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Abstract Clean water is very important for living being and other activities.
However, water is continually being polluted and become harmful. Number of tech-
niques is being used for purification of water and out of that adsorption is found
to be the most affordable and fast technique. In recent years, nanotechnology has
played an important role in water purification and decontamination. Nanomaterials
(NMs) have proved to be a very good adsorbent for the removal of organic and
inorganic pollutants and heavy metals from water and also kill microorganisms in
the wastewater. Due to electronic structure, electronic, optical, and magnetic prop-
erties, metal oxide nanoparticle (NPs) are found to be unique materials for water
remediation. Metal oxide-based NMs, such as zinc oxides, iron oxides, manganese
oxides, titanium oxides, aluminum oxides, magnesium oxides, cerium oxides, zirco-
nium oxides, etc. have shown their effectiveness for water remediation. Nanosized
metal oxides possess many exceptional properties, such as a high removal capacity
and selectivity towards heavy metals and organic compounds. Thus, they have great
potential as promising adsorbents for heavy metals, dyes and other pollutants. In this
chapter synthesis of number of metal oxide NMs and their applications for water
decontaminations have been discussed in detail.
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1 Introduction

Water is the most important component for various activities on this planet. The
distribution of water on the earth is shown in Fig. 1. 97.5% water is in sea and only
2.5% is available in other areas for various activities.

Water is the most important component for various activities on this planet and
therefore, clean and pure water is required for development as well as for the survival
of living organisms. However, the quality of water is continually deteriorating due
to rapid urbanization and industrialization [1-5]. The harmful chemicals going into
water bodies are heavy metal ions, inorganic cations, dyes and organic compounds.
Pollutants mainly come from different sources (Fig. 2) [6].

Toxic metal ions, from different sources go into water body and make them
injurious (Fig. 3) [1].
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Fig. 1 Distribution of water on earth
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Fig. 2 Different sources for pollutants (Reproduced with permission from Elsevier [6])
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Fig. 3 Major sources for generation of toxic heavy ions (Reproduced with permission from Elsevier

B3))

When pollutants are present in water, they are very injurious. Different type of
pollutants and their effects are shown in Fig. 4 [7].

These pollutants if increase beyond certain limit becomes harmful to living system
and environment. Therefore, these pollutants are to be removed in an environmentally
friendly and economical ways [8—10]. There are number of methods used for the
removal of pollutants from water and are given in Fig. 5. Out of all, adsorption
technique is one of the most convenient techniques for removal of pollutants from
water. For this purpose, a suitable adsorbent is needed. Amongst different adsorbents,
nanoadsorbents have been reported to be the most effective adsorbents. Some of the
adsorbents are given in Fig. 6 [11].

In recent years, it is reported that metal oxide NP and many other NMs are found
to be as an effective adsorbent and photocatalyst for the removal of pollutants from
water (Fig. 7)[12].

In this chapter removal of pollutants from water using different nano metal oxides
as adsorbents a photocatalyst have been discussed.
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Fig. 4 Pollutants and their impact (Reproduced with permission from Elsevier [7])

Chemical oxidation, chemica
precipitation, coagulation,
dissolved air floatation, electro
chemical oxidation,
flocculation, hydrolysis,
neutralization, solvent
extraction, ion exchange

CHEMICAL

Adsorption, distillation,
filtration, steam striping,
. oil and grease skimming,
Industrial PHYSICAL Oil-water separation,

wastewater sedimentation, membrane
technologies
treatment

Biological nitrogen removal,
bio agumentation , activated
sludge, extended aeration,

anaerobic processes, rotating

biological contactors,
sequencing batch reactors an
tracking filters

Fig. 5 Water purification methods



Metal Oxide Nanoparticles for Water Decontamination 249

.
Nanoadsorbents,
¢

CeO, CuO MgO )
Adsorbents
TiO. Zn0 z &
: Nio Photocatalytic Materials
Fe;0, WO, MnO,

o
Nanostructured Metal Oxides

Adsorptive Removal

Dyes Removalby Adsorption |

oo i
Wavelength (nm) 4 . : (Mo) . |
N TS

¥ Absorbance (a. u)
s B £ 8 8 5 &

Fig. 7 Adsorption of pollutants by different type of NMs (Reproduced with permission from
Elsevier [12])
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2 Decontamination by Adsorption

Out of different purification techniques, adsorption is one of the most useful tech-
nique, considering the ease of operational aspects, low cost, scalability, high efficacy,
and regenerability of adsorbents. Number of adsorbents have been used to remove
different pollutants from water [12, 13]. Adsorption is a mass transfer process,
which includes accumulating a substance between interfaces of two phases. The
adsorption processes are classified into three major categories, i.e., physisorption,
chemisorption, and ion exchange (Fig. 8) [3].

The qualitative and quantitative aspects of the adsorption process are evaluated
by using different adsorption isotherm models, kinetic models, and thermodynamic
parameters. There are number of parameters which affect the process of adsorption
(Fig. 9).
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Fig. 8 Different type of adsorption (Reproduced with permission from Elsevier [3])
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3 Photocatalytic Degradation of Pollutants

Prof. Fujishima of Tokyo University, Japan, accidently in 1967, discovered that in
presence of TiO, water splitted evolving oxygen. This phenomenon was named as
photocatalysis. After that various effects of photocalysis was studied with indus-
trial applications. Number of semiconductors with nanodimensions are being used
as photocatalysts. Out of all, transition metal oxides are found to be most effec-
tive photocatalysts. Many nano metal oxides have been used as photo catalysts for
degradation of dyes and organic compounds contaminated with water. Metal oxide
NMs are semiconductors with valence band and conduction band separated by band
energy of about 3.0 eV and act as photocatalyst (PC). When light of appropriate
wavelength and energy hv falls, electron from the valence band jump to conduction
band leaving a positive hole (hyg*) and trapped electron in the conduction band, as
given by Eq. (1) [14]

PC 4+ hv — egp + hip (1)

The electrons liberated through irradiation could be trapped by O, absorbed on
the surface of the catalyst and give superoxide radicals (05 ):

ecg + 02 — O3 2)

O, ~ obtained reacts with H,O to form hydroperoxy (HO;") and hydroxyl radi-
cals (OH). These radicals are strong oxidizing agents and decompose the organic
molecule, dyes and other type of organic contaminants in water as given by Eq. (3).

0; + H,0 — HO, + OH 3)

Simultaneously, the photoinduced holes could be trapped by surface hydroxyl
groups (or H,O) on the photocatalyst surface to give hydroxyl radicals (OH'):

hiz + OH™ — OHy

4
h{s + H,O — OH + H* @

Finally the organic molecules will be oxidized to yield carbon dioxide and water
as follows:

OH + organic molecules + O, — products (CO,and H,0) 5

Meanwhile, recombination of positive hole and electron could take place which
could reduce the photocatalytic activity of prepared nanocatalyst:

ey +hiy — PC (6)
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Fig. 10 General mechanism of photodegradation of pollutants by semiconducting metal oxide NM
(Reproduced with permission from Elsevier [12])

A wide range of metal oxides such as tungsten oxides, copper oxides titanium
oxides, zinc oxides, iron oxides, magnesium oxide, metal oxides composites, and
graphene-metal oxides composites have been studied for photocatalytic degrada-
tion and adsorptive removal of organic pollutants viz. phenolic compounds, dyes,
pesticides, and so on. Figure 10 represents the photocatalytic degradation of organic
pollutants, along with the role of the photogenerated hole and electron pairs [12].

Photocatalytic degradation of some organic pollutants in water by titanium
dioxides-based NMs and their composites are given in Table 1 [12].

In general photocatalytic degradation is fast and ecofriendly as compared to
adsorption technique.

4 Synthesis of Metal Oxide NP

The purpose of synthesizing metal oxide NP is to change the properties of corre-
sponding metal NP. For example oxidizing iron NP are converted into iron oxide NP,
which increase the reactivity. In the past ten years, effective synthesis methods to
obtain metal/metal oxide NMs with controllable shape, high stability and monodis-
persion have been extensively studied [15]. In general metal oxide NPs can be synthe-
sized by using Chemical Precipitation, Sol —Gel, Hydrothermal, Chemical Vapour
Deposition methods. However, synthesis is divided into three major categories to
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Table 1 Titanium dioxide NM and their composites as photocatalyst for degradation of organic
pollutants from wastewater (Reproduced with permission from Elsevier [12])

No. Photocatalyst Light source Targeted Degradation
pollutant efficiency (%)
1 Surface-fluorinated uv Methylene 96
TiO, assembled on GO blue
2 TiO, NP uv Malachite 99.9
green
3 Phosphorous acid-modified Visible Rhodamine B | ~100
Degussa P25 TiO,
4 Glass coated TiO; thin films UV-VIS Methylene 90.3
blue
5 TiO,/Fe; O3 nanocomposite Visible Diazinon 95.1
6 Zn**-doped TiO; NP uv Malathion 98
7 In and S co-doped TiO, @rGO | Visible Atrazine 99.5

understand the difference in methodology, advantages/disadvantages: (i) solution-
based methods (ii) gas phase methods and (iii) biological methods (Fig. 11). This clas-
sification is based on the type of medium in which the oxidation reaction occurs. The
physical and chemical properties of NMs like size, shape, dispersibility, morphology,
internal/external defects and crystal structure are generally influenced by the choice
of synthesis method which ultimately affects their applications. For example, nano
Mg doped ZnO (ZnMgO) fabricated via three different synthesis methods were found
different in geometry. Where regular cubic structure was obtained by CVS method,
mixture of cubes and tetrapods for metal combustion method and irregular nano rods

Methods of synthesis of metal oxide
nanoparticles

Vaour
siate

Biological

_,."""_'__ _.-__\_\_""‘--.
_~ Laserablation .
/Chemlcal vapour depositioh\
Combustion |
\Template/surface medlalzag"}
\"“.

.

Fig. 11 Synthetic methods of metal oxide NMs
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by sol-gel method [16, 17]. To understand the difference in various methods they are
briefly discussed in Table 2 [18].

Due to the vast and varying applications of these nanostructures, various synthetic
methods have been utilized to synthesize them as discussed in the Table 2. All the
described methods provide high quality metal oxide nanocrystals with definite size
and shape except the biological method. It is very difficult to control all the required
features of NMs like size, shape yield, purity, cost etc. in most of the methods. This
problem is more common in the case of multi-metallic oxide NPs. The most effective
method with respect to high crystal purity is chemical vapour deposition method [19].
This method is also very useful to give stability to otherwise unstable crystal phase.
For example, Zinc oxide NPs in cubic crystal form can only be achieved at very high
pressure but chemical vapour synthesis method allows c-ZnO NPs to be dispersed
on MgO surface [20].

On the other hand, sonochemical method has been successfully applied to get
enhanced photocatalytic performance of TiO, NPs [21] and varying magnetic prop-
erties of iron oxide NPs [18, 21]. The sol-gel method has been widely used for
synthesizing almost all kind of metal oxide NPs. This method is also very useful in
doping group 5 oxides, which is often a challenge, for example Co doped Hf-oxide
NPs [22]. This method has been utilized by researchers with certain modifications,
for example Corr et al. have reported an improved one-step sol-gel aqueous method
for the synthesis of iron oxide-silica NPs [23]. To avoid the oxidation of the products
at very high temperature, use of ultrasonic conditions is also reported. Some solution-
based manufacturing techniques use surfactants [24], which, in addition to affecting
particle size, also tend to reduce the degree of aggregation between particles. In addi-
tion, solution-based technology combats pollution problems in the resulting metal
oxide products. Most of the solution-based methods suffer with the problem of the
contamination in the products specially contamination of anions of precursor salt
[25]. Biological method is suitable for biomedical applications due to its biocompat-
ibility but face the problem of contamination and composition of NPs also cannot be
defined completely [18].

5 Metal Oxide NP Used for Water Purification

Metal oxide NPs are used in different sectors including water remediation as shown
in Fig. 12 [26].
Numbers of nano metal oxides discussed below were used for water remediation.

5.1 TiO;

TiO, NPs have become the most widely used NMs for water remediation due to their
high photosensitivity, availability, non-toxicity, cost-effectiveness and environmental
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Fig. 12 Applications of nano metal oxides/mixed metal oxides in different areas (Reproduced with
permission from Elsevier [26])

friendliness [27]. These NMs have been widely used in the oxidation and reduction
conversion of organic and inorganic pollutants in air and water, such as phenolic
compounds, metal ethylene diamine tetraacetate complexes, microorganisms in the
air and odorous chemicals, halogenated compounds degradation, dye removal, metal
and metal removal, etc. [28]. Photodegradation leads to complete oxidation and
reduction of organic and inorganic pollutants and converts them into carbon dioxide,
water and inorganic acids [29]. Its large band gap energy (3.2 eV) requires ultravi-
olet excitation to induce charge separation within the particles [30]. TiO, and TiO,
films have been successfully used to degrade atrazine and organochlorine pesti-
cides in water, respectively [27]. Photocatalytic degradation of methyl orange using
ZnO/TiO, composites has been studied [31]. Non metal elements like N, F, C and S
can improve the photocatalytic activity of TiO, NMs by narrowing its band gap. This
is achieved by the substitution of oxygen by these nonmetals in the TiO, lattice [32].
Doping with transition metals like Fe, Co and Cu has also been proved to improve
photocatalytic activity of TiO, NPs under UV irradiation However, noble metals like
silver, have received much attention for this purpose [33].

5.2 Iron Oxides

In recent years, the synthesis of iron oxide NMs with modified properties and their
applications have gained widespread attention due to their high porosity and surface-
to-volume ratio, low cost, strong adsorption capacity, easy magnetic separation
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response. [ron oxide NMs can act as immobilized carrier to remove contaminants or
can also act as photocatalyst/catalyst to degrade the contaminants. Magnetic sepa-
ration is a unique property of iron oxide NMs which is a challenge due to small
size of nanoadsorbents [34]. Therefore, the combination of adsorption process and
magnetic separation has been widely used in water treatment and environmental
purification. Strong paramagnetic characters of Fe,O; NMs make them effective for
the removal of toxic heavy metals like Cd(II), Pb(Il) etc. Super magnetic Fe;O4 NPs
have shown excellent catalytic activity for dye degradation in waste water to convert
them in less toxic form. According to reports, the preparation method and surface
coating medium play a key role in determining the size distribution, morphology,
magnetic and surface chemistry of NMs in the form of NP, nanoellipses nanobelts
and nanorings or other nanostructures [35].

Green synthesized iron oxide (Fe;O4) NP using an extract of Excoecaria
cochinchinensis leaves were found much effective for the removal of a contaminant
antibiotic (rifampicin) from aqueous media. This was found much more effective as
compared to commercially available Fe;O4 (Fig. 13) [36].

CH,COONa
Distilled water FeCl,- 6H,0
Heat (80 °C, 1h) (70 °C, 2h)
Vacuum-filtration Filtration
Washing
Drying

EC Exftract

cakiraton, 4o 08@8@ g ;
523‘ °c '@@8 @ E é

IONPs

e =111.8 07 g) @ -100
s IONPs %@@ ?2
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N /\l E o @ @@ E :; —+-Commercial Fe,0,
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X RIF @0 3

0 10 20 30 40 50 60
Rifampicin (RIF): pKa1 = 1.7, pKaZ = 7.9 Electrostatic attraction Time (min)

Fig. 13 Green synthesis of Fe304 and removal of rifampicin (Reproduced with permission from
Elsevier [36])
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Fig. 14 ZnO disinfection mechanisms (Reproduced with permission from Elsevier [38])

5.3 Zinc Oxide

Zinc oxide is another metal oxide NMs based photo catalyst which shows most
promising water treatment due to its high chemical stability and excellent photo-
catalytic activity. Large number of research groups across the globe have already
reported potential applications of ZnO NMs along with their variable morphology
and structural characteristics including Nano sheets, nanowires, Nano rods, nanorib-
bons and complex hybrid structures [37, 38]. ZnO has a wide band gap (3.37 eV),
and the excitation binding energy (60 meV) is also large at room temperature which
makes it an excellent photo catalyst. In addition, easy availability, low toxicity and
antibacterial efficiency of ZnO NMs make them ideal for water treatment. Hollow
spheres in these nanostructures are of great interest due to their light trapping effi-
ciency and highly enhanced photocatalytic activity, as well as their high surface area,
low density, and good surface permeability [37].

Nano Zno acts as an antibacterial agent and the mechanism of its action is given
in Fig. 14 [38].

5.4 Copper Oxide

Due to its inherent compatibility, low-cost manufacturing and excellent electrochem-
ical performance, research on copper oxide NMs has grown significantly in the recent
years. It is reported that copper oxide NMs show a little photocatalytic activity which
can be significantly enhanced by activating it with HyO, [39]. More than a photo
catalyst, CuO NMs are used as a good adsorbent of water pollutants such as congo
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reed, malachite green, methylene blue, ciprofloxacin, methyl orange dyes and many
heavy metals like Pb (II), Hg(Il) As (III). The main application of CuO NM in
water treatment is its antimicrobial efficiency. Bacterial disinfections, one of the
main applications of copper-based NM, which is an essential requirement of potable
water. Many biotechnologists have investigated the potential of CuO NMs to disinfect
water with respect to microorganisms [9]. Scientific reports suggest few mechanisms
behind it (i) Cu is released from copper oxide NPs which damages the bacterial cell
membrane and lead to bacterial cell death (ii) interaction with DNA molecule and
disorder its helical structure (iii) and by inducing oxidative stress [18].

In many cases metal oxide composites were found more effective in removal of
pollutants. Extract of pine needle was used for the synthesis of nano composite of iron
and copper oxides (Fe/Cu oxides) and was found an efficient adsorbent for ofloxacin
and norfloxacin removal from aqueous media. Mechanism of synthesis and removal
of organic pollutant is given in Fig. 15 [36].

5.5 Silver Oxide

Silver oxide exists in many nanostructural forms which includes, NPs, nanohorns,
nanorods, and nanopyramids. Silver oxide NM exhibits excellent antibacterial prop-
erties which has been already used in many commercial products [40]. A few research
groups have reported the photocatalytic activity of these NMs for the degradation of
dyes like methylene blue and methyl orange present in water along with their antimi-
crobial activity [22]. Silver oxide NMs are syntheisezd be various synthetic routes
which includes direct precipitation, sol gel, hydrothermal and biological route [41,
42]. These are mostly spherical particles (20-80 nm) with high surface area (10-50
m?/g) and good magnetic properties.

5.6 Manganese Oxide

Different forms of manganese oxide NP such as MnO, MnO;, Mn;03, Mn3;O4 are
tested for removel of heavy metals in water decontamination process. They are struc-
turally flexible and display novel physical and chemical properties. The primary
benefits of managanese oxide NMs come from their low cost, high activity and
non-toxic nature. A large number of heavy metals including Cu(Il), Cd(II), Pb(Il),
As(IIT), As(V), U(VI) and organic contaminants are successfully removed by MnO,
and its NPs. The mutual interference of Zn(II), Cd(II) and Pb(II) ions with various
nanostructures of MnO,; e.g. nanoparticle, nanotube and nanobowl are investigated
by Zhang et al. [43]. Nanoflakes of MnO, are reported for the detection and removal
of Cr(II) ion [44]. Differential pulse voltammetric method was used for the detection
of Hg(II) ion by MnO; nanotubes [45].
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5.7 Cerium Oxide

Cerium oxide (CeQ;), a non-toxic rare earth metal oxide is gaining attention for
application as UV-blocking agent, sensing agent and in water remediation. Recently
nanoscale CeO, is investigated for their applications in removal of heavy metals
from water [46]. The properties of nanocrystalline CeO, are found to be effective
for removal of inorganic heavy metals. Low ionic potential and high basicity leads
to dissociation of hydroxy group into hydroxyl ions. The size, porosity, surface area,
bulk density etc. are in favor of their selectivity, stability and activity during adsorp-
tion process. Recillas et al. reported removal of Cr(VI) metal ions using 12 nm
average sized CeO, NPs [47]. Their results indicate that low concentration of Cr(VI)
(80 mg/L) can be effectively removed by CeO, NPs with maximum adsorption
capacity of 121.95 mg/g. Arsenic metal in the form of As(III) and As(V) has success-
fully been removed from water by CeO, NPs by Mishra et al. [48]. In their work,
the BET surface area of 3-5 nm sized CeO, NPs was 257 m?/g and the adsorp-
tion capacity of As(IIl) and As(V) ions were 71.9 and 36.8 mg/g~! respectively.
It is observed that the adsorption capacity of CeO, NPs reduced in the presence
of some anions such as sulpahte, bicarbonate, dihydrogen phosphate etc. Further,
CeO, NPs are found to be compatible with other metal oxides for treatment of heavy
metals from water [49, 50]. Recently, Meepho et al. have synthesized samaria doped
cerium nanopowder (SDC) by doping samaria with different morphologies of cerium
nanopowder [51]. The samaria doped cerium nanopowder (SDC) was used for the
removal of Cu(Il), Zn(Il) and Pb(II) ions. The outcome of the investigation indi-
cates that spherically shaped SDC nanopowder was more effective than the plate like
SDC nanopowder. The surface modifications of CeO, NPs enhance the adsorption
of heavy metals in terms of material stability and selectivity. The hydrous CeO,
NPs with adequate hydoxyl group help in the adsorption of arsenic through inner
sphere mechanism. Composite of CeO, NPs with graphene oxide has the capability
of removal of arsenate and arsenite almost completely (99.99%). A cost-effective
adsorbent is developed by supporting CeO, NP over carbon nanotube (CNT) for
removing AS(V) ions [52]. The only drawback of ceria in water remediation is its
high cost which can be taken care by the surface modification or composite formation
of ceria.

5.8 Magnesium Oxide

Magnesium oxide NP have high potential in removing pollutants from water. MgO
NP are associated with exceptionally high absorption ability, abundantly available,
non toxic and inexpensive [53]. These unique properties make it one of the sought-
after metal oxides NMs for removing heavy metals from water. MgO NP also displays
superb antibacterial activity for both gram-positive bacteria, gram-negative bacteria
and spore cells [54]. Reported literature also indicated the effect of size of MgO NP in
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Fig. 16 Schematic illustration for the formation of mesoporous MgO nanosheets. (Reproduced
with permission from Elsevier [58])

its bactericidal properties. Cai et al. reported simultaneous removal of heavy metals
Cd(II) and Pb(Il) and Escherichia coli bacteria by MgO NP [53]. Three different
nano metal oxide e.g. TiO,, MgO and Al,O3 was investigated for elimination of
heavy metals Cd(II), Cu(Il), Ni(II) and Pb(II) ions form water [55]. It was observed
that the efficiency of MgO NP was better than the other two metal oxide NP. MgO
NP follows adsorption and precipitation mechanism for the removal of heavy metals
while TiO; and Al,O3 were via adsorption mechanism only. Interesting work by
Madzokere et al. revealed that MgO NP are capable of removing 96% Cu(Il) ion
compared to the 15% removal ability of commercial MgO [56]. A batch adsorption
experiment performed by Xiong et al. indicated excellent adsorption capacity of
MgO NP [57]. Langmuir model was used by Jing et al. to establish the remarkably
high adsorption of Ni(I) ion over mesoporous MgO nanosheets (Fig. 16) [58]. All
these works suggest MgO NP as a very promising material for the removal of heavy
metals from water.

5.9 Zirconium Oxide

Among metal oxide NMs, zironia or zirconium oxides also exhibited remarkable
potential in removing water pollutants specially the heavy metal ions [59, 60]. They
have high thermal and chemical stability, less toxicity and biocompatibility. Zirconia
display high resistivity against acids and alkalis. Presence of large number of -OH
groups over the surface leads to high surface area which in turn makes zirconia a good
adsorbent. Both nanoscale zirconia and hydrous zirconia are excellent for removing
heavy metals like Cd(II), Zn(II), Pb(Il), arsenate and arsenite ions. Silicate ions
adsorb strongly over zirconia surface, thus hampering the adsorption of arsenic ions
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using zirconia adsorbent. The presence of alkaline earth metals e.g. Ca(Il) and Mg(II)
ions promote the adsorption of arsenic pollutants by reacting with the silicate ions
[61]. It is reported that simultaneous adsorption of arsenate and arsenite is possible
over nanocomposite of hydrated zirconia-graphene oxide sheet [62]. The adsorption
capacity of this nanocomposite was higher compared to the pristine nano zirconia. In
addition to that it is recyclable up to five times. Removal of Cd(II) was investigated by
a composite of polystyrene supported nanosized hydrous zirconia [63]. The removal
efficiency of this material lies within wide pH range. Further promising result of
removal of Pb(I) and Cd(II) ions are observed by nanocomposite based on hydrous
zirconium (IV) oxide [64].

Another composite of zirconia with y-Fe,O; is investigated for the removal of
arsenic from leach out water of gold cyanidation industry [65]. The iron oxide core
helps in improving the recyclability of the adsorbent by easy separation. To improve
the adsorption capacity towards arsenate ions at strong acidic environment, zirconia
is encapsulated in D201 (polystyrene anion exchanger [66]. The electrostatic inter-
action between arsenate ions and D201 and inner sphere complexation explain the
mechanism of the adsorption. Presence of sulphate ions restricts the electrostatic
interaction and in turn reduces the adsorption capacity.

An interesting report on removal of Cr(VI) by a series of mesoporous transition
metal oxides suggests that ZrO, as the most attractive adsorbent among other nano
metal oxides e.g. TiO,, HfO, and NbO; [67]. A hybrid nanocomposite made from
71r0,/B, 035 displayed satisfactory results in removal of Cu(Il), Cd(IT) and Cu(II) ion
[68].

5.9.1 Aluminium Oxide

Aluminium oxide NMs are inexpensive and can be prepared easily. Alumina adsor-
bents have high efficiency in removing heavy metal ions [69]. Many research works
is reported on the application of alumina for the adsorption of several heavy metals.
Among several crystalline forms of aluminium oxide, y-alumina is the most effec-
tive for decontamination purpose because of its high surface area [70]. In addition
to that y-alumina has high mechanical strength, excellent thermal stability and high
adsorption capacity. Tabesh et al. has reported 97% and 87% removal of Pb(II) and
Cd(I) ion respectively by y-alumina NP [71]. It is observed that adsorption of Zn(II)
and Cd(II) ions by alumina become more enhanced in presence of phosphate ions
and humic acid while presence of citrate ion reduces the adsorption of Zn(II) ion
[72]. Moreover heavy metals ions such as As(II), Hg(II), Ni(II), Cu(Il), Cr(VI) are
also reported to be removed by alumina NP [73-75].

Applications of some selected nano metal oxides in removal of pathogens, dyes
and heavy metals are listed in Tables 3, 4 and 5 respectively.
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Table 3 Nanometal oxide in pathogen removal for water purification

Nano metal oxide | Targeted pathogen Mechanism References
TiO; Escherichia coli and human pathogens | Antibacterial activity | [76]
Ag,0 Bacillus subtilis, Staphylococcus " [77]

aureus, Psedomonas aeruginosa,
Esherichia coli, Canadida albicans and
Aspergillus niger

Pseudomonas aeruginosa, Vi [78]
Staphylococcus aureus, Bacillus
subtilis, Escherichia coli

Streptococcus mutans and Lactobacilli | // [79]
sp.
CuO Staphylococcus aureus, Escherichia " [80]

coli, Bacillus licheniformis and
Pseudomonas aeruginosa

Vibrio anguillarum, Proteus mirabilis, |// [81]
Bacillus cereus, Edwardsiella tarda,
Staphylococcus aureus, Aeromonas
hydrophila, and Aeromonas caviae

Staphylococcus aureus and " [82]
Escherichia coli
Escherichia coli and Salmonella Vi [83]
typhimurium

ZnO Escherichia coli and Enterococcus Vi [84]
faecalis
Escherichia coli and Salmonella // [85]
typhimurium
Enterobacter aerogenes and Bacillus | // [86]
subtilis
Escherichia coli and Bacillus subtilis | // [87]

6 Challenges

The metal oxide NPs are extensively studied for their application in water purification
technology. But the validation and development of nanotechnology for purification
of water at mass scale is full of challenges. The toxicity of the nanometal oxides is of
primary concern. When nano metal oxides are used for water purification, consumers
are exposed to the toxicity of these nano materials. Numerous research works have
been performed on toxicity analysis of these materials both in vitro and in vivo [115,
116]. Various factors control the level of toxicity of these engineered NMs. Size of
the NMs, dose, administration mode and exposure duration are important factors
that controls the toxicity levels. It is reported that large TiO, NP with size more than
100 nm are non toxic in nature. Concentration of TiO, nanoparticle in the range of
1000-2000 p.g/g is found to be toxic [116]. The health issues from TiO, NP primarily
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Table 4 Nanometal oxide in dye removal for water purification
Nano metal oxide Targeted dye Mechanism References
CuO Methylene blue Photocatalytic degradation [88]
Basic red 14, Basic violet | Adsorption [89]
16
Melachite green oxalate, Adsorption [90]
Methyl orange
TiO, Methylene blue, Photocatalytic activity [91]
Rhodamine B
Methyl orange Photocatalytic activity [92]
Ag,O malachite green Adsorption [93]
Methyl orange Photocatalytic activity [94]
Methylene blue /! [95]
AO8 / [96]
ZnO Methylene blue Photocatalytic degradation [85]
Azo dye Adsorption [97]
Reactive blue 19, Acid Adsorption [98]
Black 210
Table 5 Nanometal oxide in Nano metal Targeted heavy | Mechanism | References
heavy metal removal for .
. . oxide metal
water purification
TiO, Cu, Zn, Pb, Cd, | Adsorption |[99]
Ni
Zn(1D),Sr(I1) // [100]
Cr(VD), Cr(Ill) | // [101]
CuO As(V) 1 [102]
Pb(I) 1 [103]
ZnO Cr(VI) /" [104]
PbI) 1 [105]
As(IID) 1 [106]
As(V) 1 [107]
ZrO2 As(ID), As(V) |/ [108]
Al203 As(V) 1 [109]
MgO As(IIT) 1/ [110]
MgO As(V) /! [111]
MnFe;04 As(ID), As(V) |/ [112]
Ce-Mn mixed | As(IIl) // [113]
oxide
Ce-Fe Mixed | As(V) 1 [114]
oxide
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come from inhalation not from ingestion with water. Thus toxicity of TiO, is not a
serious concern. Oral administration of high dose (2.5 mg/g body weight) of ZnO
NP is known to be accumulated in different body parts e.g. lung, kidney, liver and
spleen. A detailed in vitro toxicity study on ZnO NM is reported by Vandebriel and
Jong [117]. The toxicity of silver oxide nanoparticle is found to be more compared
to other nano metal oxides. Silver can interact with most of the biomolecules and
impart toxicity which in turn leads to cellular apoptosis [115, 118]. Magnetic iron
oxide nano particles used for purification of water has insignificant toxic effect and
are not serious issue [119]. Thus, technological advancement on nanometal oxide
purification system is possible after addressing the toxicity issues convincingly.

Next the economic viability is another challenge that needs to be sorted out. To
make the nano metal oxide based water purification technology acceptable it must
be affordable. In this regard development of highly effective filtration membrane
with multifunctional capabilities is extremely necessary to reduce the cost of the
membrane-based purification technology.

In addition to the above issues, the aggregation and dispersion properties of
nanometal oxides make the operational conditions critical. Mixing of nano metal
oxides in water gets accumulated and forms aggregate. The surface immobiliza-
tion of the nano metal oxides is used for killing various water borne microbes and
pathogens. However, leaching of NMs beyond their acceptable limit is a serious threat
for human and other living beings. Report of aggregation of TiO, NPs as waste from
industry and consumer products in water is well documented [120]. One important
strategy to reduce the leaching of nano metal oxide in water is to sediment or coag-
ulates the NPs before supply to the consumers. This method has been successfully
applied for TiO, and silver oxide NPs [121, 122]. More technological innovations
are needed in these directions to make the nano metal oxide-based water purification
in large scale.

Thus, to assure the safety of the consumers for the use of nano metal oxides-
based purification technology, regulatory board must be formed [123]. In China, the
use of NM and its issues are taken care by NSCNN (National Steering Committee
for Nanoscience and Nanotechnology) which work closely with National Nanotech-
nology Standardization Technical Committee [124]. Similarly in Europe REACH63
(Registration, Evaluation, Authorization and Restriction of Chemicals) controls the
use of NMs and their impact on health and environment is monitored [125]. Few other
developed countries are in process of bringing regulatory law to control the usage of
NM based technology products. Till now in India there is no such organization for
governing the usage and legal constraints of NMs [126].
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7 Conclusions

Water is the most important element on this planet for living things and plants.
However, the water is contaminated with different type of toxic materials. The major
cause of this pollution is industrial waste going into water bodies. Numbers of tech-
niques have been used for remediation but the adsorption technique is found to be
the most effective. Nanomaterials have been considered to be the most important
adsorbent. Because of various specific properties, numbers of nano metal oxides and
their composites have been found to be a suitable adsorbent for removal of pollutants.
Synthesis of nano metal oxides and their applications for water remediation have been
discussed. These metal oxides have also been used as photocatalysts. Considering
the advantages and disadvantages, further research is needed.
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