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Abstract Numerical simulations of the incremental sheet forming (ISF) process 
using the finite element method (FEM) provide essential information for designing 
parts in automotive industries. However, solving numerous high-complexity FEM 
models during the designing phase requires many resources, leading to an increase 
in the final product’s cost. This study presents a feedforward neural network (FFNN) 
to predict the deformed shape of an AA1050 sheet subjected to an ISF process. FEM 
solutions obtained from various vertical step size (Δz) of the forming tool are used 
to train and validate the FFNN. The model is then used to predict the deformed shape 
demonstrating by the displacement in the forming depth direction. The norm of the 
relative errors between the FFNN solution and FEM solution at the last forming step 
is about 2%. The predictive results illustrate the feasibility and potential of using 
FFNN as an efficient surrogate model to replace the time-consuming FEM-based 
ISF process simulation. 

Keywords Incremental sheet forming · Finite element method · Aluminum alloys 
sheet · Plasticity deformation · Feedforward neural network 

1 Introduction 

In recent decades, incremental sheet forming (ISF), a die-less forming process, has 
been actively developed to manufacture parts requiring small-batch productions 
such as prototypes and complicated components [1]. In this process, a rigid tool 
is programmed to move following designated tool paths and plastically deforms 
a blank sheet into pre-designed shapes. Several process parameters influence the
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formability and qualities of the final products manufactured by ISF, for example, 
tool diameter, tool moving speed, and vertical step size [2]. Notably, an optimiza-
tion procedure commonly for ISF requires a large number of finite element method 
(FEM) simulations to achieve the optimized process parameters [3]. That raises the 
demand for the development of surrogate models, which are able to provide numer-
ical approximations for the complex input–output relationship within an efficient 
time. 

In machine learning (ML)-related publications, for example, Ehsan et al. [4] 
proposed a multi-network of physics-informed neural network (PINN) to achieve 
more accurate predictions on various solution fields in linear elastic and nonlinear 
plastic problems. In addition, Pham et al. [5] adopted a back-propagation neural 
network (BPNN) to search for Pareto optimal solutions of formability and thickness 
of AA5052-H32 sheets subjected to an ISF process. 

This study aims to develop a surrogate model to predict the displacement fields 
obtained from FEM solutions of an ISF process. Several FE models are developed to 
simulate the ISF groove tests performed for AA1050 sheets, which vary the vertical 
step size (Δz). Based on the simulation results, a feedforward neural network (FFNN) 
is trained to address the relationship between the imposed Δz and the displacement 
fields obtained from FE simulations of the ISF process. After validation, a comparison 
between the FFNN prediction and FEM solutions for the displacement fields of a 
test performed with an unseen value of Δz is presented. Furthermore, the usefulness 
of the trained FFNN model is discussed. 

2 Data Acquisition and Neural Networks 

This section describes the detailed setup configuration of the FEM model used to 
simulate the ISF groove test. Later, a strategy to achieve the useful data is introduced 
based on simulated results. Finally, the most suitable architecture of FFNN, as well 
as the data structure, is discussed. 

2.1 Data Acquisition via a Virtual Groove Test 

Figure 1a shows the assembly of the groove tests [6]which are developed in 
Abaqus/Explicit for the aluminum sheet AA1050 with an initial thickness of 0.3 mm 
[7]. In this test, a rigid tool with a diameter of 10 mm is programmed to move 
following the tool path presented in Fig. 1b. The blank sheet is modeled by 4 node 
shell elements with reducing integration (S4R) with a size 1 × 1 mm2 of the smallest 
element. Totally, the sheet is modeled with 2573 nodes and 2577 elements. Whereas, 
tool and die are modeled by discrete rigid quadrilateral elements (R3D4).
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Fig. 1 Finite element model to simulate the groove test 

Fig. 2 Proposed FFNN architecture 

2.2 Feedforward Neural Network (FFNN) Architecture 

After a trial–error procedure, the most suitable FFNN architecture for re-building 
the deformed shape is presented in Fig. 2.There are four essential input features of 
the developed FFNN, including (i) the forming step, (ii) and (iii) x − y coordinates 
of the point of interest on the initial blank sheet (labeled as x1 − x2), and (iv) Δz 
value. Consequently, the output is the displacement of the considering point in the 
Z-direction. There are six hidden layers with 50 neurons each. The linear activation 
is used on the output layer to produce the desired output values. 

To generate data used in the FFNN model,2573-dimensional vectors of displace-
ments in the thickness direction of all nodes are recorded according to various values 
of the forming step Δz (i.e., Δz = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0). Six data samples 
of different Δz values are split into the training, cross valid, and test sets. In the 
following work, the developed neural network structure is used to train two models, 
named FFNN 1 and FFNN 2. The former is trained with three data samples, while 
the latter is trained with four data samples. After each training epoch, both FFNN 
models perform the prediction on a cross valid set (i.e., Δz = 0.6) to record the 
overfitting phenomena. When the training phase ends, the performance of trained
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Table 1 Two dataset 
structures for training and 
testing the proposed FFNN 

Training FFNN 1 FFNN2 

Δz = [0.5, 0.8, 1.0] Δz = 
[0.5, 0.8, 0.9, 1.0] 

Cross-validation Δz = [0.6] Δz = [0.6] 
Testing Δz = [0.7, 0.9] Δz = [0.7] 

models for the remaining test set is used to evaluate the goodness of these models. 
The detailed dataset is reported in Table 1. 

3 Results and Discussion 

The FFNN models were implemented in Python using TensorFlow [8]. An NVIDIA 
GeForce GTX 1030 graphics processing unit (GPU) with a 3.6 GHz quad-core CPU 
and 8 GB RAM are used for data generation and FFNN training. The adaptive moment 
estimation algorithm [9] is used to update the network weights with a learning rate 
of 0.001. The batch size is set up at 12,800. The loss function is the mean squared 
error (MSE) metric defined as: 

MSE = 
1 

N 

N∑ 

i=1 

( 
uFFNN i − uFEM 

i 

)2 
, (1) 

where uFFNN i and uFEM 
i are the displacements at the node i obtained from the FFNN 

and FEM model, respectively, and N is the number of nodes containing in the FEM 
simulation. 

Figure 3 illustrates the training and validation errors of the proposed FFNN archi-
tecture for the two training models. Generally, by adding one more sample for the 
training data, the FFNN2 convergence rate is much faster (i.e., epoch = 1993) than 
that of FFNN 2 (i.e., epoch = 9231). 

Table 2 shows the comparison between the calculation time of the FEM and FFNN 
models. It is seen that both two FFNN models are well-trained within few minutes; 
meanwhile, the prediction time of the trained models is less than the second. In 
contrast, the FEM model requires almost 50 min to finalize the results. Although the

Table 2 Computation time 
of FEM and FFNN models 

Model Computing time (s) 

Training Prediction 

FFNN 1 513.0 0.373 

FFNN 2 198.0 

FEM 2983.0



Prediction of Deformed Shape in Incremental Sheet Forming … 39

2NNFF)b(1NNFF)(a 

Fig. 3 Convergence of the proposed a FFNN 1 trained with three data samples and b FFNN 2 
trained with four data samples 

efficiency of the trained FFNN models outperforms the conventional FEM model, 
collaborating the two algorithms may be an efficient way to modeling and analysis 
the ISF process, particularly.

To evaluate the reliability of the FFNN solutions, the relative error norm metric, 
which estimates the difference between the FFNN predicted vector solution and those 
of the FEM model, is calculated as follows at each simulation step: 

η = 
∥∥uFEM 

k − uFFNN 
k 

∥∥
2∥∥uFEM 

k 

∥∥
2 

× 100%, (2) 

where ∥∥ denotes the L2 norm; uFEM 
k and uFFNN 

k are the solution vectors at the forming 
process step k of the FEM and FFNN models, respectively. Figure 4 shows the 
norm’s evolution based on the cross-validation and test samples. It is indicated that 
the performance of the FFNN model trained with four samples (i.e., dash lines) 
is generally better than that of the one trained with three data samples (i.e., solid 
lines).In practice, the simulation results achieved at the final forming step are the 
most important during an ISF process. As shown in Fig. 4, in the last forming step, 
the norm of the FFNN model trained with four data samples is even lower than 2%, 
which indicates a good approximation. 

To illustrate a comprehensive picture regarding the two FFNNs’ performance on 
the test data sample at the final forming step, the absolute error between the FEM 
solutions and FFNNs’ predictions is point-wised in Fig. 5. Comparison between 
the error distribution exhibited in Fig. 5b, c clarifies that adding more samples to 
the training dataset increases the accuracy of the FFNN predictions. After all, it is 
reasonable to conclude that the FFNN expresses great potential and efficiency to



40 H. S. Le et al.

Fig. 4 Relative error norm between the solution vector of FFNN model and FEM model 

Fig. 5 Forming step number 14: a the displacement distribution of the FEM model, b error distri-
bution of the FFNN 1 model trained with three samples, c error distribution of the FFNN 2 model 
trained with four samples 

reproduce a reliable approximation for the FEM simulations of the considering ISF 
process. 

4 Conclusion 

In this work, two simple FFNN model strained with three and four samples for 
predicting the displacement field in the ISF process are well developed. The validation 
stage indicates that the model can predict the displacement field of the ISF process at 
the last forming steps with a relative error norm below 2%. The proposed framework 
shows the developed FFNN’s potential to be a useful surrogate model that can save 
considerable computing time. From perspective, considering more parameters for 
the FFNN model, such as the material properties to increase the complexity of high-
fidelity solutions, which could be a challenge and the motivation in the further work.
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