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Abstract Two-dimensional exact free vibration solution for functionally graded
plates in cylindrical bending is provided in the present study. Exponential distri-
bution of material properties across the thickness is considered and plane strain
condition is assumed to reduce the three dimensional problem of plate bending to
a two dimensional elasticity problem. Exact solutions for linearly elastic simply
(diaphragm) supported and rectangular plates based on two dimensional elasticity
theory, are derived. Navier’s solution technique along with power series method is
used to find the natural frequencies. The assumed displacement field identically satis-
fies all the boundary conditions. Numerical results for frequencies are provided for
exponentially graded thick and thin plates for various material gradations. Further,
the present formulation is extended to static analysis of functionally graded plate
under sinusoidal load.

Keywords Functionally graded plates · Two dimensional elasticity theory · Power
series · Plane strain

Nomencalature

E(z) Young’s modulus of plate material at a spatial loca-
tion ‘z’

Et, Eb Young’s modulus of top and bottom surface of the
plate

G(z) Shear modulus of plate material at a spatial location
‘z’

u, w Displacements along x and z directions, respectively
σx , σy, σz, εx , εy, εz Normal stresses and strains in x, y and z directions
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τxy, τyz, τzx , γxy, γyz, γzx Shear stresses and shear strains
Ar , Cr Coefficients in the power series expansion
ν Poisson’s ratio (Assumed constant)
ρ Density of plate material at a spatial location ‘z’
ρt , ρb Densities at the top and bottom surface of the plate
ω Natural frequency of vibration

α = mπ

a
,C = 1

(1 + ν)(1 − 2ν)
,

Dt = Et

(1 + ν)(1 − 2ν)
,

Db = Eb

(1 + ν)(1 − 2ν)

1 Introduction

Functionally graded materials (FGMs) are a class of composites, introduced by
Japanese scientists in 1984 as high temperature resistant materials (Yamanoushi
et al. 1990) for aircraft and space vehicles.

Thesematerials aremicroscopically heterogeneouswith smoothvariationofmate-
rial properties and are found to have immense applications in aircraft, mechanical,
nuclear and biomechanical structures. Hence these materials needs to be modeled
properly and their behavior should be studied carefully. Two types of representa-
tions are widely followed in the literature to describe the properties of FGMs viz.,
power-law and exponential law. Studies on these materials available in literature
mainly revolve around materials with power-law variation of properties while much
attention was not given to exponentially graded plates. Therefore the present study
concerns about the cylindrical bending and vibrations of exponentially graded plates
under plane strain conditions.

Srinivas et al. (1970) have provided analytical solutions for free vibration of
isotropic and laminated plates using three dimensional (3D) elasticity theory. Qian
et al. (2004) have studied the static, free and forced vibrations of thick rectangular
functionally graded (FG) plates using a higher order shear normal deformation theory
and a meshless local Petrov–Galerkin method. While an alternate meshless point
collocationmethod and third order shear deformation is used by Ferreira et al. (2005)
in their study of FG plate static analysis. In plane and out of plane frequencies of
FG circular and annular plates were given by Hosseini-Hashemi et al. (2010a) based
on Mindlin’s first order shear deformation theory (FOST). Shear correction factor
of 5/6 used for homogeneous plates was found to give unsatisfactory results for
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higher mode frequencies of FG plates. Therefore, gradation dependent shear correc-
tion factors are used by Hosseini-Hashemi et al. (2010b) in their solution for free
vibration of rectangular FGM plates resting on elastic foundations. These gradation
dependent shear correction factors have considerably improved the solution. Grada-
tion dependent shear correction factors are also used by Nguyen et al. (2008) while
studying the behavior a simply supported FG plate and a clamped sandwich plate
with FG faces in cylindrical bending. An exact solution for cylindrical bending of
functionally graded piezoelectric laminates has been provided by Lu et al. (2005).
Response of the plate under mechanical and electric loading is studied using Stroh
formalism and benchmark results are established. Zenkour (2005), using sinusoidal
shear deformation theory studied the free vibrations and buckling of simply supported
functionally graded plates. Rotary inertia is considered with power law variation of
material properties. Cheng and Batra (2000) have provided closed form solution
for the thermomechanical deformations of elliptic functionally graded plates with
clamped boundary conditions. The deformation of the plate due to thermal load
is calculated analytically and those due to mechanical loads are calculated by the
method of asymptotic expansion. Reddy and Cheng (2001) have studied 3D ther-
momechanical deformations of functionally graded simply supported plates using
the method of asymptotic expansion. Vel and Batra (2002) have presented exact
solution for cylindrical bending vibration of FG plates with power law variation
of material properties. Plane strain condition is assumed in the study. Power series
method has been utilized and the effective properties at a point were estimated by
Mori–Tanaka and self-consistent homogenization schemes. The same formulation
has been extended by Vel and Batra (2004) to find the 3D exact solution for free
and forced vibrations of FG simply supported plates. Chen (2005) considered the
nonlinear vibration of initially stressed, shear deformable FG plate using Galerkin
method and FOST.

The power series formulation adopted by Vel and Batra (2004) has been used in
the present work to provide exact natural frequencies of exponentially graded plates
in cylindrical bending. Plane strain assumption has been employed to reduce the 3D
elasticity problem to a two dimensional (2D) problem. 2D elasticity equations are
solved exactly using Navier’s technique and displacements in the thickness direction
are expanded using power series.

2 Theoretical Formulation

2.1 Exponentially Graded Material Properties

Elasticmodulus andmass density of an exponentially graded plate can be represented
by,

E(z) = Eb e
p( z

h + 1
2 ), Et = Eb e

p, p �= 0
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Fig. 1 Typical normalized material property variation across the thickness of the plate

ρ(z) = ρb e
p( z

h + 1
2 ), ρt = ρbe

p, p �= 0

where, ‘p’ is an index of exponential variation and for p = 0, the material becomes
homogeneous. Variation of material property across the thickness is shown in Fig. 1.

2.2 Governing Equations of Motion

A rectangular plate with dimensions a, b, h along x, y and z axes, respectively is
considered. Figure 2 shows the geometry of the plate with positive set of coordinate
axes.

z  

h/2 

y ( ) 

h/2 

a

h

x b 

Fig. 2 Rectangular plate with positive set of reference axes
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Fig. 3 Plate in plane strain condition with unit width

Under plane strain conditions (i.e., as y → ∞), the plate in Fig. 2 can be idealized
as the one shown in Fig. 3 with unit width in y-direction. The governing equations
of motion of the plate are given by,

∂σx

∂x
+ ∂τzx

∂z
= ρ(z)

∂2u

∂t2

∂σz

∂z
+ ∂τxz

∂x
= ρ(z)

∂2w

∂t2

(1)

The strains in the plate under 3D state of stress are given by,

εx = σx

E(z)
− ν

σy

E(z)
− ν

σz

E(z)
; εy = −ν

σx

E(z)
+ σy

E(z)
− ν

σz

E(z)
;

εz = −ν
σx

E(z)
− ν

σy

E(z)
+ σz

E(z)
;

γxz = G(z)τxz; γxy = G(z)τxy; γyz = G(z)τyz

(2)

But, for a plate in cylindrical bending (plane strain condition), we have,

εy ≈ 0; γxy ≈ 0; γyz ≈ 0 (3)

Now, from Eq. (3), stress–strain relations in Eq. (2) can be rewritten for a plane
strain case as,

⎧
⎨

⎩

σx

σz

τxz

⎫
⎬

⎭
= E(z)

(1 + ν)(1 − 2ν)

⎡

⎣
1 − νν0
ν1 − ν0
000.5 − ν

⎤

⎦

⎧
⎨

⎩

εx

εz

γxz

⎫
⎬

⎭
(4)

Strain–Displacement relations, assuming small deformations, are given by,

⎧
⎨

⎩

εx

εz

γxz

⎫
⎬

⎭
=

⎧
⎪⎨

⎪⎩

∂u
∂x
∂w
∂z

∂u
∂z + ∂w

∂x

⎫
⎪⎬

⎪⎭
(5)



6 K. S. K. Reddy and T. Kant

Now, from Eqs. (4) and (5), equations of motion in (1) can be written in terms of
displacements as,

E(z)(1 − ν)
∂2u

∂x2
+ E(z)(0.5 − ν)

∂2u

∂z2
+ 0.5E(z)

∂2w

∂x∂z

+(0.5 − ν)

{
∂u

∂z
+ ∂w

∂x

}
∂E(z)

∂z
=ρ(z)

C

∂2u

∂t2

E(z)(1 − ν)
∂2w

∂z2
+ E(z)(0.5 − ν)

∂2w

∂x2
+ 0.5E(z)

∂2u

∂x∂z

+
{

ν
∂u

∂x
+(1 − ν)

∂w

∂z

}
∂E(z)

∂z
=ρ(z)

C

∂2w

∂t2

(6)

Solution of these coupled differential equations (6) with variable coefficients is
systematically explained in the next section. Simply (diaphragm) supported boundary
conditions given by the following equations are considered in the present study.

At x = 0 and x = a; σx = 0;w = 0 (7)

3 Exact Solution

The solution for displacement field which satisfies Eq. (7) can be assumed in the
form of,

u(x, z, t) = h
∞∑

m=0

∞∑

r=0

Ar

(
2z

h

)r

cos
(mπx

a

)
eiωt

w(x, z, t) = h
∞∑

m=0

∞∑

r=0

Cr

(
2z

h

)r

sin
(mπx

a

)
eiωt

(8)

Substituting Eq. (8) into Eq. (6) and also using the orthogonality relations between
trigonometric functions, we have,

∞∑

r=0

⎡

⎣

{
E(z)(ν − 1)α2 + ρ(z)

C ω2
}
hAr + 4

h E(z)(0.5 − ν)(r + 1)(r + 2)Ar+2

+E(z)α(r + 1)Cr+1 + (0.5 − ν)
∂E(z)

∂z

{
αhCr + 2(r + 1)Ar+1

}

⎤

⎦

(
2z

h

)r
= 0

∞∑

r=0

⎡

⎣
4
h E(z)(1 − ν)(r + 1)(r + 2)Cr+2 +

{
E(z)(ν − 0.5)α2 + ρ(z)

C ω2
}
hCr

−E(z)α(r + 1)Ar+1 + ∂E(z)
∂z

{−ναhAr + 2(1 − ν)(r + 1)Cr+1
}

⎤

⎦

(
2z

h

)r
= 0

(9)

Equation (9) represents the recurrence relationship between coefficients of the
power series. These relations can be concisely expressed as,
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{
Ar+2

Cr+2

}

=
[

I2
I1

I3
I1

I4
I1

I5
I1

I7
I6

I8
I6

I9
I6

I10
I6

]
⎧
⎪⎪⎨

⎪⎪⎩

Ar

Ar+1

Cr

Cr+1

⎫
⎪⎪⎬

⎪⎪⎭

(10)

in which the coefficients of the matrix given by Eq. (10) are given by,

I1 =
{
4

h
(0.5 − ν)(r + 1)(r + 2)

}

; I2 =
{

(1 − ν)α2 − ρb

Eb

ω2

C

}

h

I3 =
{

−2p

h
(0.5 − ν)(r + 1)

}

; I4 = {−p(0.5 − ν)α}

I5 = −α(r + 1); I6 =
{
4

h
(1 − ν)(r + 1)(r + 2)

}

I7 = pνα; I8 = −I5

I9 = −I5 −
{

(−0.5 + ν)
(
α2

) + ρb

Eb

ω2

C

}

h; I10 =
{

−2p

h
(1 − ν)(r + 1)

}

Now, the surface boundary conditions for a transversely loaded plate are given
by,

At z = ∓h

2

σz = qz : E(z)
(1+ν)(1−2ν)

{
(1 − ν) ∂w

∂z + ν ∂u
∂x

} = qz

τzx = 0 : ∂u
∂z + ∂w

∂x = 0
(11)

where, qz is the intensity of transverse load in stress units.(
qz = q+atz = h

2 ; qz = q−atz = − h
2

)
.

Substituting Eq. (8) into Eq. (11), we obtain the boundary conditions given by,

At z = h

2

∞∑

r=0
{2(1 − ν)(r + 1)Cr+1 − ναhAr } = q+

Dt

R∑

r=0
{2(r + 1)Ar+1 + hαCr } = 0

At z = −h

2

∞∑

r=0

{
(2(1 − ν)(r + 1)Cr+1 − ναhAr )(−1)r

} = q−
Db

∞∑

r=0

{
(2(r + 1)Ar+1 + hαCr )(−1)r

} = 0

(12)

These boundary conditions together with the recurrence relations in Eq. (10), can
be written as,
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[M(ω)]4x4

⎧
⎪⎪⎨

⎪⎪⎩

A0

C0

A1

C1

⎫
⎪⎪⎬

⎪⎪⎭

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q+
Dt

0
q−
Db

0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(13)

where, elements of matrix ‘M’ contain polynomials in ‘ω’. For a plate undergoing
free vibrations, there are no tractions on the surfaces (q+ = q− = 0). In such a
situation, the boundary conditions in Eq. (11) become homogeneous and Eq. (13)
define the eigenvalue problem for the natural frequencies of FG plate, the nonzero
solution of which requires,

det(M) = 0 (14)

Equation (14) represents the characteristic polynomial of the eigenvalues. The
roots of the polynomial give the natural frequencies of the FG plate.

For the static analysis of FG plates, the recurrence relations in Eq. (10) can
be rewritten by substituting ‘ω’ equal to zero. Thus obtained recurrence relations
together with the non-homogeneous boundary conditions in Eq. (12) can be used to
find the coefficients (using Eq. (13)) in the power series fromwhich the displacement
field in Eq. (8) can be readily obtained. Stresses and strains can be obtained from the
definitions given by Eqs. (4) and (5) respectively.

4 Numerical Results and Discussions

4.1 Natural Frequencies (Free Vibration)

FG plate with different gradations (p) is considered in the study. Flexural mode
frequencies are calculated and are given in Table 1. Table 2 compares the frequen-
cies of FG plate computed from the assumption of plane strain to frequencies
computed from 3D elasticity theory using the complete set of governing equations
and constitutive relationships.

Non-dimensional frequency, λ = ωh
√

ρb

Gb
; = 0.3.

4.2 Stress Analysis of FG Plates in Cylindrical Bending

As static solution for cylindrical bending of FG plates is already available (Zhong
et al. 2010), detailed derivations are not presented here. But the extension of present
formulation for calculating stresses and deflections is straightforward as explained
at the end of Sect. 3. For the static analysis of FG plate in cylindrical bending,
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Table 1 Non-dimensional frequencies of FG plate in cylindrical bending for various gradations

a/h p = 0 p = 3

m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4

4 0.2735 0.8987 1.6486 2.4336 0.2282 0.7693 1.4360 2.1435

5 0.1807 0.6248 1.1909 1.8041 0.1499 0.5298 1.0276 1.5757

10 0.0474 0.1807 0.3801 0.6248 0.0389 0.1499 0.3188 0.5298

25 0.0076 0.0305 0.0677 0.1182 0.0063 0.0250 0.0557 0.0977

100 0.00048 0.00192 0.0043 0.0077 0.00039 0.00157 0.00354 0.0063

p = 5 p = 10

4 0.1794 0.6278 1.2096 1.8501 0.1018 0.3840 0.7979 1.2993

5 0.1171 0.4260 0.8501 1.3344 0.0656 0.2524 0.5365 0.8923

10 0.0301 0.1171 0.2525 0.4260 0.0166 0.0656 0.1452 0.2524

25 0.0049 0.0193 0.0432 0.0759 0.00266 0.0106 0.0238 0.0422

100 0.0003 0.00122 0.00273 0.00485 0.00016 0.00067 0.00149 0.00266

Table 2 Variation of fundamental frequency λ(1,1) of FG plates with aspect ratio (p = 3)

Solution b/a a/h

4 5 10 25 100

3D Elasticity† 1 0.4275 0.2865 0.0769 0.0126 0.00078

2 0.2803 0.1852 0.0485 0.0078 0.00049

5 0.2366 0.1556 0.0405 0.0066 0.00041

25 0.2285 0.1502 0.0390 0.0063 0.00039

40 0.2283 0.1500 0.0390 0.0063 0.00039

50 0.2282 0.1499 0.0390 0.0063 0.00039

Plane Strain (m = 1) ∞ 0.2282 0.1499 0.0389 0.0063 0.00039

†Reddy and Kant (2012)

the equilibrium equations in (1) can be modified to account for the body forces
while discarding the inertia forces. The static equilibrium equations under sinusoidal
loading are solved and the results (plane strain) are presented in Table 3. The non-
dimensional quantities and loads used in the present plane strain formulation are
given below.

q(x) = q+ = q0 sin
(πx

a

)
; q− = 0;

w = w
(a

2
, z

)100Eth3

q0a4
; σ xx = σxx

(a

2
, z

) h2

q0a2
; τ xz = τxz(0, z)

h

q0a
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Table 3 Displacements and stresses for an FG plate
Et
Eb

a/h = 2 a/h = 5 a/h = 10 a/h = 100

Transverse displacement w
(
a
2 , h

2

)

5 42.3673 27.8874 26.0932 25.5166

10 59.507 39.9638 37.4479 36.6334

20 82.7782 57.0379 53.6225 52.5106

40 113.811 80.7618 76.2685 74.7989

Normal stress σ xx

(
a
2 , h

2

)

5 1.1897 1.0506 1.0337 1.0282

10 1.4993 1.3162 1.2925 1.2848

20 1.8781 1.6443 1.6126 1.6023

40 2.3349 2.0461 2.0057 1.9924

Maximum shear stress τ xz(0, z)

5 0.4967 0.4960 0.4962 0.4963

10 0.5251 0.5176 0.5169 0.5167

20 0.5620 0.5471 0.5454 0.5448

40 0.6064 0.5845 0.5817 0.5807

5 Conclusions

Analytical solution for the free vibration frequencies of FG plates based on 2D
elasticity theory is obtained by power series method considering the plane strain
condition of the plate. Frequencies of exponentially graded plate are computed for
various gradations of the plate and these frequencies should serve as benchmark
results. For the sake of completeness, static deflections and stresses in the plate are
also calculated although they are already available in earlier reported studies.
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