
DLoader: Migration of Data from SQL
to NoSQL Databases

Kanchana Rajaram , Pankaj Sharma, and S. Selvakumar

Abstract Data is increasing exponentially in the modern world which requires more
proficiency from the available technologies of data storage and data processing. This
continuous growth in the amount of structured, semi-structured, and unstructured
data is called as big data. The storage and processing of big data through tradi-
tional relational database systems are not possible due to increased complexity and
volume. Due to improved expertise of big data solutions in handling data, such as
NoSQL caused the developers in the previous decade to start preferring big data
databases, such as Apache Cassandra, MongoDB, and NoSQL. NoSQL is a modern
database technology designed for fast read and write operations and provides hori-
zontal scalability to store large amount of voluminous data. Large organizations face
various challenges to shift their relational database framework to NoSQL database
framework. In this paper, we proposed an approach to migrate the data from a rela-
tional database to the NoSQL database. We have specifically done transformation
for Cassandra and MongoDB from MySQL database. The experiments show that
the proposed approach successfully transforms the relational database to a big data
database, and the performance analysis of such transformed databases shows that
Cassandra database requires less storage space and offers a better performance.

Keywords Big data · Horizontal scalability · Relational database ·
Transformation · Cassandra ·MongoDB

K. Rajaram (B)
Department of Computer Science and Engineering, Sri Sivasubramaniya Nadar College of
Engineering, Chennai, Tamil Nadu, India
e-mail: rkanch@ssn.edu.in

P. Sharma · S. Selvakumar
IIIT Una, Una, Himachal Pradesh, India
e-mail: pankajk27897@gmail.com

S. Selvakumar
e-mail: director@iiitu.ac.in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
A. Kumar et al. (eds.), Proceedings of the International Conference on Cognitive
and Intelligent Computing, Cognitive Science and Technology,
https://doi.org/10.1007/978-981-19-2358-6_19

193

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-2358-6_19&domain=pdf
http://orcid.org/0000-0002-2591-2482
mailto:rkanch@ssn.edu.in
mailto:pankajk27897@gmail.com
mailto:director@iiitu.ac.in
https://doi.org/10.1007/978-981-19-2358-6_19

194 K. Rajaram et al.

1 Introduction

Relational databases have been the top choice of organizations in the last decade for
storing, processing, and analyzing the data generated in the organizations. Relational
databases store structured data and support structured query language (SQL) to access
the database [1]. When the data is in structured format and of low volume, relational
databases can be comfortably used. Even the unstructured or semi-structured data can
also be stored in relational databases after using ETL tools to convert into structured
format. However, recently, the data is increasing at an exponential rate having huge
volume, high velocity of data generation, varied variety of the data as big data [2].
With this, it has become almost impossible for relational databases to store and
process this huge amount of big data generated by large organizations and social
media. Moreover, social networking and cloud computing paradigms have become
popular which require data stores to manage massive amount of data generated
per second. In particular, the cost of storing and querying big data from relational
databases is very high, and they cannot serve the requirement of millions of users at
the same time.

The big data storage and processing are not much suitable with relational databases
as it has structured, semi-structured, and unstructured data, whereas relational
databases can store only structured data and provide very little support to unstructured
and semi-structured data [3]. Considering the challenges of big data for relational
databases, the modern larger organizations which have large data storage require-
ments are rapidly switching from existing relational databases to NoSQL databases.
NoSQL organizes data in different formats such as key-value, columnar, documents,
and graphs. Cassandra stores data in columnar format, which offers considerably fast
write operations [4], whereas MongoDB [5] stores data in document format. Every
data type of NoSQL database uses different data structures as per the requirements.

The successful handling of big data complexity is a great challenge for the conver-
sion of relational databases to NoSQL databases. NoSQL databases are designed
according to the application specific access patterns and queries without using a
normalization process, and they do not support any join operation and foreign
or primary key relations. It is challenging for the organizations to migrate data
from the relation databases to NoSQL databases because they completely work
on different technologies. To overcome this problem, we have proposed a frame-
work, namely DLoader, to migrate data from relational database such as MySQL
database to NoSQL databases such as Cassandra and MongoDB. The proposed
approach DLoader involves extraction of data from the MySQL database, prepro-
cessing the data by applying transformations and standardizations on the data, and
finally mapping the columns in the MySQL tables into the fields of NoSQL databases.

The rest of the paper is structured as follows: Review of the related work is
presented in Sects. 2 and 3 describes the proposed work; Sect. 4 describes about the
experimentation with Cassandra and MongoDB. Lastly, Sect. 5 concludes the work
and suggests a future work.

DLoader: Migration of Data from SQL to NoSQL Databases 195

2 Literature Review

NoSQL is a modern database technology to store and process big data. Most of
the utilities developed were developed for converting one form of SQL database
to another SQL database, and no specific utility is available for NoSQL to NoSQL
conversion. A data adapter system was proposed to promote hybrid database architec-
ture including both SQL and NoSQL [6]. Many frameworks have been developed to
solve the data migration problem with a different solution, characteristics, and prop-
erties which migrates data from one NoSQL database to another but not between SQL
to NoSQL [7]. It provided algorithm migration and migration schemes to migrate data
between NoSQL databases in actual operating environment. It is a challenging task
for business organizations to migrate or transform their data from existing relational
database to NoSQL databases due to the complexity in relational data.

An approach consists of two modules: Data transformation and data cleansing
modules were proposed which transforms relational database to big data database
[8]. To handle the complexity of automatic transformation of existing relational
database into a NoSQL database, a bi-fold transformation consisting of schema-to-
schema and data-to-data transformation approach was proposed which dealt with
heterogeneous and complex data [9]. Heterogeneous data exchange and conversion
of data across kinds of database systems are achieved through relationship schema
mapping [10]. It specifically focused on exchanging XML heterogeneous, solving
field attribute changing during migration problem.

A study revealed that NoSQL is faster than RDBMS in case of big data. A method-
ology was presented for data migration from MySQL to MongoDB as NoSQL
database [11]. A study evaluated the performance of data insertion and retrieval
speeds up by making comparison between MongoDB as NoSQL and MySQL as a
relational database which showed NoSQL database is faster than the MySQL consid-
ering the parameters used in the study for huge amount of data [12]. An approach
that used data and query features to migrate data from relational to NoSQL databases
preserved the features in the source data in the relational database and queries for
accessing the data on the source data as well for arranging the data in the target
database [13, 14]. This system works for all NoSQL databases but requires meta
data information of the source and target databases.

NoSQL layer can also be used as an interface resides between the source database
and application to migrate the data between relational to NoSQL without changing the
application code which gives high performance for MongoDB [15]. Other approaches
include data adapter approach which integrates relational database and NoSQL
databases which support hybrid database architecture. Data may not be consistent in
this approach always [16]. Content management system for schema de-normalization
works with the Hadoop framework [17]. In a study, document-oriented data schema
was proposed covering all data types in databases, further it overcomes the issue
of managing the relationships of a complex database. Two stages of the approach
include designing the document-oriented data schema and migrating the ER model
to the document-oriented data schema [18]. Data migrated from relational to NoSQL

196 K. Rajaram et al.

data models or between different NoSQL platforms needed to be validated in order to
find the errors during transformation during migration of the data. Data can be vali-
dated using denormalized schema structures and bloom filters, and other approaches
can also be implemented to validate the data [19].

3 Proposed Work

The concepts of relational databases and NoSQL databases and the differences
between these two databases are discussed in the next two sub-sections. Thereafter,
the proposed approach for transforming the data from relational databases to NoSQL
databases is elaborated.

3.1 Relational Databases

Relational or structural databases are based on relational model. Data stored in these
tables is related and can be accessed through the relationships between them. The
relationships can be one-to-one, one-to-many, and many-to-many. Data stored in the
relational databases is structured only. Relational databases consist of tables, and
the tables consist of rows and columns. There can be number of rows in a table,
and all the rows are of same type that contains different data. Relational database
management system (RDBMS) is used for creation and management of the relational
databases. Each row in a table is unique. There are mainly two types of keys in
RDBMS: primary key and foreign key. Primary key consists of one or more columns
which can uniquely identify all the records in a table, and foreign key consists of
one or more columns of a table that refers to the primary key of another table.
Relational databases also follow ACID properties (atomicity, consistency, isolation,
and durability) for making transactions. For querying the data from the relational
models, structured query language (SQL) is used. These databases should have a
predefined schema which is not easy to alter if structure of the data coming into the
database changes with time. Hence, schema must be strictly designed keeping the
future requirements in the mind.

3.2 NoSQL Databases

NoSQL databases have been designed to facilitate big data storage and processing.
NoSQL databases store data in various formats such as key-value, column store, docu-
ments, and graphs. They have their own query mechanism and do not have any specific
query language. Key-value databases consist of items where each item contains keys
and values. A value can be simply retrieved by referring its key. Columnar databases

DLoader: Migration of Data from SQL to NoSQL Databases 197

Fig. 1 SQL to NoSQL data migration

consist of tables which consist of rows and dynamic columns. They have flexible
schema and number of columns can be increased with time without creating a new
schema. The column names need not be predefined in NoSQL databases, and hence,
the structure is not fixed. Columns in a row are kept in a sorted order according to
their keys which include partition keys and clustering keys. Document type NoSQL
databases store data in documents which is same as JSON objects. The collection
of documents is called a collection. Each document contains key-value pairs where
value can be of different types. Graph databases store data in nodes and edges. Nodes
generally hold information about entities, whereas edges store information about the
relationship between the nodes. NoSQL databases have denormalized structure as
they do not have primary and foreign key concept and hence do not support join
operations. They provide features like horizontal scalability, data replication, data
availability, and data consistency at low cost. With the increasing amount of data, the
NoSQL database can be easily scaled, and more data storage can be accommodated
[20].

3.3 SQL to NoSQL Transformation

Data stored in the relational database in the tables must be mapped to NoSQL database
tables column to column. We have used Spark framework for migrating data from
SQL to NoSQL database [21]. Hadoop cluster is serves as a middle layer between
the source and target database. NoSQL database such as Cassandra also supports
collection data types such as set, map, and list, and tables are denormalized, so
columns in the SQL database can also be mapped to collection data types. The
detailed process is briefed in the further sub-sections. The steps in migrating the data
from a relational database to a NoSQL database are shown in Fig. 1.

3.3.1 Data Loading

Data in the relational database stored in MySQL holds a specific schema in which
various tables are linked through primary and foreign key references. Each column
in a table has a defined data type. We have made use of timestamps to get the data

198 K. Rajaram et al.

from the MySQL database. Timestamp is used to make sure that only recently added
data gets retrieved. JDBC is used to establish connection with the source database.
The data from the MySQL database is loaded into the Hadoop distributed file storage
(HDFS) [22] using Spark SQL framework. HDFS is a clustered storage consisting
of one name node and N data nodes. This Hadoop cluster acts as a middle layer
between the source database (MySQL) and the target database (NoSQL). SQL like
queries can also be made on the data in the Spark data frames by creating temporary
tables by using Spark SQL. Spark SQL also supports join and aggregate functions as
supported in the SQL. The incoming data form the source database is dumped in the
HDFS keeping the schema, the same as that of source database. Data is temporarily
stored in the HDFS as staging tables before applying processing the source data.

3.3.2 Data Transformation and Mapping

HDFS holds large amount of data dumped from the relational databases (MySQL)
in delta file format without altering the schema of the source database. This data
is loaded in a data frame of the Spark SQL framework, one table at a time. Trans-
formations are applied on the table data contained in the data frame, keeping the
target database schema in mind. Since the target NoSQL database does not support
joins, the MySQL source tables are denormalized to enable migration of data from
the relational database. Every column of a table in the source database is trans-
formed according to the column schema of the target database. Different concepts
in relational databases are mapped to NoSQL databases as shown in Fig. 2.

Transformation includes changing columns names, changing data type of columns
according to target database, altering the tables by adding, or removing the columns
according to the target database schema. Standardization includes ensuring consistent
date formats, uniform format for name values, uniform abbreviations, for example,
for gender column value, consistent format for mobile number values, etc. Finally,
the transformed data frame is loaded into a particular table of target NoSQL database
in append mode using Spark SQL. The algorithm for preprocessing and mapping the
source data to target is given below:

Algorithm 1 Data preprocessing and mapping

Algorithm Data preprocessing mapping
Input: Relational database
Output: NoSQL database
1. Establish a connection with source database.
2. Create table object for source.
3. Dump the table objects in the HDFS storage.
4. Load the data from all the tables into HDFS storage
5. For each column of each of the tables, if transformation rule
is applicable: Transform the columns according to the target table
columns.
6. Standardize the content of the columns.
7. Map the HDFS table objects into target table objects.
8. Map the HDFS column objects into target column objects.

DLoader: Migration of Data from SQL to NoSQL Databases 199

Fig. 2 Concept mapping between relational database and NoSQL database

9. Construct each target table.
10. Construct target object of each column.
11. Select partition key and clustering key for each target table..
12. Compare partition key of the target tables to keep track of the
duplicate records.

200 K. Rajaram et al.

4 Experimentation

For experimentation purpose, a test bed comprising of a HDFS-based cluster with
a name node and three data nodes has been set up. The name node is a Intel Xeon
server 3.3 GHz, 32 GB RAM, 4 Cores with 2 TB HDD, and the data nodes are Intel
i-4 core workstations with 16 GB RAM and 1 TB HDD. Our own dataset has been
generated consisting of immunization data related to children of Tamil Nadu state.
The average population of Tamil Nadu state is 7.7 crore in 2020 [23], and around
30% of them are children. The number of children approximately in a state could
be 2.3 crores. The immunization database consists of tables for storing details of
children, their mothers, and immunization details. The data is generated using a tool
called DbGen [24] and using MS Excel. DbGen is a Windows-based tool that can be
configured based on the schema to generate data.

The immunization data in the MySQL database is migrated using our proposed
approach of DLoader into two NoSQL databases such as Cassandra and MongoDB.
For a given number of children records, the associated mother records and immu-
nization records are also considered to be migrated from the source database. When
loading the same number of records, the database sizes of Cassandra and MongoDB
are different. The number of records used in the dataset along with the varied size of
Cassandra and MongoDB databases are shown in Table 1. The number of children
records has been varied from 10 lakh to 2.5 crores. It is observed that Cassandra
offers good compression of data and stores the same number of records in the source
database in storage space of 41% lesser when compared to MongoDB.

As a second experiment, the performance of both NoSQL databases is analyzed in
terms of response time and throughput. The load testing has been done using Jmeter
tool [25]. The following two queries have been considered.

Q1. Retrieve the details of a particular child whose child_id is given.

Table 1 Varied sizes of NoSQL databases for storing given relational data

No. of
children

Cassandra DB MongoDB

Child
master
DB Size
(GB)

Mother
master
DB size
(GB)

Imm.
DB size
(GB)

Total
DB
size
(GB)

Child
master
DB Size
(GB)

Mother
master
DB size
(GB)

Imm.
DB size
(GB)

Total
DB
size
(GB)

1,000,000 0.07 0.1 0.1 0.3 0.07 0.2 0.2 0.5

2,000,000 0.1 0.3 0.1 0.7 0.1 0.4 0.3 0.9

3,000,000 0.2 0.5 0.2 1.0 0.2 0.7 0.7 1.3

5,000,000 0.4 0.9 0.4 1.5 0.3 1.0 1.0 2.1

10,000,000 0.9 1.8 0.8 3.5 0.7 2.0 2.0 4.7

15,000,000 1.2 2.7 1.2 5.0 1.1 3.0 3.0 7.1

20,000,000 1.6 3.6 1.8 6.8 1.3 4.0 4.0 9.3

25,000,000 2.1 4.5 2.0 8.0 1.8 5.0 5.0 11.8

DLoader: Migration of Data from SQL to NoSQL Databases 201

Table 2 Performance analysis of Cassandra and MongoDB

S.
No.

Cassandra DB MongoDB

DB
size
(GB)

Throughput Response time
(s)

DB
size
(GB)

Throughput Response time
(s)

Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2

1 0.3 0.44 0.34 2.29 2.95 0.5 0.39 0.17 2.54 5.98

2 0.7 0.44 0.33 3.06 3.01 0.9 0.33 0.15 3.09 6.60

3 1.0 0.43 0.33 3.40 4.42 1.3 0.31 0.14 4.01 9.57

4 1.5 0.33 0.32 4.08 5.01 2.1 0.29 0.14 4.80 11.02

5 3.5 0.29 0.26 8.07 10.05 4.7 0.22 0.10 9.32 20.04

6 5.0 0.21 0.19 10.80 18.02 7.1 0.19 0.06 13.50 32.00

7 6.8 0.15 0.12 15.00 22.05 9.3 0.12 0.03 20.04 40.30

8 8.0 0.10 0.08 20.97 26.45 11.8 0.09 0.02 30.50 50.02

Q2. Retrieve immunization details of a children in a particular routine immuniza-
tion session.

The data load is varied from 0.3 to 8 GB of source MySQL database and migrated
to Cassandra as well as MongoDB. For each of the queries Q1 and Q2, the throughput
and response time are computed and shown in Table 2. The queries were executed
three times under different network loads. The average throughput and maximum
response time in seconds for Cassandra and MongoDB databases among three runs
are shown in the table.

The performance of Cassandra and MongoDB by varying the data load for two
different queries is shown in Fig. 3. The following observations are made from this
experiment.

For query Q1

. For 26-fold increase in Cassandra database size, there is only ninefold increase
in Response time and throughput decreases by 77%.

. For 26-fold increase in MongoDB size, there is only 12-fold increase in response
time and throughput decreases by 77%.

For query Q2

. For 26-fold increase in Cassandra database size, there is 12-fold increase in
response time and throughput decreases by 76%.

. For 26-fold increase in MongoDB size, there is eightfold increase in response
time and throughput decreases by 88%.

The rate of increase in response time is more in case of Cassandra for both the
queries when compared to MongoDB. However, in Cassandra, the response time for
queries Q1 and Q2 for any database size is lesser by 16% and 50%, respectively, as
compared to MongoDB.

202 K. Rajaram et al.

 (a) For Query 1

 (b) For Query 2

Fig. 3 Performance analysis of Cassandra and MongoDB

5 Conclusion

The proposed system DLoader for migration of data from SQL to NoSQL database
is the generalized system which is capable to migrating any schema in SQL to
NoSQL database. Spark framework which provides fast performance through its
inbuilt parallel processing is used for data extraction, transformation, standardization,
and data loading. Spark cluster-based HDFS storage is used in the middle layer to
handle large amount of data at a time and makes the data readily available during the
transformation and mapping process. The proposed approach has achieved column
to column mapping from source to target database. The proposed approach is tested
for migrating relational data to NoSQL databases such as Cassandra and MongoDB.
Cassandra consumes less storage space and offers better performance as compared
to MongoDB.

Acknowledgements This work was supported by Grand Challenges India (GCI) for Immuniza-
tion Data: Innovating for Action (IDIA) funded by BIRAC and jointly funded by Department of
Biotechnology and Bill & Melinda Gates foundation.

DLoader: Migration of Data from SQL to NoSQL Databases 203

References

1. S. Ramzan, I.S. Bajwa, B. Ramzan, W. Anwar, Intelligent data engineering for migration to
NoSQL based secure environments. IEEE Access 7, 69042–69057 (2019)

2. A. Katal, M. Wazid, R.H. Goudar, Big data: issues, challenges, tools and good practices, in 2013
Sixth international conference on contemporary computing (IC3) (IEEE, 2013), pp. 404–409

3. M. Potey, M. Digrase, G. Deshmukh, M. Nerkar, Database migration from structured database
to non-structured database. Int. J. Comput. Appl. 975, 8887 (2015)

4. V.D. Jogi, A. Sinha, Performance evaluation of MySQL, Cassandra and HBase for heavy write
operation, in 2016 3rd International Conference on Recent Advances in Information Technology
(RAIT) (IEEE, 2016), pp. 586–590

5. MongoDB (2021) https://www.mongodb.com/
6. S. Ghule, R. Vadali, Transformation of SQL system to NoSQL system and performing

data analytics using SVM, in 2017 International Conference on Trends in Electronics and
Informatics (ICEI) (IEEE, 2017), pp. 883–887

7. Y.S. Wijaya, A.A. Arman, A framework for data migration between different datastore of
NoSQL database, in 2018 International Conference on ICT for Smart Society (ICISS) (IEEE,
2018), pp. 1–6

8. A.E. Lotfy, A.I. Saleh, H.A. El-Ghareeb, H.A. Ali, A middle layer solution to support ACID
properties for NoSQL databases. J. King Saud Univ.-Comput. Inf. Sci. 28(1), 133–145 (2016)

9. S. Ramzan, I.S. Bajwa, R. Kazmi, An intelligent approach for handling complexity by migrating
from conventional databases to big data. Symmetry 10(12), 698 (2018)

10. N. Li, B. Xu, X. Zhao, Z. Deng, Database conversion based on relationship schema mapping, in
2011 International Conference on Internet Technology and Applications (IEEE, 2011), pp. 1–5

11. M. Hanine, A. Bendarag, O. Boutkhoum, Data migration methodology from relational to
NoSQL databases. World Acad. Sci. Eng. Technol. Int. J. Comput. Electr. Autom. Control Inf.
Eng. 9(12), 2369–2373 (2016)

12. A. Abdullah, Q. Zhuge, From relational databases to NoSQL databases: performance
evaluation. Res. J. Appl. Sci. Eng. Technol. 11(4), 434–439 (2015)

13. S. Ghotiya, J. Mandal, S. Kandasamy, Migration from relational to NoSQL database, in IOP
Conference Series: Materials Science and Engineering, vol. 263, no. 4 (IOP Publishing, 2017),
p. 042055

14. D. Liang, Y. Lin, G. Ding, Mid-model design used in model transition and data migration
between relational databases and nosql databases, in 2015 IEEE International Conference on
Smart City/SocialCom/SustainCom (SmartCity), (IEEE, 2015), pp. 866–869

15. L. Rocha, F. Vale, E. Cirilo, D. Barbosa, F. Mourão, A framework for migrating relational
datasets to NoSQL. Procedia Comput. Sci. 51, 2593–2602 (2015)

16. Y.T. Liao, J. Zhou, C.H. Lu, S.C. Chen, C.H. Hsu, W. Chen, M.F. Jiang, Y.C. Chung, Data
adapter for querying and transformation between SQL and NoSQL database. Future Gener.
Comput. Syst. 65, 111–121 (2016)

17. C.H. Lee, Y.L. Zheng, SQL-to-NoSQL schema denormalization and migration: a study on
content management systems, in 2015 IEEE International Conference on Systems, Man, and
Cybernetics, (IEEE, 2015), pp. 2022–2026

18. S. Hamouda, Z. Zainol, Document-oriented data schema for relational database migration
to NoSQL, in 2017 International Conference on Big Data Innovations and Applications
(Innovate-data) (IEEE, 2017), pp. 43–50

19. A. Goyal, A. Swaminathan, R. Pande, V. Attar, Cross platform (RDBMS to NoSQL) database
validation tool using bloom filter, in 2016 International Conference on Recent Trends in
Information Technology (ICRTIT) (IEEE, 2016), pp. 1–5

20. Y. Huang, T.J. Luo, Nosql database: a scalable, availability, high performance storage for big
data, in Joint International Conference on Pervasive Computing and the Networked World
(Springer, Cham, 2013), pp. 172–183

21. K. Atkotiya, P. Shukla, Migration from relational database like MySQL to nosql database like
Cassandra is necessary and how to migrate it using spark

https://www.mongodb.com/

204 K. Rajaram et al.

22. Apache Hadoop (2021) http://hadoop.apache.org/
23. Rural Health Statistics https://hmis.nhp.gov.in/downloadfile?filepath=publications/Rural-Hea

lth-statistics/RHS%202019-20.pdf
24. DbGen Database Management Tool (2021) https://www.bcdsoftware.com/iseries400solutions/

dbgen/
25. Apache Jmeter (2021) https://jmeter.apache.org

http://hadoop.apache.org/
https://hmis.nhp.gov.in/downloadfile?filepath=publications/Rural-Health-statistics/RHS%202019-20.pdf
https://hmis.nhp.gov.in/downloadfile?filepath=publications/Rural-Health-statistics/RHS%202019-20.pdf
https://www.bcdsoftware.com/iseries400solutions/dbgen/
https://www.bcdsoftware.com/iseries400solutions/dbgen/
https://jmeter.apache.org

	 DLoader: Migration of Data from SQL to NoSQL Databases
	1 Introduction
	2 Literature Review
	3 Proposed Work
	3.1 Relational Databases
	3.2 NoSQL Databases
	3.3 SQL to NoSQL Transformation

	4 Experimentation
	5 Conclusion
	References

