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Abstract The pollution ofwater by potentially dyes, is severe formof environmental
impact. Traditional wastewater treatment are inadequate and cannot encounter the
basic standards of water quality at sensible cost or processing time. Removal of dyes
from aquatic surroundings has become a main alarm due to environmental problems
and the possible hazards and hazards posed by them. Nowadays, the adsorption
method as one of the most effective methods of eliminating pollutants has fascinated
growing consideration among chemists and environmental researchers. However,
one of the tasks is to design more effective adsorbents besides preparing them via
greener and safer approaches. Nanocomposites are considered talented materials
for the removal of potentially toxic dyes from aqueous solution through adsorption
process. The present chapter deals with the utilization of nanocomposites for removal
of dyes.
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1 Introduction

Nature has offered an abundance of resources for maintaining and grow life on
the earth. Water is the essential source in the world, and today’s world challenges
serious issues in meeting the growing demand for safe drinking water, specifically in
developing countries [97, 106]. A severe worry and vital goal for human life is clean
drinking water. Moreover, water is a vital resource for food manufacturing and the
preservation of human health as well as environmental protection. One of the most
important challenges in the globe is the lack of clean drinking water [14, 35]. The
dumping of industrial effluents into our waterways is a significant source of water
contamination, which poses a severe environmental risk [68]. Drinking water can
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be contaminated from discharged agricultural, sewage and industrial waste, making
it difficult to provide safe drinking water to nearby populations and ecosystems.
According to statistical projections, approximately one billion persons living in dry
countries will face clean water scarcity by 2025 [29]. Around 3.2 million person die
every year as a result of a lack of clean water or sanitary conditions, particularly
in poor nations [110]. Water is the most essential material for all species, notably
humans, because water makes up around 60% of the human body. Contamination of
the environment impacts the world’s three essential components: air, soil and water.
Due to population expansion, industrial and human activities have increased without
equivalent environmental care, and hydric resources are being progressively depleted
[80]. Water treatment is a theme of concern for our health and our environment.
Drinking water sources must be treated to eliminate disease-causing chemicals.

1.1 Sources of Dyes and Its Classification

The scarcity of natural pigments and enhancements in dyemanufacturing technology
havemade researchers andmanufacturers progressivelymore dependent on synthetic
dyes. Dyes are broadly utilized in productions, for example, paper, plastics, textiles
and paints. Dyes can be categorized according to the source (natural and synthetic
dyes), chemical structure (chromophores) (nitro and nitoso dyes, anthraquinone dyes,
Azo dyes, triarylmethane dyes, phthalocyanine dyes, indigoid dyes and sulfur dyes)
and application method (disperse dyes, acid and basic dyes, reactive dyes, vat dyes
and direct dyes) as shown in Fig. 1 [15].

The amount of dyes engendered annually is assessed to be more than 700,000
tonnes, with 10–15% being released in wastewater [32, 60]. Synthetic dye present
in the water is one of the most severe issues challenging environmental protection

Fig. 1 Classification of dyes
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strategies, owing to their difficulty being degraded into less dangerous compounds
for human health and the environment. Dyes are harmful organic compounds with
limited biodegradability that perform a substantial role in environmental issues such
as eutrophication, visual pollution and water system disturbances [90]. Furthermore,
the existence of dyes as pollutants in water resources can lower water quality and
create carcinogenic andmutagenic consequences that can infect humans andwildlife.
Dyes can affect a variety of difficulties when they infiltrate the environment. Because
most of these organic materials are very stable toward microbial attacks, humidity,
oxidizing agents and solar radiation if dismissed into rivers [11, 19], dyes can produce
a decline in water properties by exposing color to the water and affecting the photo-
synthetic action of aquatic organisms by obstructing the access of solar light [51].
Recently, there has been much interest in eliminating coloured contaminants from
wastewater [23].

1.2 Dye Removal Techniques

Nowadays, the most common processes in water treatment utilized by municipal
water systems (mostly surface water treatment) involve coagulation and floccula-
tion, sedimentation, filtration and disinfection [33]. Numerous methods have been
utilized to eliminate dyes from contaminated media in both industrial wastewater
and water resources such as electrochemical and membrane processes, biological
treatment, coagulation, chemical oxidation, adsorption and aerobic microbial degra-
dation (Fig. 2) [71, 89, 113]. Water treatment technology for heavy metals and dyes
removal is dependent on the type of contaminant to be removed or basis for the treat-
ment, whereas water treatment methods that are acceptable for dye removal may not
be suitable for removing heavy metals. For example, chemical precipitation is used
to remove heavy metals, although it is not proposed for colour removal from water.
Chemical precipitation procedures are beneficial in the treatment of water and the
creation of water treatment products and media [22, 55]. Treatment methods have
been employed to focus on the elimination of recalcitrant dyes from wastewater and
aquatic water. On the other hand, the adsorption method is widely used because
of its several benefits, including economic feasibility, high efficiency in removing
the dyes, and ease of processing as well as cost-effectiveness for dye removal from
aquatic water and wastewater [20, 21]. The adsorption process includes a number
of steps: (i) dissolving dyes in solution, (ii) exterior dye diffusion to the adsorbents’
surrounds, (iii) intra/internal -particle diffusion (filling nanoparticle pores with dye
materials), and (iv) desorption or adsorption on interior sites [3]. The strengths, weak-
nesses, opportunities and threats (SWOT) of persistent dye pollution removal based
on adsorption techniques were effectively discussed on the next section [5].
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Fig. 2 Possible techniques used to remove dyes and water pollutants from contaminated media in
both water resources and industrial wastewater

2 Nanocomposite Material

Nanocomposite material has expanded substantially to comprise a huge range of
structures such as one, two and three-dimensional as well as amorphous materials,
particularly prepared from various materials and combined together at the nanoscale.
This fast-growing industry is producing a lot of new materials with unique features
by mixing characteristics from different components/materials to produce a single
material. There’s also a chance that new qualities emerge that aren’t present in the
parent component materials.

2.1 Classification of Nanocomposites

In general, the organic–inorganic nanocomposite materials class are a rapidly
expanding field of study. Effort is engrossed on the ability to get control of the
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Fig. 3 Nanocomposites classification based on the dimensions

nanoscale structures via innovative synthetic approaches. The properties of nanocom-
posite materials depend not only on the characteristics of the matrix and the rein-
forcing agent/fillers, but also on their morphology and interfacial features. Nanocom-
posites could be classified according to the structure of nanofillers into four dimension
(Fig. 3):

(a) Nanofillers with zero-dimension: Nano dimensions in any direction, for
example, nanoparticles. They don’t have any dimension exceed 100 nm. They
might be of the amorphous, crystalline, metallic or ceramic nature.

(b) Nanofillers with one-dimension: Nano dimensions in only one direction,
for example, nanotubes and nanowires (needle-type shape). Nanoclays,
nanoplatelets, nanosheets and nanorods are an excellent examples of nanofillers
with one-dimension.

(c) Nanofillers with two-dimension: Nano dimensions in two directions, for
example, carbon nanotubes and silicates. It might also involve nanorods,
nanowhiskers and nanofibers.

(d) Nanofillers with three-dimension: Nano dimensions in three directions, for
example, nanogranules and zeolites.

2.2 Efficiency of Nanocomposites for Dye Removal

For dye removal, various organic and inorganic adsorbents (ex. Fly-ash, zeolite,
saw-dust, mesoporous silica and activated carbon) are applied. These adsorbents
have some drawbacks such as poor selectivity, low adsorption capacity and higher
cost [78]. Adsorption using nanocomposites is the best way to remove the dye from
wastewater due to its straightforward method, cheap method and efficacy to various
kinds of dyes [28]. By engineering several functional groups (carboxylate, amino,
acid, and hydroxyl groups) or the amalgamation of adsorbents, including metal
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oxides, graphene, graphene oxide (GO), and metal–organic frameworks (MOFs) in
the nanocomposites, the separation capacity can be significantly improved [24, 73].
Because most dyes are resistant to biodegradation, photodegradation and oxidation,
traditional biological and physico-chemical treatment techniques are unsuccessful
for dye removal. Table 1 summarizes the removal efficacy and maximum adsorption
capacity of different nanocomposites twards different types of dyes.

2.2.1 Clay-Based Nanocomposites for Dye Removal

Various inorganic clay has been used to remove the pollutions from the wastew-
ater, such as laponite, sepiolite, attapulgite and montmorillonite [58]. Among these
clay minerals, layered silicates montomorllonite (MMT) or nanoclay is an excel-
lent reinforcing filler for removing the cationic and anionic dyes and can be used
in different applications such as biomedical, agriculture, packaging and aerospace
applications [1]. MMT has different characteristics such as high modulus, cheap
material, high CEC (cation exchange capacity), non-toxicity, high surface area and
ease recyclability [53]. MMT is an alumina octahedral silicates sandwiched among
two tetrahedral silicate sheets [6]. By using cation exchange, the interlayer spacing
of MMT was increased to enhance the adsorption capability of MMT minerals [1].

MMT has been applied in a different matrix for dye removals, such as polyvinyl
alcohol and chitosan [36, 48]. Thematrix of the nanocomposites also acting an crucial
role in enhancing removal of the dyes. One of these matrices that was mixed with
nanoclay is the hydrogel polymers (acrylic acid-acrylamide based polymers and/or
copolymers) which have high adsorption capacity, oxygen barrier, thermal stability
and flame retardant that can be applied in different applications (ex., agriculture and
healthcare) [16, 54]. Another study utilized poly (acrylamide-co-sodium acrylate)
in existence of biopolymer carrageenan and Na-MMT to enhance the absorbency of
crystal violet dye (CV) from wastewater [58]. The best result has been obtained by
using 10 wt.% of MMT due to enhancement of osmotic pressure. The water absorp-
tion decreased by an increasing amount of MMT, which works as a multifunctional
crosslinker.

Kasgoz andDurmus [47]mixedMMTwith acrylamide (AAm) and 2-acrylamido-
2-methylpropanesulfonic acid sodium salt (AMPSNa) to eliminate two cationic dyes
(Brilliant Cresyl Blue (BCB) and Safranine-T (ST)) from an aqueous solution. The
authors found that the incorporation ofMMT into the hydrogel improved the swelling
capacity and diffusion capacity. However, these hydrogel composites have some
drawback to the environment as the material can not be degraded which cause a
“white pollution” [72].

Research is growing in the production of inexpensive, biodegradable, biocom-
patible and natural polymeric sorbents to overcome the disadvantages of using
synthetic polymeric sorbent that are expensive and difficult to regenerate. A novel
and green superabsorbent cellulose-clay nanocomposite hydrogels was produced
by chemical cross-linking to remove the methylene blue dye (MB) [72]. The new
materials displayed superior absorption capacity for MB solution (97% removal
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efficacy for 10 mg.L−1 MB). Another study was applied for removing MB from
wastewater by using carboxymethyl cellulose (CMC), biodegradable polysaccharide
kappa-carrageenan (obtained from red seaweed) and activatedMMT (A-MMT) [56].
A-MMT was prepared by an acid treatment process using sulfuric acid. The authors
showed that the maximumMB removal was 98% (12.25mg.g−1) with using 0.4%A-
MMT, and the adsorption still excellent after five consecutive cycles. Recently, multi-
functional nanohybrid consisting of polypyrrole/chitosan, grapheneoxide and mont-
morillonite nanohybrid displayed high efficacy for the removal of neutral, anionic,
and cationic dyes (Titan yellow, Safranin O, Neutral red, Eosiny, Biebrich scarlet)
from aqueous solutio [87].

2.2.2 Carbon-Based Nanocomposites for Dye Removal

A novel adventure to improve the removal of the dye from aquatic media is directed
to use carbon nano adsorbents graphene (discovered in 2004), which is an allotrope
of carbon (SP2 bonded carbon atom sheet) and has a two-dimensional hexagonal
structure. Graphene powder has many different characteristics such as low density,
superior surface area, chemically stable and superior thermal, electrical, mechanical
and optical properties. Graphene has been used as an adsorbentmaterial for removing
the dye from aquaticwater. Sulfonation favors the surface of the graphene Zeta poten-
tial, thus improve the interaction of sulfonated graphene with aromatic pollutants and
thus promises the high adsorption of organic dyes on sulfonated graphene [25, 81,
91]. In addition, the sulfonated graphene nanosheets (G–SO3H) have the ability to
increase the dispersion in an aqueous solution [112].

Recently, blending graphene with a magnetic nanoparticles recorded unique
chemical, physical characteristics and adsorption capacity compared to graphene
material [4, 83]. Magnetic graphene nanocomposites have the ability to respond to
a magnet, facilitating the separation of graphene from dispersion rapidly and effec-
tively [25]. Wang et al. [101] found that a magnetic/graphene (Fe3O4/G) nanocom-
posite can effectively adsorb fuchsine dye. In another report, reduced GO-Nickel
nanocomposite was prepared to remove Rhodamine B (RhB) dye from aquatic solu-
tion [42]. The results displayed that the pH influence the dye removal and showed
higher removal at pH 8. According to the results of the kinetic investigation, RhB dye
adsorption follows a pseudo-second-order kinetic model. Consequently, magnetic
Fe3O4/G-SO3H nanocomposite was synthesized and applied for removal of anionic
dyes (methylene orangeMO, alizarin red (AR) andbrilliant yellow (BY)) and cationic
dyes (victoria blue (VB), safranine T (ST) and neutral red (NR)) from aqueous
medium as shown in Fig. 4a, b [105]. At pH 6, the new nanocomposite material
showed higher adsorption capacity in cationic dyes than anionic dyes (Fig. 4c). The
maximum adsorption capacities of G-SO3H/Fe3O4 for ST, NR, and VB dyes were
199.3, 216.8, and 200.6 mg g−1 respectively [105].

Graphene oxide, an electron-rich, hydrophobic nanomaterial, with large specific
area has been served as an amazingly brilliant adsorbent. Graphene oxide (GO)
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Fig. 4 A preparation of nanocompositematerial from sulfonated graphene (G-SO3H) andmagnetic
Fe3O4 nanomaterials; BDye removal mechanism from aqueous solution using G- G-SO3H/Fe3O4;
C Effect of pH on the adsorption capacity of dye removal (MO, AR and BY) and cationic dyes
(VB, ST and NR) (Reprinted with permission from Wang et al. [104])

is equivalent to graphene but with a high adsorption capacity and high surface-to-
volume ratio and a functionalized group (hydroxyl, carboxyl and epoxy group) that
allowed dispersion in the water and compatibility with hydrophilic dyes. Various
researchers have explored the use of GO as an adsorbent for dye removals such as
CV, MB, methylene orange and direct dye [23]. Puri and Sumana [77] formed a
nanocomposite by the incorporation of GO into layered silicates MMT. The new
nanocomposites have been used in the removal of CV dye from wastewater with a
high adsorption capacity of ~746 mg/g as well as efficiently ~96%.

However, it was discovered that after the adsorption process, GOwas very hard to
eliminate from the aqueous medium by the standard separation method. As a result,
it may raise the cost of industrial application while also polluting the treated water
[17]. To solve the problem,GOhydrogel nanocomposites basedonpoly(acrylic acid)-
g-salep polysaccharides biopolymer was applied for removing the cationic methyl
violet (MV) dye in aqueous media [82]. By increasing the pH and temperature of
the solution, the MV adsorption capacity on nanocomposites was enhanced, and
adsorption equilibrium was achieved after 30 min.

In addition, it was reported that GO membranes are unstable in aqueous solu-
tions due to poor adhesion between adjacent GO layers, limiting their applica-
tion in wastewater. For this reason, a new nanocomposites membrane composed
of samarium metal–organic framework (MOF) and GO was synthesized [108]. The
Sm-MOF/GO (mass ratio of MOF: mass ratio of the reactant= 0.31) nanocomposite
showed higher permeance (26m−2 h−1 bar−1) and high rejections (~91%) toMB and
RhB. A porous crystalline 3D MOFs was made by coordination bonds from metal
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ions and organic ligands. Firouzjaei et al. observed the adsorption of MB by using
copper-based MOF, immobilized on GO and reported that the adsorption capacity
improved from 106 to 142 mg/g by increasing the temperature from 25 to 65 °C.
Existence ofGO in theMOFnetwork enhanced the adsorption capability of capturing
the dye [18]. AnotherMOF zeolitic imidazolate framework (ZIF-8) was incorporated
with CNT and GO to prepare a new nanocomposite [2]. The new material was used
to remove amalachite green (MG) dye from aquatic medium. Hybrid nanocomposite
material showed a higher rate than sole MOF. The ZIF-GO nanocomposite material
exhibited a higher adsorption capacity (3300mg/g) than ZIF-8-CNTnanocomposites
(2034 mg/g) at 20 °C.

A novel nanocomposite based on Chitosan/carbon nanoflowers was applied for
adsorption of acid black1 (AB1) and cango red (CR) anionic dyes. The maximum
adsorption was recorded to be 259.13 and 553.12 mg g−1, respectively within 60 min
[43]. In another report, the adsorption behavior of polypyrrole/chitosan/graphene
oxide to Ponceau 4R (P4R) dye under different conditions such as different,
salt concentrations, temperatures degrees and dye concentrations was studied and
recorded high efficiency than the constituents [86].

It is worth to mention that magnetic adsorbents are characterized by high specific
surface area, simple modification, structural flexibility, processing viability, mechan-
ical strength properties and by applying an external magnetic field the adsorbents are
easy recovered. The magnetic adsorbents comprise elements with magnetic proper-
ties. A new magnetic manganese ferrite (MnFe2SO4) nanoparticles was applied as
magnetic support (synthesized by sol–gel route) for different adsorbents because of
high magnetic and thermal characteristics, cheaper material, non-toxicity and high
chemical stability. Thus, to enhance the adsorption of graphene, MnFe2SO4 was
added as a support for reduced graphene adsorbent. The new nanomaterials showed
high adsorption capacity to remove cationic dyes (MG and MB dye) [4]. Another
study presented that GO/MnFe2SO4 has a high adsorption capacity to remove arsenic
As5+, As3+ and lead Pb2+ from aqueous water [50]. Katubi et al. (2021) displayed
that GO/MnFe2O4 nanocomposite was efficient to remove NR dye with adsorption
capacity of 46.08 mg/g. In another report, Zinc ferrite (ZnFe2O4) magnetic nanopar-
ticles were used with GO in the removal of MO dye [84]. As well, Nickel ferrite
(NiFe2O4) was utilized with GO to remove MB from an aquatic water [98]. Using
500 ppmMBat pH 10within 150min, the adsorption capacity achieved 343.98mg/g.

2.2.3 Metal Oxide-Based Nanocomposites for Dye Removal

Metal oxide-based nanomaterials such as TiO2, SiO2, iron oxide, zinc oxide (ZnO),
gallium oxide (Ga2O3), nickel oxide (NiO), copper oxide (CuO) [75] having excep-
tional functionality in their probable application to the detoxification of indus-
trial effluents, groundwater, surface water and drinking water. However, limita-
tions due to lose their selectivity, mechanical strength, and high capacity [70] were
cured by immobilization these metal oxides into polymeric materials and designing
core shell nanocomposites [38]. Mesoporous silica-gibbsite nanocomposites (NSG)
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(62.34 m2·g−1, a pore radius of 22.717 nm, and a pore volume of 0.7081 cm3·g−1)
recorded an efficient capacity to adsorb Eriochrome Black T dye (EBT) through an
exothermic process (Inas A [8]. Magnetic nanocomposite based on cobalt ferrite-
silica (CoFe2O4eSiO2) recorded adsorbtion capacity of 75.5 ± 1.21 mg g−1 for the
removal of MG dye from water. Interestinly the adsorbent was regenerated and used
repeatedly and separated from water by applying a magnetic field [13].

Iron oxide (Fe3O4) nanoparticles have been used in designing nanocomposites due
to their excellent properties such as high adsorption, superparamagnetic behavior,
good compatibility, low toxicity, high surface energy, and large surface area [37,
102, 103]. The magnetic nanocomposite based on carbon/ iron oxide was applied
for removal RhB from aqueous solution with maximum adsorption efficiency of
46.94 mg/g[95]. A shell of Fe3O4 MNP coated by a functionalized amorphous silica
extracted from rice husk showed high efficiency for the removal of methyl red (MR)
dye (97%) due to the presence of hydrophilic functional groups on the surface [44]. In
another report, a magnetic Fe@MgO nanocomposites presented admirable adsorp-
tion properties towards methyl orange dye (MO) with the maximum adsorption
capacities of 6947.9mg•g−1 through chemical adsorption via complexingwithMgO,
associatedwith a slightmineralization ofMO [26]. Consequently, magnetic nanopar-
ticles dispersed within a matrix of activated carbon (MNC) recorded the maximum
adsorption capacities of 223.82 mg g−1 for Nylosan Blue (NB), 114.68 mg g−1 for
Chromazurol (ChS), and 286.91 mg g−1 for Basic Red 2 (BR2). The adsorption of
three dyes on MNC was favorable, spontaneous, and endothermic with good effi-
ciency (greater than 65%) afterward seven adsorption—desorption cycles [65]. The
efficacy of a non magnetic carbon was compared with magnetic carbon nanocom-
posite for adsorption of CV dye from aquous solution. The adsorption capacity was
improved from 40 mg/g to 81.7 upon using magnetic nanocomposite. The maximum
adsorption was recorded to be 113.31 mg/g under the optimum conditions (concen-
tration 240 mg/l; temperature 50 °C; pH 8.50; dose 1 g/l), which was very close to
the experimental value (111.80 mg/g) [96].

A nano-sized Fe3O4@SiO2 core (15 nm) coated with a shell of Zr-MOFs (about
5 nm) recorded high adsorbtion capacity for organic dyes [39] and remained
unchanged after 6 recycles. In another report, zeolitic imidazolate framework-67
(ZIF-67) (1403.7m2/g) grown on the surface of Fe3O4@egg shellmembrane (1263.9
m2 /g) recorded amaximumadsorption capacity of 250.81mg/g for BR18 (Basic Red
18) following pseudo-second order [59]. Consequently, a core shell nanocomposite
designed from Zn0.5Co0.5 Al0.5Fe1.46La0.04O4/PVP succeeded in purifying inked-
water and dyes with higher efficiency of 90% in comparsion with pure ferrite (76%)
(MA [7]. Trisodium citrate based magnetite nanocomposite (Fe3O4 −TSC) was
applied for MG dye removal from aqueous medium [11]. The maximum adsorp-
tion capacity (qe) was calculated to be 435 mg g−1 following pseudo-second-order
kinetic model with greatest recovery of MG dye in 0.1 M HCl. In another publi-
cation, magnetic Fe3O4/zeolite NaA nanocomposite exhibited [100] a high adsorp-
tion capacity (~40.36 mg · g−1) and removal efficiency (~96.8%) compared with
the zeolite NaA (~32.99 mg · g−1 and 79.11%, respectively) due to the interaction
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between active sites on the surfaces and edges of the invert spinel ferrite Fe3O4

nanoparticles and zeolite NaA with MB molecules.
It is wotarth to mention that multifunctional magnetite-polypyrrole/chitosan

/grapheneoxide exhibited high adsorption efficiency of P4R dye contaminated water
with easily magnetic separation. Moreover, it has been shown to be effective against
antimicrobials (E. coli) and antifungals (Fusarium fungi). The adsorption kinetics
of P4R dye follows the Langmuir isotherm equation and the pseudo- second-order
kinetic model and the adsorption process was an endothermic (Nehal A [85]. In
another report, modification of an Fe3O4/SiO2 magnetic composite with polypyrrole
(PPy) (PPy/Fe3O4/SiO2) improved the maximum adsorption of (361 mg/g) CR dye
with high ability to reuse the nanocomposite several times leading to reduction the
overall cost of the treatment [112].

A bionanocomposite of sodium alginate, chitosan (MZ/CS/AL), infused with
natural zeolite, and cross-linked with glutaraldehyde and CaCl2 was used to remove
methylene blue from aqueous solution [46] with high efficiency. Carboxymethyl
cellulose (CMC) coated Fe3O4@SiO2 core–shell magnetic nanoparticles (MNPs)
exhibited an efficient adsorbent for the removal of cationic dye, due to the abundant
adsorption site, easy separation using an external magnetic field and low cost [114].

Nano-hydroxyapatite polymeric hydrogels (Varaprasad et al., 2018) developed
using waste shells (Clam and Magellan shell) carboxymethyl cellulose/acrylamide
were investigated as a sorbent forAcidBlue 113 (AB) fromaqueousAB solution. The
diffusion coefficient value was increased with the increasing nano-hydroxyapatite
content in the CMC-AM/nHA-CS (0.22353–0.27681 cm2 s−1) and CMC-AM/nHA-
MS (0.22377–0.29737 cm2 s−1) hydrogels. Combination of conducting polymers
e.g. polypyrrole with LDHs improved both the adsorption of cationic dyes as well
as anionic dyes through modification of surface [61, 107].
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