
FSTOR: A Distributed Storage System
that Supports Chinese Software and Hardware

Yuheng Lin2, Zhiqiang Wang1(B), Jinyang Zhao3, Ying Chen2, and Yaping Chi1

1 Cyberspace Security Department, Beijing Electronic Science and Technology Institute,
Beijing, China

wangzq@besti.edu.cn
2 Department of Cryptography and Technology, Beijing Electronic Science and Technology

Institute, Beijing, China
3 Beijing Baidu T2Cloud Technology Co. Ltd., 15A#-2nd Floor, En ji xi yuan, Haidian District,

Beijing, China

Abstract. In order to develop a distributed storage system that adapts to Chinese
software and hardware, build a cloud computing platform that is independently
usable, safe and reliable, data utilization is more concentrated and intelligent,
and service integration is more unified and efficient. This paper designed and
implemented a distributed storage system that supports Chinese software and
hardware, which is compatible with Chinese mainstream CPU, operating system,
database, middleware and other software and hardware environments. After a lot
of experiments and tests, it is confirmed that the system has high availability and
high reliability.

Keywords: Cloud computing platform · Distributed storage system ·
Localization

1 Introduction

The distributed storage system is a data storage technology that distributes data on
multiple independent devices, and provides storage services as a whole externally1,2.
It has the characteristics of scalability, high reliability, availability, high performance,
high resource utilization, fault tolerance and low energy consumption3. Its development
process can be roughly divided into three stages. One is the traditional network file
system, which is typically represented by Network File System (NFS), etc., the second
is the general cluster file system, such as Galley, Shared File System (GPFS), etc., and
the third is the object-oriented transit distributed file system, such as Google File System
(GFS), Hadoop Distributed File System (HDFS), etc. NFS4,5 is a UNIX presentation
layer protocol developed by SUN; GPFS6,7 is IBM’s first shared file system. GFS8 is
a dedicated file system designed by Google to store massive search data. The above-
mentioned typical distributed storage systems are all developed by foreign companies,
and all have incompatibility with Chinese software and hardware.

© The Author(s) 2022
Z. Qian et al. (Eds.): WCNA 2021, LNEE 942, pp. 342–350, 2022.
https://doi.org/10.1007/978-981-19-2456-9_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-2456-9_36&domain=pdf
https://doi.org/10.1007/978-981-19-2456-9_36


FSTOR: A Distributed Storage System 343

In response to the above problems, this paper designed and implemented a local-
ized distributed software-defined storage system named FSTOR, which is based on B/S
architecture, has standard interfaces and supports various localized operating systems
and virtualization systems, and both servers and databases are localized facility. The
system implements distributed cloud storage block storage services, snapshot manage-
ment, full-usermode intelligent cache engine, cluster dynamic expansion, pooled storage
function, fault self-check and self-healing functions.

The organization structure of this article is as follows: The first part introduces
the relevant research background of the system; the second part introduces the system
architecture; the third part describes the functional architecture of the system; the fourth
part tests the system and analyzes the test results; the fifth part summarizes full text.

2 System Structure

The detailed system architecture is shown in Fig. 1. The overall technology and software
system can run normally on theChinese CPU. TheChinese x86 architecture Zhaoxin, the
ARM architecture Feiteng and the Alpha Shenwei can be used, and the operating system
Kylin or CentOS can be used. The system can use automated operation and maintenance
technology to ensure daily operation and maintenance management, including but not
limited to data recovery, network replacement, disk replacement, host name replacement,
capacity expansion, inspection, failure warning, capacity warning, etc.

Fig. 1. System architecture diagram

(1) LibRBD
A module that supports localized block storage, abstracts the underlying storage,
and provides external interfaces in the form of block storage. LibRBD supports the
localized virtualization technology to be mounted to the localized operating system
through the RBD protocol, and is provided to some localized databases.



344 Y. Lin et al.

(2) Libcephfs
A module that supports localized Posix file storage, supports the Kylin and the
CentOS operating system to mount the file system locally to the Chinese operating
system through the mount command and provide it for use.

(3) RADOS GW
In order to support a gateway module for localized object storage, two different
object storage access protocols, S3 and Swift, are provided. Localized software can
use these two protocols to access the object storage services provided by the system.

(4) Librados
Amodule supporting blocks, files, and object protocols is responsible for interacting
with the core layer of the Chinese storage system. It is a technical module of the
interface layer.

(5) MON
The brain of the system. The management of the storage system cluster is handed
over to MON.

(6) OSD Core
Responsible for taking over the management of a physical storage medium.

(7) FileStore
An abstract module that manipulates the file system. The system accesses business
data through the Poxis standard vfs interface. The spacemanagement of the physical
disk is handed over to the open source xfs file system to manage.

(8) BlueStore
A small Chinese file system. It can replace the xfs file system tomanage the physical
disk space, reducing someperformance problems caused by the xfs file systembeing
too heavy.

(9) T2CE

A Chinese smart cache module. The system can make full use of physical hardware
resources to improve storage performance. Its intelligent caching engine can perceive
data characteristics and frequency, and store data that meets a predetermined strategy
on high-speed devices, and store data that does not meet the predetermined strategy
on slow devices. Under the premise of not significantly increasing hardware costs, use
high-speed equipment to drive low-speed equipment to ensure business performance
requirements.

The intelligent cache engine revolves around the close cooperation between multiple
core modules such as IO feature perception, intelligent aggregation, disk space alloca-
tion and defragmentation, and maximizes the combination of high-speed and low-speed
devices between performance and capacity to achieve a perfect balance. The smart cache
uses a large number of efficient programming models and algorithms to maximize the
performance of high-speed devices.

3 Function Architecture

The system function framework is shown as in Fig. 2. The system includes a hardware
abstraction layer, a unified storage layer, a storage service layer, an interface proto-
col layer and an application layer. The unified storage layer includes multiple copies,



FSTOR: A Distributed Storage System 345

pooling, tiered storage, linear expansion, fault medical examination, data recovery QoS,
erasure coding, strong data consistency, intelligent caching, dynamic capacity expan-
sion, fault domain and fault self-healing. The storage service layer includes snapshot
cloning, data linkHA, data streamQoS, encryption compression, quota control, thin pro-
visioning, multipart upload, permission control, version control, multi-tenancy, data tier-
ing, and write protection. The interface protocol layer includes block storage interface,
object interface and file storage interface. The application layer includes virtualization,
unstructured data and structured data.

Fig. 2. Functional architecture diagram

(1) Object Storage Segmented Upload
Segmented upload is the core technology of breakpoint continuingly functions.
When the fault is restored, avoid re-uploading the content of the uploaded file and
cause unnecessary waste of resources. Users can also implement user-side QoS
functions based on the multipart upload function. The multipart upload function
will verify the content of the uploaded file, and the parts that fail the verification
will be re-uploaded.

(2) Dynamic Capacity Expansion and Reduction Without Perception
The system supports dynamic capacity expansion and contraction without percep-
tion, and can respond to changes in application requirements in a timely manner



346 Y. Lin et al.

without perception of the application, ensuring the continuous operation of the busi-
ness. In addition, the performance also increases linearly with the increase of the
number of nodes, giving full play to the performance of all hardware.

(3) Data Redundancy Protection Mechanism
The system provides two different pool data redundancy protection mechanisms:
replica and erasure code to ensure data reliability.

Replica mode is a data redundancy realized by data mirroring, with space for
reality. Each replica keeps complete data, and users can pool 1–3 replicas accord-
ing to specific business requirements to maintain strong consistency. The greater
the number of replicas, the higher the fault tolerance allowed, and the consumed
capacity increases proportionally.

Erasure code mode is an economical redundancy scheme, which can provide
higher disk utilization. Users can choose K + m combination according to the
specific business requirements. K represents to store the original data in K blocks,
and M represents to generate M pieces of coded data. The size of each piece of
coded data is the same as that of the block. The K pieces of block data andM pieces
of coded data are stored separately to achieve data redundancy. According to any k
pieces of data in K + m, the original data can be reconstructed.

(4) Troubleshooting

The system supports a variety of different levels of fault domain design, the smallest fault
is the tiered disk, and the largest fault tier can be the data center. It is common to use the
cabinet as the fault level, and the user can divide it according to the actual situation. The
fault domain can ensure the failure level of data redundancy. Whether it is a failure of a
disk, a rack, or a data center, the reliability of the data can be guaranteed. At the same
time, the system also supports intelligent fault detection and fault self-healing and alarms
to avoid manual intervention, and supports intelligent data consistency verification to
avoid data loss due to silent errors.

4 System Test

4.1 Test Environment

The test environment topology is shown in Fig. 3. Four node servers and a notebook are
used. The server and notebook are connected to the switch. FIO 2.2.10 (cstc10184742)
is used as the test tool.



FSTOR: A Distributed Storage System 347

Fig. 3. System test network topology

The model and configuration of server and client are shown in Table 1. In the test,
the model and configuration of the four node servers are the same, all of them are Kylin
system, and the CPU is FT1500a@16c CPU.The notebook is the ultimate version of
Windows 7 system, the model is ThinkPad T420, and the notebook is equipped with
Fio.

Table 1. Environment configuration

Equipment name Model and
configuration

Operating system Software
configuration

Node server (4) CPU: FT1500a@16c
CPU 1.5 GHz
RAM: 64 GB
hard disk: 1.8TB

Kylin V4.0 FSTOR distributed
storage system
MariaDB V10.3
RabbitMQ V3.6.5

notebook
(1)(CSTC10124326)

model: Thinkpad T420
CPU: Intel Core
i5-2450M 2.50 GHz
RAM: 4 GB
hard disk: 500GB

Windows 7 Ultimate Google Chrome
52.0.2743.116
Fio 2.2.10

4.2 Test Content

The content of system test is shown in Table 2. IOPs (input/output operations per second)
is the input/output volume (or read/write times) per second, used for computer storage
device performance test. The test results show that the system realizes the functions
designed in all functional architectures.



348 Y. Lin et al.

Table 2. Test Content

Technical index Test results

Block storage service The block storage volume can be successfully created
and the storage volume can be mapped to the virtual
machine
File system can be created for storage volume

Snapshot management Supports the snapshot function of storage volumes, and
clones new storage volumes through snapshots
You can perform a rollback operation on the storage
volume that has been snapshotted

Smart cache engine The smart cache engine storage pool can be
successfully created

Cluster dynamic expansion A new storage server or hard disk can be added to the
storage cluster

Pool storage function Can create storage pools with different performance

Fault self-checking and self-healing Delete an object storage device and kick it out of the
cluster, and cluster business will not be interrupted

Web storage mount Web storage can be mounted via NFS protocol

4k random write 4k random write without cache IOPS: 1694
4k random write IOPS with cache: 5149

4k random read 4k random read without cache IOPS: 2474
4k random read IOPS with cache: 6507

4k mixed random read and write 4k mixed random read without cache IOPS: 1944
4k mixed random read with cache IOPS: 4863
4k mixed random write without cache IOPS: 648
4k mixed random write buffered IOPS: 1621

4.3 Test Results

(1) System Structure
The system is based on B/S architecture, the server adopts Kylin v4.0 operating
system, the database adopts MariaDB V10.3, the middleware adopts RabbitMQ
v3.6.5, and the bandwidth is 1000Mbps. The client operating system is the ultimate
version of Windows 7, and the browser adopts Google Chrome 52.0.2743.116.

(2) Performance Efficiency

The system performance is as follows: 4K random write without cache IOPs: 1694;
4K random write buffer IOPs: 5149; No IOPs: 4K random read cache; 4K random read
buffer IOPs: 6507; 4Kmixed random read without cache IOPs: 1944; 4Kmixed random
read buffer IOPs: 4863; 4K mixed random write without cache IOPs: 648.



FSTOR: A Distributed Storage System 349

5 Conclusions

Aiming at the problem that the distributed storage system needs localization and supports
Chinese software and hardware, this paper designed and implemented a distributed stor-
age system namedFSTOR, which runs on the Chinese operating system and CPU, and
each module supports localization. The system ensures the daily operation and mainte-
nance management by realizing automatic operation and maintenance, and ensures the
reliability of data through two pool data redundancy protection mechanisms and fault or
division methods: copy and erasure code. After a large number of tests, the system runs
stably, realizes complete functions, and achieves high reliability and high availability.

Acknowledgments. This research was financially supported by National Key R&D Pro-
gram of China (2018YFB1004100), China Postdoctoral Science Foundation funded project
(2019M650606) and First-class Discipline Construction Project of Beijing Electronic Science
and Technology Institute (3201012).

References

1. Zhu, Y., Fan, Y., Yubin,W., et al.: An architecture design integrating distributed storage. Henan
Sci. Technol. 40(36), 22–24 (2021)

2. Lin, C.: Research and Implementation of Replica Management in Large-scale Distributed
Storage System. University of Electronic Science and Technology of China (2011)

3. Li, G., Yang, S.: The analysis of the research and application of distributed storage system.
Network Secur. Technol. Appl. 2014(09), 73+75 (2014)

4. Sandberg, R.: The sun network filesystem: design, implementation and experience. In: Pro-
ceedings of USENIX Summer Conference, pp. 300–313. University of California Press
(1987)

5. Huang, Y.: Docker data persistence and cross host sharing based on NFS. North University of
China, pp. 22–24 (2021)

6. Schmuck, F., Haskin, R.: GPFS: A shared-disk file system for large computing clusters. In:
Proceedings of the Conference Oil File and Storage Technologies (FAST 2002), 28–30 January
2002, Monterey, CA, pp. 231–244 (2002)

7. Zhang, X.-N., Wang, B.: Installation configuration and maintenance of GPFS. Comput.
Technol. Dev. 28(05), 174–178 (2018)

8. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. ACM SIGOPS Operat. Syst.
Rev. 37(5), 29–43 (2003)



350 Y. Lin et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	FSTOR: A Distributed Storage System that Supports Chinese Software and Hardware
	1 Introduction
	2 System Structure
	3 Function Architecture
	4 System Test
	4.1 Test Environment
	4.2 Test Content
	4.3 Test Results

	5 Conclusions
	References




