high amount of battery consumption.

Canfora et al. [13] estimated some techniques to detect malevolent apps. Their
perspective is potent for desktopmalwares and categorize the ill-natured applications.
Practically, they attain a precision “0.96” to differentiate the malicious applications,
and “0.978” to determine malware family.

Feizollah et al. [14] came up with AndroDialysis, to judge how efficient the
android application intent: explicit and implicit, like specification to check the ill-
natured applications. They convey that the intents have semantically better structures
as compared to other attributes [15]. Though, they said that not all these features are
the final solution, and also it can be used with other well known positive features [16,
17]. It’s outcome depends on the probe of data present of 7406 apps (5560 infected
apps and 1846 clean). They attain 91% accuracy by operating the Android Intents,
while 83%usesAndroid permissions and themerging of these characteristics they get



Unmasking the Malware Using Android Debug Bridge 97

the spotting rate as 95.5%. They declare that in the process of malware identification,
Intents are more worthwhile than the permissions [18].

Then, another paper named “Comparative study of mobile forensic tools” [19]
described a method termed as FAMOUS stands for Forensic Analysis of Mobile
Devices. This method examines app permission to determine whether the app is a
malware or not. Tools like Droid Scope [20] and Profile Droid for analyzing apk files
so that there is any scope of malware in them. The paper named “On the Efficacy
of Using Android Debugging Bridge for Android Device Forensics” [21], this paper
concluded that ADB is unable to flag any file but can effectively find and extract the
present malware files [22].

The literature review includes Malware detection using System Calls, Intents,
Manifest file, Permissions required by the application and ADB (Android Debug
Bridge). Very few studies have been done using ADB and more work can be
performed by using Android Debug Bridge as a malware detector [23–25].

3 Implementation

For the detection of malware in any android phone, a shell script and a text file
are created. The name of the shell script is checkapk.sh and that of the text file is
malwarehashes.txt. checkapk.sh consists of a script which is used for detecting and
abstracting the malware in the android phones and malwarehashes.txt file consists
of hash codes of malware.

3.1 Steps of Implementation

Step 1: Connect the phone with a laptop or computer running the ADB command
line. Turn on the USB debugging from the developer options and sanction the
permissions. For the developer options click on the build number 7 times in the
about phone menu.
Step 2: Type commands in the command line:

1. “adb shell”—to grant permission for connecting the android phonewithADB
2. “exit”

Step 3: Type command “bash checkapk.sh” and the file will start running.

Theprocess of detection andabstractionofmalware takes placeuntil the “Success”
message appears.

Backend working:

1. The shell script was written to detect and remove malware consists of ADB and
Linux commands, which is used for fetching the packages on the android phone
and removing it if malware is detected

2. When the shell script is executed, the packages present on the android phone are
fetched with their consummate name and location. By using the location of the



98 Himanshi et al.

Fig. 1 Running shell script

package, md5sum of that package is generated and stored in a file designated
as apphashes.txt.

3. After generating the file apphashes.txt, the hash codes of the file are compared
with the hash codes of malwares which are already stored in a file designated
as malwarehashes.txt.

After comparing both the files with each other, If any hash code is obtained which
is mundane in both the files, then the package of that hashcode will be permanently
deleted and uninstalled And, if no hash code is mundane then simply a message
appears on the screen “No malware detected”.

In the terminus, “rm” command is used in a script to abstract all the files generated
during implementation to minimize the internal system storage utilized by the script
(Fig. 1).

4 Result

The script created in this research candetect and removemalware utilizing the android
debug bridge. There are two scenarios since an android device may or may not have
any malware. The Figs. 2 and 3 shows the output when the device doesn’t have any
type of malware and when the system has only one malware respectively.

4.1 Comparative Analysis of Our Study with Pre-existing
Tools

For the comparative analysis, malware is designed using theMSF venom and injected
within an android device then some antivirus is used to detect that malware, and
likewise the script created in this research is used and the analysis is shown.

Table 1 shows the comparison between different antiviruses available. Despite
these tools, certain applications present on the play store required credit card infor-
mation for a free tribulation of some days and then pleaded for payment. This table



Unmasking the Malware Using Android Debug Bridge 99

Fig. 2 No malware detected

Fig. 3 One malware detected

Table 1 Comparative analysis

Antivirus Permission required

Photos and media
files

Modify system
settings (erase
data, change
screen look etc.)

Storage Camera Location SMS

Samsung inbuilt
scanner

☑ ☑ ☑ ☑ ☑ ☑

AVG ☑ ☑ ☑

Avast ☑ ☑ ☑

Spyware detector ☑ modify SD
card data

☑

Kaspersky
internet security

☑ ☑ ☑ ☑

Spy apps finder ☑ ☑

Antispy and
spyware scanner

☑ ☑



100 Himanshi et al.

compare them on the basis of permission required, whenever we use any third-party
tool then there is always a security concern due to the fact that the tool can access
some confidential information due to the various permissions required to run the
software but while using ADB only the owner of the device has the permission and
there is no involvement of any third party tool and can efficiently detect and remove
malware.

5 Conclusion

This paper concludes that users can themselves detect and remove malware present
inside an android device without compromising security by using android debug
bridge. It is efficacious for detecting and abstracting the malicious software or appli-
cationwith the avail of shell scriptwithout involving any third party application.Most
of the free third-party applications are not able to detect and abstract the malware
injected on the testing phone. These third-party applications require sanction for
accessing the internal storage and the external SD card or recollection card connected
and additionally the credit card and debit card information for free trial. While in this
research the shell script generated can be used by the user itself without involving
any third-party application or software. Users can execute the script on their system
and can abstract the malware if detected.

References

1. Amarante J, Barros JP (2017) Exploring USB connection vulnerabilities on android devices
breaches using the android debug bridge. In: Proceedings of the 14th international joint
conference on e-business and telecommunications (ICETE 2017)

2. LeeY, LarsenKR (2017) Threat or coping appraisal: determinants of SMB executives’ decision
to adopt anti-malware software

3. Wei F, Li Y, Roy S, Ou X, Zhou W (2017) Deep ground truth analysis of current android
malware

4. Salah A, Shalabi E, Khedr W (2020) A lightweight android malware classifier using novel
feature selection methods

5. Banina S, Dyrkolbotnab GO (2018) Multinomial malware classification via low-level features
6. Al-rimy BAS, Maarof MA, Shaid SZM (2018) Ransomware threat success factors, taxonomy,

and countermeasures: a survey and research directions
7. Damshenas M, Dehghantanha A, Choo KKR, Mahmud R (2015) M0droid: an android

behavioural-based malware detection model. J Inf Privacy Secur 11(3):141–157
8. Niazi RH, Shamsi JA, Waseem T, Khan MM (2015) Signature-based detection of privilege-

escalation attacks onAndroid. In: 2015Conference on information assurance and cyber security
(CIACS), pp 44–49, Dec 2015

9. Yang C et al. (2015) Using provenance patterns to vet sensitive behaviors in Android apps.
In: International conference on security and privacy in communication systems. Springer
International Publishing

10. Duc NV, Giang PT, Vi PM, Bhatt MS et al (2015) Int J Comp Technol Appl 6(5):852–856.
Conference Paper, November 2015



Unmasking the Malware Using Android Debug Bridge 101

11. KumarM,MishraBK, PandaTC (2016) Predator-preymodels on interaction between computer
worms, trojan horse and antivirus software inside a computer system

12. Rastogi V, Chen Y, Jiang X (2014) Catch me if you can: evaluating android anti-malware
against transformation attacks

13. Canfora G, Mercaldo F, Visaggio CA (2016) An HMM and structural entropy based detector
for android malware: an empirical study. Comput Secur 61:1–18

14. Feizollah A, Anuar NB, Salleh R, Suarez-Tangil G, Furnell S (2017) Androdialysis: analysis
of android intent effectiveness in malware detection. Comput Secur 65:121–134

15. Zhang M, Song G, Chen L (2016) A state feedback impulse model for computer worm control
16. Eugene Schultz E Dr (2003) Pandora’s box: spyware, adware, auto execution, and NGSCB
17. English ED (2014) Detection of bot-infected Computers using a web browser
18. Dawson JA,McDonald JT, Shropshire J,AndelTR,Luckett P,HivelyL (2017)Rootkit detection

through phase-space analysis of power voltage measurements
19. Agrawal AK, Khatri P, Sinha SR (2018) Comparative study of mobile forensic tools. In:

Advances in data and information sciences. Springer, Singapore, pp 39–47
20. Amer N, Al-Halabi YS (2018) Android forensics tools and security mechanism: survey paper.

In: Proceedings ACM the fourth international conference on engineering & MIS, p 12
21. Easttom C, Sanders W (2019) On the efficacy of using android debugging bridge for

android device forensics. In: IEEE 10th annual ubiquitous computing, electronics and mobile
communication conference, pp 0734

22. ZhengM, SunM, Lui JCS (2013) DroidAnalytics: a signature based analytic system to collect,
extract, analyze and associate android malware

23. Tan L, Liu C, Li Z,Wang X, Zhou Y, Zhai C (2013) Bug characteristics in open source software
24. Chatterjee R, Doerfler P, Orgad H, Havron S, Palmer J, Freed D, Levy K, Dell N, McCoy D,

Ristenpart T (2018) The spyware used in intimate partner violence
25. FatimaU,AliM,AhmedN,RafiqM (2018)Numericalmodeling of susceptible latent breaking-

out quarantine computer virus epidemic dynamics


	 Unmasking the Malware Using Android Debug Bridge
	1 Introduction
	2 Literature Review
	3 Implementation
	3.1 Steps of Implementation

	4 Result
	4.1 Comparative Analysis of Our Study with Pre-existing Tools

	5 Conclusion
	References


