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Abstract Biochar is a prominent adsorbent for environmental remediation. The
physicochemical properties responsible for adsorption can be significantly enhanced
by using physical, chemical, and biological treatments of biochar. The biological
treatment methods are advantageous in terms of cost-effectiveness and reduced
secondary pollutants. The present chapter summarizes the need, methodology, modi-
fication mechanism of biological modification of biochar, and its implementation for
environmental remediation. The biologically modified biochar can be obtained by
either ex situ (pyrolysis of anaerobically digested residue) or in situ (using extracel-
lular enzymes) technologies. The process includes colonization and biofilm forma-
tion by microorganisms on biochar surface and attachment of microbes. Biolog-
ically modified biochar metabolizes organic/inorganic contaminants and helps in
adsorption, biodegradation, and bio-adsorption simultaneously.

1 Introduction

Generally, the pristine biochar has less adsorption capacity for the removal of
contaminants as compared to modified biochar. Different modification methods are
developed to increase the adsorption capacity of biochar for its utilization in soil
remediation, energy storage, and wastewater remediation. These practices for the
production of engineered or modified biochar are termed as biochar engineering (Ok
et al. 2015). So, engineered/modified biochar can also be defined as a derivative of
biochar with improved specific surface area, porosity, cation exchange capacity, and
surface functional groups through biological, physical, chemical, or combination of
thesemethods. The improved physicochemical properties provide significantly better
adsorption capacity of modified biochar as compared to pristine biochar (Rajapaksha
et al. 2016; Yao et al. 2013a, b, c).

Biological modification using earthworms is emerging as a potential method of
biochar modification for increment in surface area, better pore size distribution,
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surface functional groups, and adsorption capacity for heavy metal contamination in
soil. The enzymes generated by gut epithelium of earthworm and other symbionts are
catalase, b-Deglucuronidase, alkaline phosphatase, d-aminolevulinate dehydratase,
and superoxide dismutase. The biochar particles bind with these enzymes through
mucus. So, this process can be employed where earthworms can ingest the substrate
and discharge the enzyme coated modified biochar. This biologically modified
biochar consists of enormous exo-enzymes (molecular ligands). The ex situmodifica-
tion can be performed by activation of waste/sludge obtained as cow dung, leaf litter,
anaerobically digested biomass, etc. This chapter explains in detail the methodology,
mechanism, applications, and need for biological modification of biochar through
metabolic enzymes.

2 Biological Modification Techniques

The metabolic pathways possessed by microorganisms, viz. Aeromonas, Cellu-
losimicrobium, Chloroflexi, Shewanella, Streptomyces, etc. (Mohammadipanah and
Dehhaghi 2017;Wink et al. 2017), enable the biochar to integratewith various organic
compounds and result in usable metabolites (Dehhaghi et al. 2019a, b) and value-
added products (Dehhaghi et al. 2018, 2020; Sajedi et al. 2018). Due to their micro-
scopic size, they can penetrate into pores of biochar and develop a non-washable rigid
structure of biofilm. The biological modification process includes colonization and
biofilm formation by microorganisms on biochar surface. The general mechanism of
pollutant removal by biologically modified biochar is illustrated in Fig. 1. Initially,
microbes get attached to biochar surface through sticky extracellular polymers and the

Fig. 1 Bio-adsorption, biodegradation, and adsorption on biologically modified biochar
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contaminants get attached to it through molecular diffusion. These organic and inor-
ganic pollutants get metabolized by microbes through various bio-electrochemical
and biochemical reactions (Sharma et al. 2020). The biofilms perform degradation
and removal of various inorganic, organic, and biological pollutant (Simpsosn 2008;
Bouabidi et al. 2019; Sharma et al. 2020). A biologically modified biochar performs
pollutant remediation in several steps, viz biofilm formation followed by biodegrada-
tion, desorption, and diffusion of contaminants at biochar–biofilm and air/soil/water
interface (Wurzer et al. 2019).

Biological treatment enhances the desired physicochemical and functional prop-
erties of biochar. It enables the simultaneous adsorption of contaminants on biochar
scaffold and their degradation by inoculated microorganisms. For example, several
microorganisms (viz. Clostridium, Paenibacillus, Aeromonas, Cellulosimicrobium,
Chloroflexi, Shewanella, etc.) possess bio-adsorbent characteristics for heavy metals
(Hamedi et al. 2015; Mohammadipanah et al. 2015). The microbial colonization
on biochar facilitates the adsorption of inorganic contaminants (heavy metals) with
removal and degradation of organic contaminants (naphthenic acid) simultaneously
(Frankel et al. 2016). It was observed that the biochar-active biofilm can efficiently
perform adsorption and degradation (about 98% of carbamazepine) as compared to
conventional sand-active biofilm (about 7% of carbamazepine) in a sewage treatment
plant. The caffeine, ranitidine, and metoprolol adsorption characteristics were found
similar for both conventional and biochar-based scaffolds (Dalahmeh et al. 2018).

2.1 Interaction of Biochar with Intestinal Enzymes
of Earthworms

Earthworms can significantly change the physicochemical and biological prop-
erties of consumed substrates (Jones et al. 1994; Yuvaraj et al. 2019). The gut
of earthworm/manure worm has various anaerobic (Clostridium, Paenibacillus,
Aeromonas, Cellulosimicrobium, Chloroflexi, Shewanella, and Streptomyces) and
aerobic (Photobacterium, Pseudomonas, and Bacillus) bacteria that releases many
enzymes (Hong et al. 2011). The gut of Perionyx millardi, Drawida willsi, Drawida
calebi, Dichogaster bolaui, and Pontoscolex corethrurus type of earthworms have
sufficient quantity of phosphatase, lipase, urease, amylase, chitinase, protease, and
cellulose enzymes (Parle 1963; Mishra and Dash 1980; Baskaran et al. 1986;
Mishra 1993). The anterior portion of earthworms have higher enzyme secretion
as compared to the posterior portion. It is due to that fact that fore-gut and stomach
of earthworms have the enzyme secreting parts (Tillinghast and MacDonnell 1973).
Mishra and Dash (1980) and Nakajima et al. (2003) have asserted that the cellulase,
amylase, protease, and lipase are the most secreted enzymes from intestinal cells of
earthworms. Urbasek and Pizl (1991) have stated that the mid-gut of Lumbricus
terrestris earthworm releases 20 enzymes from three different sections, namely
typhlosole, peripheral intestinal epithelium, and peripheral chloragocytes. More than
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44% of enzymes (such as b-Deglucuronidase, superoxide dismutase, catalase, d-
aminolevulinate dehydratase, and alkaline phosphatase) are produced in peripheral
chloragogen. Also, the maximum proportion (about 70%) of glutamate dehydroge-
nase, isocitrate dehydrogenase,NADH, andNADPHdiaphorasewas also found in the
mid-gut of earthworm.Similar to a tubular reactor, the gut alsomaintains the optimum
temperature to avoid enzyme inactivation. During vermicomposting, the urease,
dehydrogenase, acid, and alkali phosphatases catalytic activity increases initially and
thereafter decreases as optimum concentration is reached. This phenomenon speci-
fies earthworms as bioreactors for organic waste with microorganisms (Balachandar
et al. 2020; Karmegam et al. 2019).

The interaction with earthworm enzymes can be a potential mode for biochar
surface modification. An enormous quantity of organic waste can be ingested by
earthworms and also an abundant amount of metal ions can get accumulated in
chloragogen tissues of earthworms (Yuvaraj et al. 2020). The implementation of
biochar with earthworms can significantly minimize the heavy metal concentration
in soils (Shaaban et al. 2018; Sun et al. 2016). The abiotic components in biochar can
enrich the soil withminerals and earthworms can induce the degradation process. The
biochar particles bind with gut enzymes through mucus of earthworms (Urbasek and
Pizl 1991). The mucus ejected from gastrointestinal epithelial cells consists of amino
acids, mucopolysaccharides, and glycoproteins (Zhang et al. 2016a, b). The other
enzymeoriginated fromearthwormgut such as alkaline phosphatase, amylase, nitrate
reductase, cellulose, and acid phosphatase can induce microbial growth. Therefore,
the intestines of earthworms and symbionts can be seen as potential sources of
extracellular enzymes for biochar activation.

The co-application of biochar with earthworms was found to contribute signifi-
cantly to soil nutrient enrichment (Ameloot et al. 2013; Puga et al. 2015). During
vermicomposting, the ingested biochar by earthworms interacts with intestinal
enzymes and is discharged with humus-like substances (Domene 2016). Sanchez-
Hernandez (2018) have experimented with Aporrectodea caliginosa and Lumbricus
terrestris earthworms in biochar mixed soil and harvested b-glucosidase, alkaline
phosphatase, and carboxylesterase enzyme coated biochar released by earthworms.
In another experiment, Sanchez-Hernandez et al. (2019)mixed2.5–5%(w/w)biochar
with soil and interacted with Lumbricus terrestris earthworms, and obtained enzyme
coated biochar on the top of soil surface. The carboxylesterases induce biological
modification/activation of biochar and can effectively remediate organophosphorus-
contaminated soils. It can be explained by binding of carboxylesterases with oxygen
analogs of organophosphorus (Wheelock et al. 2008).

2.2 Pyrolysis of Anaerobically Digested (AD) Waste

Apart from microorganism incubation, the biologically modified biochar can also
be produced from the residues obtained after anaerobic digestion (AD) of biomass.
The biochar produced from AD residue possesses a higher specific surface area,



Biological Treatment for Biochar Modification … 89

anion exchange capacity (AEC), cation exchange capacity (CEC), hydrophobicity,
alkaline pH, and more negative surface charge as compared to conventional biochar
(Yao et al. 2018). These variations in properties might be attributed to the alteration
of redox potential and pH values of biomass during anaerobic digestion (Inyang
et al. 2010). The enhanced AEC and CEC facilitate the utilization of biologically
modified biochar for sequestration of both positive and negative ions from water.
The higher cation adsorption capacity of AD biochar is due to the strong negative
surface functional groups and negative zeta potential. The presence of strongly nega-
tive surface functional groups in modified biochar (due to negative zeta potential of
AD waste) increases the cation adsorption capacity. The emerging industrial appli-
cations of modified biochar enhance the economic and environmental feasibility
of biochar production from AD residue (Dehhaghi et al. 2019b; Tabatabaei et al.
2019). Another biological approach for biochar modification includes the utilization
of mineral enriched biomass through bioaccumulation for the production of modi-
fied biochar (Yao et al. 2013b; Wang et al. 2017). This process results in value-added
biochar nanocomposites and provides a safe disposalmethod for hyper-accumulating
plants. Several studies on biochar production from bagasse stillage waste sugar beet
residue, dairywaste, animalwaste, and sewage sludge digested slurrywere performed
at different pyrolysis temperatures (300–1000 °C) under an inert atmosphere (Ma
et al. 2018; Inyang et al. 2012; Yao et al. 2011, 2015, 2017a, b). Another study by
Inyang et al. (2010) reported the comparative analysis of biochar produced from
sugarcane bagasse and AD bagasse. These studies imply that the BET surface area
of biochar produced from digested biomass was slightly higher than that produced
from biomass pyrolysis. It facilitates the efficient utilization of modified biochar as
a low-cost adsorbent for soil amendment, water holding capacity, and soil quality
improvement that leads to sequestration of atmospheric carbon. It was concluded
that the organic functional groups present in biochar and AD biochar were mainly
hydroxyl, alkene, and aromatic groups. The major difference in organic groups was
evident only as the presence of carbonyl groups in AD biochar (Inyang et al. 2010).
Based on the physicochemical characterization, it is evident that AD biochar has
higher adsorption and ion-exchange capacity relative to undigested biomass residues.
Scanning electronmicroscopy (SEM)ofADbiochar indicated the presence of several
prismatic, hexagonal crystalline structures, and the pore diameter was found similar
to the wood-based activated carbon (Ma et al. 2018; Gundogdu et al. 2013; Inyang
et al. 2012). Studies indicate the significant effect of different AD biomass on the
physicochemical properties of AD biochar. The AD biochar also possesses good
heavy metal adsorption capacity from aqueous solutions. The results concluded that
the animal waste AD biochar acquire a stronger affinity to Pb2+ (99%), Cu2+ (98%),
and weaker affinity to Cd2+ (57%), Ni2+ (26%) as compared to sugar beet residue AD
biochar (Inyang et al. 2012). Batch experiments of soil remediation indicated that
the pH and coexisting anions in initial solution can significantly affect the phosphate
adsorption capacity of AD biochar (Yao et al. 2011). The comparative analysis of
biochar, anaerobically digested biochar (DBC), and commercially activated carbon
(AC) asserted that DBC is the most efficient lead adsorbent in aqueous solutions. The
lead adsorption capacity of DBC (653.9 mmol/kg) was twice of AC (395.3 mmol/kg)
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and several times greater than that of BC (31.3 mmol/kg). Despite lower surface area
of DBC, the lead adsorption capacity of DBC was observed higher than AC and
BC. This phenomenon suggests the involvement of other mechanisms along with
surface adsorption. Post-adsorption analysis usingX-ray diffraction (XRD) and SEM
identified lead minerals on the DBC surface as cerrussite—[PbCO3] and hydrocer-
russite—[Pb3(CO3)2(OH)2]. These mineral crystals were not observed on the BC
or AC after Pb adsorption. It concluded that the lead adsorption capacity of DBC
also depends partly on the precipitation mechanism. The precipitation of cerrussite
and hydrocerrussite on DBC surface is due to the presence of specific organic func-
tional groups (O=C=O) and high pH. Another study by Yao et al. (2011) proposed
the predominance of adsorption over precipitation mechanism during the phosphate
removal from aqueous solutions. High metal removal efficiency of biochar made
from digested biomass suggests that it could be considered an efficient method of
“biological activation” to produce biochar-based adsorbents.

3 Effect of Biological Modification

3.1 On Microbial Properties

Biochar application in soil induces the stabilization of organic matter and the
exchange of electrons betweenmicrobial cells andorganicmatter (Fang et al. 2014). It
can significantly affect the enzyme activities and community structure of microbes.
These parameters can be examined using quantitative real-time polymerase chain
reaction (q-PCR), ergosterol extraction, next-generation sequencing, phospholipid
fatty acid quantitation (PLFA), gradient gel electrophoresis (DGGE), and fluores-
cence in situ hybridization (FISH) (Chen et al. 2013; Hale et al. 2014; Mackie
et al. 2015; Rousk et al. 2009). Actinobacteria, Acidobacteria, Verrucomicrobia, and
Gemmatimonadetes were observed to adopt high-throughput sequencing techniques
in biochar-treated soils (Mackie et al. 2015;Nielsen et al. 2014). Thedifferent theories
for the effect of biochar on microbial activity are explained by several researches.
The first concept is that the high specific surface area with well-developed pore
structure avails vacant space for microorganisms (Quilliam et al. 2013). Another
research by Joseph et al. (2013) stated that the microorganisms extract the essential
nutrients for their development from biochar. The biochar enhances the properties
of substrate (such as pH, moisture, and aeration conditions) to alter its habitation
(Quilliam et al. 2013). Another theory identified that biochar minimizes the toxicity
to microorganisms by adsorbing the soil pollutants (Stefaniuk and Oleszczuk 2016).



Biological Treatment for Biochar Modification … 91

3.2 On Biochar Properties

Biochar consists of various essential nutrients such as sodium, potassium, nitrogen,
magnesium, and phosphorus for the enrichment of soil nutrients (Chathurika et al.
2016). With enriched soil nutrients, the rhizobacterial population increases which
further leads to higher enzyme availability in soil. The enzyme adsorption depends on
surface functional groups of biochar. The force (other than Coloumb force) between
neutral protein molecules and polar disaccharides is linked to the neutral region of
biochar surface. It leads to the biological activation of biochar through enzymes
(Lammirato et al. 2011). Also, the biochar surface contains a significant amount
of microalgae variants (Klebsormidium flaccidum and filamentous Cyanobacteria)
that increase the activation process. Some extracellular enzymes (oxidoreductase
enzyme) bind covalently with biochar surface and this biologically modified biochar
can be efficiently implemented for heavy metal adsorption (Naghdi et al. 2018). The
microbial activation is limited to bench-scale studies and biological activation of
biochar through earthworms is been considered as a cost-effective method.

4 Mechanisms Involved in Biological Modification
of Biochar

4.1 Biological Modification Through Intestinal Enzymes
of Earthworms

The posterior part of earthworms has several enzyme-secreting glands and discharged
digestive enzymes break the fed organic matter (Kaushik and Garg 2004). The earth-
worms can consume a diverse variety of substrates that can be divided into three
classes (anecic, epigeic, and endogeic) according to their feeding habits (Domínguez
and Edwards 1997; Huang et al. 2014). Epigeic earthworms (such as Eisenia fetida,
Eudrilus eugeniae, and Perionyx excavatus) are most efficient in the degradation
of complex organic substances and are recommended for biological modification of
biochar (Khatua et al. 2018;Karmegamet al. 2021;Ananthavalli et al. 2019). Figure 2
depicts the process of biological modification of biochar by earthworms. The biolog-
ical modification takes place in two stages. In the first stage (active stage), earth-
worms grind the consumed material in gut section, the gut-secreted enzymes crack
the complex substances, and in the second stage (maturation stage), the earthworm
releases biologically modified biochar with humus like substance (Gomez-Brandon
et al. 2011; Gomez-Brandon and Domínguez 2014; Lores et al. 2006). During the
active stage, the consumed organic material gets ground in gizzard, gut epithelium
releasesmultiple enzymes, and induces biochemical reactions (Nozaki et al. 2009) for
different enzymes, microbes, beneficial nutrients, and biologically modified biochar
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Fig. 2 Mechanism of biological modification of biochar by earthworms

(Balachandar et al. 2021; Domínguez et al. 2019). Therefore, the efficiency of vermi-
composting increases by mixing organic waste with biochar (El-Naggar et al. 2019;
Malinska et al. 2017). Along with the biological modification of biochar, the process
also alters microbial properties by improving moisture availability, aeration level,
toxicity adsorption, nutrient establishment, and pH neutralization (Ge et al. 2019;
Zhu et al. 2017a, b; Quilliam et al. 2013; Ennis et al. 2012; Jeffery et al. 2011). The
gut enzymes have various biomolecules which can be used as catalyst and affect soil
pollutants (Burns et al. 2013; Gianfreda et al. 2016). The implementation of biochar
increases the stability of enzymes and the biochar particles bind with extracellular
enzymes due to highly affinitive surface functional groups. The ionic interactions
and van der Waals forces are major contributors to binding (De Oliveira et al. 2000).
It can be concluded from the above-mentioned studies that the co-implementation
of biochar and earthworms is a feasible method for remediation of metal contami-
nation. Various environmental researchers stated that the soil invertebrates (such as
earthworms) efficiently produce biologically activated biochar with the use of gut
enzymes. The experimental study of Zhu et al. (2017a, b) on cow manure-based
vermi-modified biochar evidenced effective adsorption of Pb2+ and Cd2+ ions.
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4.2 Biological Modification by Pyrolysis of Anaerobically
Digested (AD) Biomass

The anaerobically digested waste can be efficiently converted to biochar by drying
and pyrolysis. The studies concluded that the wood biomass components hemicel-
lulose, cellulose, and lignin decompose at temperature ranges 200–325 °C, 240–
375 °C, and 280–500 °C, respectively (Prins et al. 2006; Downie et al. 2009; Wani
et al. 2021). The mechanism of biological modification by pyrolysis of AD biomass
includes the degradation of different components (hemicellulose, cellulose, and
lignin) present in the feedstock. The characteristics of resultant biologically modi-
fied biochar depend greatly on pyrolysis temperature, heating rate, heating time, raw
material characteristics, inert gas flow rate, etc.

5 Applications of Biologically Modified Biochar

Biochar-based nanocomposites have been extensively utilized in heavymetal adsorp-
tion (for example, As(III), As(V), Pb(II), Cr (VI), Cd(II), Cu(II), and Hg(II)) from
wastewater. The adsorption capacity of various inorganic contaminants vary with
different nanomaterials, contaminant concentration, and biochar substrate (Li et al.
2016;Wang et al. 2017; Yao et al. 2013a, b; Zhang and Gao 2013; Zhang et al. 2013).
Biologically modified biochar is generally used in advanced water remediation for
biodegradation and adsorption of organic, inorganic, and biological contaminants
which cannot be separated in primary and secondary water remediation (Çeçen and
Aktas 2011) (Table 1).

With increased population and food demand, the use of chemicals in agricultural
sector has been significantly increased in past decades. Therefore, there is a need to
develop a safe and efficient soil remediation technique for contaminated soil. It is
been evident from several studies that biochar with high specific surface area, oxygen
containing surface functional groups, cation exchange capacity can be efficient inac-
tivating, stabilizing, and adsorbing agent for even highly heavy metals concentrated
soils (Beesley et al. 2011; Park et al. 2011; Uchimiya et al. 2010a, b, 2011a). The
heavy metal stabilization capacity is higher for alkaline soil pH and higher intra-
particle diffusion (Rees et al. 2014). The pristine biochar constitutes good adsorption
capacity for heavy metals which significantly increases upon biochar modification.
There are some lab scale observations on heavy metal adsorption using modified
biochar but large-scale experimentation is still rare. Traditional technologies (precipi-
tation, ion exchange, packed-bed filtration, electro-coagulation, membrane filtration)
for heavy metal removal from wastewater were found to be effective in reducing
pollutant concentrations. Though, these technologies involve high-cost and disposal
problems. The bio-adsorbents are suggested as low cost alternative for wastewater
treatment (Demirbas 2008; Sud et al. 2008).
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Heavy metal contamination in soil has been a serious environmental problem in
recent time (Alloway 2013). Biochar is generally an alkaline substance which can
increase soil pH and promote stabilization of heavy metal contamination. Biolog-
ically treated biochar have significantly higher specific surface area and microbial
biofilm which provide high pollutant adsorption capacity (Ahmad et al. 2014). Apart
from adsorption, application of biologically treated biochar is also beneficial for
agricultural soil due to increased microbial growth, bio-adsorption, and degradation
of heavy metal and organic pollutants. The biologically modified biochar helps in
retaining the soil nutrients (Yao et al. 2011).

6 Advantages and Limitations of Biological Modification
of Biochar

The biologically modified biochar is not only a potential substitute for activated
carbon in environmental remediation but also avails an additional advantage of
sustainable carbon sink (Yoder et al. 2011;Laer et al. 2015). The contaminant removal
efficiency of activated carbon, biochar and biologically modified biochar differ
significantly due to dependence on adsorption capacity, bio-adsorption capacity,
specific surface area, and pore size distribution. These parameters assert the suit-
ability of biologically modified biochar due to high bio-adsorption, biodegradation,
and adsorption along with positive environmental impact. The biological treatment
of biochar is cost-effective and eco-friendly process as compared to physical and
chemical activation. The other activation methods require high initial investment
and produce secondary pollutants (emissions, chemical wastes, etc.) during activa-
tion (Sanchez-Hernandez et al. 2019). Also, there is no need for biochar regeneration
after phosphate removal from soil because the phosphate-laden biochar consists of
valuable nutrients and can be utilized as a slow-release fertilizer and for carbon
sequestration (Yao et al. 2011). Thus, the implementation of biologically modified
biochar eliminates the drudgery and cost associated with regeneration process.

7 Conclusions

This chapter summaries the feasibility, efficiency, and cost-effectiveness of biolog-
ically modified biochar. Raw materials and production process significantly alter
the physicochemical and functional properties of biochar. Biologically modified
biochar facilitates the effective biodegradation and biosorption through various
complex mechanisms. The safe, cost-effective production process of biological
modification avails agricultural, environmental, and economic sustainability. The
co-implementation of earthworms and biochar is a feasible method for microbial
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growth, biochar modification, and soil nutrient enrichment. The biological modifi-
cation of biochar through extracellular enzymes paved the path for efficient envi-
ronmental remediation. There is a need for detailed study using statistical tools and
mathematical modeling to accurately correlate the control parameters and properties
of biologically modified biochar.
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