
Independent Verification and Validation
of Aero Engine Propulsion System
Software

Sonal Shekhawat , Arshad Iqbal , Usha Srinivasan ,
and Sreelal Sreedhar

Abstract With the evolving technology and extensive software usage, aircrafts have
become a software embedded flying contrivance. Navigation system, landing gear
system and propulsion system are some of the major subsystems of the aircraft.
Propulsion system is one of the vital sub-systems with demarcated purpose to propel
the aircraft. Earlier, the control unit of the engine was completely controlled by
mechanical means but with the technical advancements it has been automated by
software embedded control unit. Software has become so important these days that its
safety, complications and risks cannot be ignored. The embedded software in digital
engine control unit is a safety critical software as its failure can lead to hazardous state
that can cause loss of property, damage to environment and even loss of human life.
Therefore, intensive care needs to be takenwhile ensuring the safety and reliability of
such software. The traditional testing approach needs to be fortified with more firm
and rigid standardized methodology in order to diminish the probability of failure of
the system. This paper throws light on the Independent Verification and Validation
process followed to ensure safety, reliability and robustness of aero engine propulsion
system software.

Keywords Verification and Validation · DO-178B · Traceability · Static testing ·
Dynamic testing

1 Introduction

Over recent years, software has gained its importance in more or less every field of
engineering. Across all the disciplines including aviation systems, engineers rely on
software these days for seamless interaction with the hardware. Various subsystems
such as aircraft propulsion system, aircraft structural system, air data andflight instru-
mentation, navigation system and communication system constitute the complex
machinery known as aircraft [1].

S. Shekhawat (B) · A. Iqbal · U. Srinivasan · S. Sreedhar
Gas Turbine Research Establishment, DRDO, Bangalore, India
e-mail: sonalshekhawat209@gmail.com

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
G. Sivaramakrishna et al. (eds.), Proceedings of the National Aerospace Propulsion
Conference, Lecture Notes in Mechanical Engineering,
https://doi.org/10.1007/978-981-19-2378-4_13

199

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-2378-4_13&domain=pdf
http://orcid.org/0000-0003-3994-6699
http://orcid.org/0000-0002-1403-6392
http://orcid.org/0000-0003-2769-6194
http://orcid.org/0000-0001-8640-7298
mailto:sonalshekhawat209@gmail.com
https://doi.org/10.1007/978-981-19-2378-4_13


200 S. Shekhawat et al.

Aircraft propulsion system is one of the vital subsystems to propel the aircraft.
Propulsion means to push or to drive forward. It works on Newton’s 3rd law of
motion, which states that for every action there is an equal and opposite reaction. To
drive the aircraft in the preferred direction, adequate amount of thrust is required to
be generated in the opposite direction which is attained by an engine.

As per the various implementations and principles followed, different kinds of
engines can be used for aerospace propulsion system such as piston engine and gas
turbine engine. The piston engine works on the principle of converting the pressure
into rotating motion using pistons, whereas the gas turbine engine uses the pressure
generated from fuel ignition to produce thrust. The gas turbine engines have got
quite a few advantages over piston engine such as very high power to weight ratio
and much lighter weight [2]. It follows the principle of Brayton’s cycle and has
got three main sections, namely compressor, combustor and turbine. Each of these
sections has a well-delineated purpose such as compressing the incoming air, air/fuel
mixture, ignition timing, idle speed and energy extraction from the heated air to turn
the compressor [3].

Before the introduction of electronic control units, each of the above-mentioned
functionality was accomplished with mechanical coupling and control. However, as
the avionics system evolved, the usage of software has secured a vital footing by
enhancing system’s reliability and performance.

In today’s aircraft design, Digital Electronic Control Unit (DECU) is designed
with the embedded software to autonomously control the engine all through its oper-
ating range in both normal and off-normal conditions. In case of mechanical equip-
ments, each operation needs to be executed mechanically by the pilot, which might
result in distraction and lesser attention toward another prominent task.

During a risky situation at 35,000 feet, pilot cannot be expected to take the
complete charge of the mechanical control system. For that matter, DECU decreases
pilot’s workload by providing self-operating, self-monitoring, redundant and failsafe
setup.With all these advancements in the airborne systems technology, the aircraft has
become a flying machine, controlled and monitored by complex software. Avoiding
aircraft accidents and providing air safety is the need of the hour of aviation system
development. In this context, the safety critical software needs to have a very high
assurance of the quality with respect to system’s safety, reliability and security which
is ensured by Independent Verification and Validation (IV and V).

The Patriot missile system shutdown, Ariane five rocket explosion, Ethiopian
Airlines Flight 302 crash and Lion Air Flight 619 crash are some of the known
examples from the past where software errors have certainly led to loss of irrecov-
erable human life and critical missions. This paper talks about the IV and V process
followed to ensure the exactitude of safety critical embedded software which in turn
assures its quality, reliability and safety.



Independent Verification and Validation … 201

2 Why IV and V?

Undeniably, software is one of the most intricate man-made piece. Unlike hardware,
software errors are not realistically visible. Software does not follow any proved laws
of physics, so as to predict the type and the consequences of the error. Some bugs
still remain in the software even after meticulous and rigorous testing. Verification
and Validation is often mistaken as testing. Testing is only a part of V and V process
and not the V and V as a whole.

The development team also tests the software before delivering it, then, what is
the need of an Independent V and V activity? Developer works with constructive
mind-set, whereas the verifier works with a destructive mind-set. While developer
needs out-of-the-box thinking and creates lens in finding better ways to optimize
the solution, testing needs patience, discipline and relentlessness in doing repetitive
work.

Every human being thinks that he is right and developer is no exception to that.
With a default attitude to authenticate the efforts, the developer articulates the test
cases which are adequate to demonstrate the intended functionality. On the contrary,
the independent verifier creates a wave of negativity to disagree with the developer’s
testing regarding the correctness and completeness of the envisaged objectives.

What is IV and V? IV and V stands for Independent Verification and Valida-
tion. Verification ascertains the correctness of the software in terms of the process
followed to ensure the intended functionality. Validation guarantees the mapping of
the software functionality to the user requirements and assures the completeness of
the software [4]. As per Boehm: Verification: “Are we building the product right?”
Validation: “Are we building the right product?” [5].

Moreover, an independent test resource would rule out any misunderstanding
in the requirement by reviewing, analyzing and testing the software without any
preconceived notion about the software, thereby enhancing the confidence in the
delivered product.

3 Do-178b

To ensure the global acceptance of any product, the development process should
adhere to some standard guidelines which are accepted worldwide. A standard is a
commonly agreed upon technical document which is formulated to provide uniform
guidelines.All the stakeholders of a specificprocess, product or service come together
to form a standard [6].

Accomplishment of quality goals, improved software management, overcoming
the schedule and budget constraints are some of the potential benefits attained by
the usage of standards. There are various standards laid out for different safety crit-
ical system software such as automotive standard—ISO 26262, railway standard—
CENELECEN 50,126, nuclear standard—IEC 60,880 and medical standard—IEC



202 S. Shekhawat et al.

Table 1 Categorization of software as per criticality levels

Criticality level Design assurance levels Examples

When software failure results in
catastrophe events

Level A Flight and engine control system

When software failure leads to
hazardous or severe major failure
conditions of aircraft

Level B Flight management system

When software failure leads to
major failure condition of the
aircraft

Level C Collection of internal built-in test
equipment (BITE) faults

When software failure leads to
minor failure conditions of the
aircraft

Level D Flight history, keyboard monitor
command

When software failure does not
hamper the operational capability
of aircraft or pilot workload

Level E Entertainment equipment

62,304. Similarly, DO-178B is an aerospace standard for airborne systems and soft-
ware considerations. It categorizes the software in different levels based on the failure
conditions and the criticality levels of the software as given in Table 1.

Each level of the software has its own specific set of objectives defined. The focus
of this paper is toward the level A objectives mandated for aero engine propulsion
system software.

4 Software Verification

Software verification is an integral process that is applied throughout the entire
software life cycle. It starts in the planning phase and goes all the way through
product release and even into maintenance [7]. As per the glossary of DO-178B,
“Verification is the evaluation of the results of a process to ensure correctness and
consistency with respect to the inputs and standards provided to that process”[8].

It ensures that uncovered and unidentified errors do not propagate to the next step
of the activity, thereby reducing the amount of work that the developers need to redo
in case the error propagates to the next level. A combination of reviews, analysis
and thorough testing satisfies the objectives of software verification which will be
elaborated further.



Independent Verification and Validation … 203

4.1 Review

Review is a holistic processwhich scrutinizes the activity through a different perspec-
tive and provides a qualitative assessment of the correctness [8]. It helps uncovering
the defects and errors at early stage. Reviewing an activity is carried out at every
stage of the software development life cycle, beginning from requirement gathering
and all the way through design, development and testing. The cost incurred to rectify
the defect is inversely proportional to the software development detection phase.
After evaluating multiple projects, Barry Boehm [5] approximated the cost impact
analysis as depicted in Fig. 1 [9].

The considerable increase in the cost encountered to detect and resolve the bugs
during the requirements phase to testing phase can heftily increase the software
expenditure.

The robust review process across the software development life cycle (SDLC)
enhances efficiency and confidence in the product being delivered. There are various
review activities which are carried out at different stages such as code review, design
review and requirements review to ensure that the developed software meet its
requirements and has been represented as per the agreed standards.

4.1.1 Document Review

It involves reviewing all the SDLC artifacts such as software requirements document
(SRD) and software design document (SDD). Document review ensures readability,
understandability, completeness and traceability with respect to its SDLC counter-
parts. Apart from ensuring the bidirectional traceability across SDLC, review also
handles the assessment of compliance to its corresponding standards.

0

20

40

60

80

100

120

140

160

180

200

Requirements Design Code Development Test Acceptance
Test

Deployed

Defect detection and correction phase

N
or

m
al

ise
d 

C
os

t t
o 

fix
 th

e 
er

ro
r

Fig. 1 Increase in cost to fix during SDLC



204 S. Shekhawat et al.

4.1.2 Code Review

In order to assure the completeness and accuracy of the software, the source code
is reviewed with respect to the low-level requirements in code review. It makes
sure that the coding standards followed in the code are in compliance with software
design plan (SDP). Reviewing the code also ensures the bidirectional traceability
between the low-level requirements and code. After each review, problem reports are
generated by incorporating all the review results and shared with the developer team
for rectification. This iterative process continues until the code becomes bug-free.

4.2 Analysis

As per DO-178B, analysis concentrates on the obtained results of the software devel-
opment and software verification. It provides repeatable evidences of correctness [8].
There are various types of analysis performed during the safety critical software life
cycle. Analysis not only inspects the completeness and the intended task of the soft-
ware but also scrutinizes its association to the other components in the aero engine
system [8].

In order to report repeatable evidences of the correctness, analysis should be
perfectly documented and maintained. The procedure followed to carry out the anal-
ysis should have well-defined purpose, criteria and all the other related requirements
to identify the analysis methodology and data items to be analyzed. Detailed instruc-
tion set is required to perform analysis. The artifacts generated as a result of analysis
procedure are further scrutinized and corrective actions are suggested. There are
various kinds of analysis which are performed as per the requirements [7]:

(1) Worst case execution analysis,
(2) Memory margin analysis,
(3) Link and memory map analysis,
(4) Load analysis,
(5) Interrupt analysis,
(6) Math analysis,
(7) Errors and warning analysis,
(8) Partitioning analysis.

4.3 Testing

4.3.1 Static Testing

Static testing is a testing technique which detects the defects without having the code
executed. This testing is also known as non-executable testing as code execution is



Independent Verification and Validation … 205

not required for this testing. Static testing comprises of software inspection, code
walkthrough and static analysis.

IEEE defines the software inspection technique as: a visual examination of a
software product to detect and identify software anomalies, including errors and
deviations from standards and specifications. Inspections are peer examinations led
by impartial facilitatorswho are trained in inspection techniques. Thegoal of software
inspection is to detect the software flaws by scrupulous peer examination, whereas
code walkthrough aims at evaluating the source code file, detecting bugs, omissions
and discrepancies. The output of codewalkthrough process documents the anomalies
and corresponding action items [10].

Static analysis is a procedural analysis of detecting anomalies, checking code
complexity and analyzing data flow in the source code. It is usually performed by
using tools like data flow analyzers, rule checkers and complexity analysis tools. It
analyzes the complexity of the code by computing a variety of metrics which can be
used to enforce appropriate standards. Data flow analysis analyzes the action on the
variables in the source files and reports any kind of problem with the usage.

4.3.2 Dynamic Testing

Dynamic testing is a testing approach which focuses on testing the dynamic behavior
of the software. This testing needs the code to be executed; hence, it is termed as
executable testing. Dynamic testing being implemented at a later phase of the SDLC,
its associated cost impact on error addressal is relatively high. In this methodology,
the source code is probed by providing various inputs to the software to ensure the
reliability and robustness of the software.

4.3.3 Unit Testing

In unit testing, individual modules of the source code are tested at component level.
Test Cases are designed and executed to ensure the accurate functionality of each
module. It tests each module independently against the expected results as per the
code and ensures that the generated results; i.e., the actual results are identical to the
expected results. Hundred percent structural coverage, dead code elimination and
deactivated code analysis are accomplished by means of unit testing.

4.3.4 Software–Software Integration Testing

In Software–software integration (SSI) testing, independent modules are integrated
and tested for the apt functionality. It uncovers all the errors which have been intro-
duced as a result of the integration of the modules. It aims at testing the interface
between the modules. To perform the integration testing, a well laid-out plan should
be in place which includes the designing of test cases, test scenarios and test scripts



206 S. Shekhawat et al.

System 

Requirement 

High Level 

Software 

Requirements

Low Level

Software 

Requiremen

Source 

Code

Test 

Cases 

Test 

procedure

Test 

Results 

Fig. 2 Bidirectional traceability

followed by the execution of test cases. The detected defects are further traced and
documented, and this continues till the source code is completely tested.

4.3.5 Hardware–Software Integration Testing

Once the application software is ready, it is imported on the hardware.Hardware–soft-
ware integration (HSI) testing aims to expose the errors which occur when software
is executed in the target operating environment. Different kinds of tests are executed
to certain the robustness and reliability of the system. Various dynamic errors such
as control loop behavior, interrupt handling, timing, memory faults are uncovered
during HSI testing [7].

5 Traceability

As per DO-178B, traceability is the evidence of the association between items, such
as between process outputs, between an output and its originating process or between
a requirement and its implementation [8].

Establishing traceability across SDLC is crucial in order to guarantee that no
unwanted functionality is introduced in the code. Traceability ensures that every
low-level software requirement is traceable to some system requirement. Traceability
verification at each stage starting from system requirements to test results assures that
only the intended requirements have been implemented. Bidirectional traceability as
shown in Fig. 2 assures that no unwanted task has been coded in the software.
Traceability, once established, gives the confidence that each and every requirement
specified in the SRD has been implemented in the source code. If some changes take
place, traceability helps to detect impacted modules or data that need to be verified
again.

6 Conclusion

The invention of aircraft with demarcated subsystems, such as landing gear, propul-
sion system, navigation system and telemetry system, is an extremely intricate
research that humans have ever attempted. The convoluted functionality of the aircraft
propulsion system depends on the complex gas turbine engine controlled by crucial



Independent Verification and Validation … 207

software embedded DECU which is the concealed brain behind the safe travels.
Ensuring the quality, reliability, impregnability and security of such safety critical
software is mandatory. Propulsion system, being one of the most intricate function-
alities of the aircraft system, contributes to the criticality and complexity of the
embedded software. In this software reliant era, performing IV and V activity has
become a must to muddle through the exponential increase in the complexity and
criticality of the source code and rapid technology changes to accommodate the
capability enhancement. Would any one risk the human life to a complex machine
after knowing that it could have been subjected to another perspective before flying
but hadn’t? [11].

IV and V is that another perspective which brings the destructive view into the
picture to track down the design shortcomings and code bugs by diligently reviewing
and analyzing the results. IV and V gives the confidence about the correctness of
the software being deployed and makes sure that the final software is meeting user
requirements [12]. It ensures that the software is reliable and serves no extra func-
tionality, thereby eliminating the risk of failure. It is an efficacious risk alleviation
strategy that effectively exposes the faults and looks out for the opportunities for
improvement throughout the SDLC [13].

IV and V also results in significant reduction in overall cost of the project savings
by augmenting the odds of exposing the high-risk errors early in SDLC [14].

An oversight is an open invitation to safety risks, vulnerable data, security issues
and fatal errors that are sufficient enough to break the system down causing financial
loss, mission failure, loss of irrecoverable human life and atrocious destruction. A
well-defined IV and V when in place serves as a mitigation strategy to avoid these
disastrous scenarios and to confidently deploy the safety critical software in the
airborne systems.

Acknowledgements The author expresses the gratitude to Director GTRE for his consent to
demonstrate this work. The author would like to thank Mrs. Pratibha Menon Sc “D,” for her
continuous moral support and encouragement in pursuing this activity.

References

1. http://assets.press.princeton.edu/chapters/s9497.pdf
2. https://www.differencebetween.com/difference-between-gas-turbine-engine-and-vs-recipr

ocating-engine-piston-engine/
3. https://www.cast-safety.org/pdf/3_engine_fundamentals.pdf
4. Pressman RS, Software engineering, a Practitioner’s approach
5. Boehm B (1981) Software engineering economics. Prentice Hall, pp 463–365
6. https://www.cen.eu/work/endev/whatisen/pages/default.aspx
7. Rierson L, Developing safety-critical software: a practical guide for aviation software and

DO-178C
8. DO-178B Document/RTCA DO-178B (EUROCAE ED-12B)
9. https://pdfs.semanticscholar.org/d236/2d97f419c29c5ad78df4f79d4e7061c19155.pdf
10. Khurana H (2016) Software testing. Pearson India Education Services Pvt. Ltd., pp 14–24

http://assets.press.princeton.edu/chapters/s9497.pdf
https://www.differencebetween.com/difference-between-gas-turbine-engine-and-vs-reciprocating-engine-piston-engine/
https://www.cast-safety.org/pdf/3_engine_fundamentals.pdf
https://www.cen.eu/work/endev/whatisen/pages/default.aspx
https://pdfs.semanticscholar.org/d236/2d97f419c29c5ad78df4f79d4e7061c19155.pdf


208 S. Shekhawat et al.

11. Lewis RO (1992) Independent verification and validation—a lifecycle engineering process for
quality software. A—Wiley Interscience Publication, pp 3–10

12. https://www.nasa.gov/centers/ivv/services/whativv.html
13. https://panorama-consulting.com/wp-content/uploads/2016/07/Independent-Validation-Verifi

cation.pdf
14. https://www.belmero.com/2017/06/the-benefits-of-ivv/

https://www.nasa.gov/centers/ivv/services/whativv.html
https://panorama-consulting.com/wp-content/uploads/2016/07/Independent-Validation-Verification.pdf
https://www.belmero.com/2017/06/the-benefits-of-ivv/

	 Independent Verification and Validation of Aero Engine Propulsion System Software
	1 Introduction
	2 Why IV and V?
	3 Do-178b
	4 Software Verification
	4.1 Review
	4.2 Analysis
	4.3 Testing

	5 Traceability
	6 Conclusion
	References




