Chapter 46 )
Multiparton Webs Beyond Three Loops i

Sourav Pal, Neelima Agarwal, Lorenzo Magnea, and Anurag Tripathi

Abstract In QCD, the soft function exponentiate in terms of diagrams known as
webs. We have defined Cwebs or correlator webs which are useful in the calculation
of soft function exponentiation at higher perturbative orders. We review the results of
the four-loop Cweb mixing matrices. We also provide a direct construction of a few
of the mixing matrices without applying the complicated steps of the replica trick.

46.1 Introduction

In non-abelian gauge theory the studies of infrared singularities have a rich history
and have produced remarkable insights in all order results. These singulartites get
canceled in a well-defined (infrared safe) physical observable but they leave their
signatures in the form of large logarithms of the kinematic variables. In the IR
limit, the scattering amplitude factorizes into a universal soft function, a collinear jet
function, and an infrared finite hard function. Our object of interest, the soft function
for a n parton scattering process is defined as

Si(Bi- Biastud).e) = O[T co.0010). (46.1)

where @ (00, 0) are semi-infinite Wilson lines along B; (velocity of the i-th parton),
oy = g2/4m and € = (4 — d)/2. As a consequence of factorization, the soft function
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obeys renormalization group equation, solving which leads to the exponentiation
in terms of soft anomalous dimension I',. The soft function in terms of the soft
anomalous dimension is given by

1 (% d)2
Si(Bi- Bi i) €) = Pexp [—5/0 (8 -ﬂj,as@z),e)} . 462)

The soft anomalous dimension was computed recently at three loops in [1, 2] and
the current frontier is to calculate the soft anomalous dimension at four loops.
The soft function S, follows a diagramatic exponentiation such that

S, = exp [W,,] , (46.3)

where ‘W, are collectively known as webs. Thus, one can directly compute the soft
anomalous dimension matrix I';, using webs. The diagrammatic exponentiation was
first observed in QED, where ‘W, contains only connected photon sub-diagrams. In
QCD for the general case of n Wilson lines, a web is defined as a set of diagrams
which are related to one another by the permutation of the gluons on each Wilson
line. If K (D) and C (D) denote the kinematics and color of a diagram D in a web,
then the exponent of the soft function is given by

S, = exp [Z K(D)R(D, D’)C(D’)j| , (46.4)

D,D’

where R is called the web mixing matrix and

C(D) = ZR(D, D)C(D), (46.5)
>

is called the exponentiated colour factor for a diagram D. The general properties of
the web mixing matrices were studied in [3-6] and are given by

1. The web mixing matrices are idempotent, i.e., R? =R.

2. The row-sum of the matrices are zero.

3. The elements of web mixing matrices obey the column sum rule
> p s(D) R(D, D') = 0, where s(D) denotes the number of ways that the gluons
can be sequentially shrunk to the hard interaction vertex.

46.2 Cwebs at Four Loops

We define a correlator web, or a Cweb as a set diagrams, built out of connected gluon
correlators attached to Wilson lines, and closed under shuflles of the gluon attach-
ments to each Wilson line. As compared to webs, Cwebs have their own perturbative
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Fig. 46.1 Diagrams for Wil’o’l)(Z, 2,1, 1)

expansions and thus useful in the enumeration of webs at higher orders. A Cweb
connecting n Wilson lines with ¢,, number of m-point gluon correlators and with

As described in [8], one can generate all the Cwebs at O(g?") from the Cwebs at
O(g?"?) by performing the following moves:

1. Add a two-gluon correlator connecting any two Wilson lines.

2. Connect an existing m-point correlator to any Wilson line, turning it into an
(m + 1)-point correlator.

3. Connect an existing m-point correlator to an existing n-point correlator, resulting
in an (n + m)-point correlator.

Using the above steps, we have generated all the four-loop Cwebs [7, 8]. We have
developed an in-house Mathematica code which computes the mixing matrices of
all the Cwebs at four loops following the steps of the replica trick algorithm [3].

We show an example of a mixing matrix of a four-loop Cweb Wf’o’l)(Z, 2,1, 1)
which connects 4 Wilson lines and has one 2-point gluon correlator and a 4-point
gluon correlator.

The mixing matrix for this Cweb is given by

1 _1
2 2

This mixing matrix follows all the properties of a general mixing matrix. Using
(46.5), one can easily calculate the exponentiated color factors. The mixing matrices
for all the four-loop Cwebs connecting 4 and 5 Wilson lines are presented in [8] and
for 2 and 3 Wilson lines in [7]. We have checked the correctness of our results by
checking the known properties of the mixing matrices: idempotence, zero row-sum
rule, and the conjectured column sum rule.
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46.3 Direct Construction of Mixing Matrices

In this section, we will describe the construction of the web mixing matrices without
applying the replica trick algorithm. All the elements of the possible two-dimensional
mixing matrices arising at all perturbative orders are fixed by using the row-sum,
column-sum, and the idempotence property. A detail calculation is presented in [7].

The next step is to calculate the three-dimensional mixing matrices using the
known properties. The column weight vector of a Cweb with three diagrams is
s = {1, 0, 1}. The diagram which has s = 0, cannot be generated from diagrams
which have s = 1, by the action of the replica ordering operator. Taking this into
consideration, the three-dimensional mixing matrix takes the form

0-—1
1 —; . (46.7)
0

1
2

1

2

R=|-1

i

2

This is the only three-dimensional mixing matrix that can appear in any perturbative

order. Proceeding further, we find that the mixing matrices for any prime dimension
p are unique at all perturbative orders and are given by [7]

1 1
7100...0—?
—-110...0 -1

R = . (46.8)
—100...1-4
1 1
00...0 1

We believe that the exponentiation of soft function in terms of Cwebs will make
the enumeration of Cwebs at higher orders much simpler as compared to webs. The
exponentiated color factors presented in [7, 8] complete the full list of color factors,
which will be instrumental in the calculation of the soft anomalous dimension at
O(g®) in the future.
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