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Abstract. Data confidentiality and reliable permission management
have always been primary concerns that hinder enterprise customers
from adopting data services of three-party professional providers (e.g.,
Amazon AWS). This situation is especially prominent in the State Grid
Corporation of China (SGCC), in which the data is particularly sensitive.
Accordingly, we hope only authorized users have access to the expected
data, while unauthorized entities, including cloud service providers and
unapproved internal staff, know nothing about the data. In SGCC, we
utilize cloud facilities to maintain our data, and multifold efforts have
been made to achieve these requirements. Specifically, for reliable author-
ity management and access control, we devise an authority separation
mechanism; the data is stored in encrypted form, and we design a set of
mechanisms to enable search and query on encrypted data using search-
able encryption and homomorphic encryption. In this paper, we present
architectures, designs, and experiences in launching our systems.

Keywords: Database services · Query processing · Homomorphic
encryption · Authority separation mechanism

1 Introduction

Managing large amounts of data securely and efficiently has always been an
essential task for the State Grid [28]. Traditionally, access control and permission
management methods have been deployed to protect sensitive data, e.g., users’
personal private information, management personnel information, and financial
information. However, their limited security guarantees make them vulnerable to
attacks, which normally result in terrible consequence [1]. Hence, a more rigorous
method, encryption, is generally taken as a promising solution.

In practice, however, applying cryptography methods for database protection
is in the face of two challenges, which seriously hinder their feasibility. First,
encryption disables any parties to manipulate the data. This implies that any
data query requires the users first to download the entire database, then decrypt
it locally, and conduct data queries on the decrypted data. Downloading the
entire data lies a huge burden for the network transmission. Second, this workflow
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Fig. 1. Architecture and workflow of the data query system.

presents high requirements for the client – it requires each client to have enough
storage space to hold the data and has the computational capability to perform
queries on the entire dataset (Fig. 1).

Thus, we expect to design a scheme that can perform queries on the encrypted
data directly, i.e., do not reveal the data to the server and without downloading
the data. Depending on the data type, queries can be divided into two main
categories: character-oriented data query and numerical data query. Specifically,
a keyword-oriented search is performed to obtain records/data entries containing
specific keywords (e.g., to find information on experts whose research interests
are “smart grid” and “superconducting DC” in the expert database). On the
other hand, when we want to query a specific record to satisfy certain numerical
characteristics (i.e., querying the oldest employee with more than 25 years of
project review experience), we need to perform calculations (including numerical
operations and data comparisons) on specific data records, etc.

In this paper, we build a complete encrypted database query scheme that
supports the most common queries. Specifically, for queries that rely only on
addition operations, we adopt a somewhat homomorphic encryption scheme to
encrypt the data so that the server can perform queries directly on the ciphertext.
For complex queries that rely on multiplication operations, we adopt a dual-
server architecture, in which two servers that store encrypted data independently
work together to make queries. Moreover, we devise an Authority Separation
mechanism further to restrict the data exploration of the cloud server, so that
the relevant third-party department must approve the user before querying and
using the data. Based on the proposed framework, we can mitigate the risk
of information leakages caused by unreliable management and employees while
maintaining the usability of sensitive data.

2 Preliminary

2.1 Basic Cryptographic Tools

The BCP Crypto-System. BCP cryptosytem [12,23] is quin-tuple (Setup,
KeyGen, Enc, Dec and mDec) that consists of the following algorithms:
SetUp(κ): for the security parameter κ, choose a safe prime RSA -modulus
N = qp of bit κ, s.t. p = 2p′ + 1 and q = 2q′ + 1 for distinct prime p′ and q′.
Pick a random element g ∈ Z

∗
N2 of order pp′qq′ s.t. gp′q′

mod N2 = 1 + kN .
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The plaintext space of the crypto-system is Z∗. This algorithm output the public
parameters PP = (N, k, g) and the master key is MK=(p′q′).
KeyGen(PP): the key generation algorithm which take the public parameter as
input and out put the secret/public key pairs. For each public-secret key pair,
it firstly randomly pick a ∈ ZN2 and computes h = ga mod N2 and then our
put the public key pk = h and secret key sk = a.
Enc(PP,pk)(m): the encryption algorithm which take the plaintext, the public key
and public parameters as input and output the ciphertext. The algorithm firstly
pick a random r ∈ ZN2 and generate the ciphertext (α, β) as:

α = gr mod N2andβ = h(1 + mN) mod N2

Dec(PP,sk)(PP): the regular decryption algorithm that take the ciphertext, the
secret key and public parameters as input and output its corresponding plaintext.
In terms a key pair pk = ga mod N2 sk=a, the ciphertext (α, β), it output the
plaintext as:

m =

β

αa
− 1 mod N2

N

mDec(PP,pk,mk)(α, β): the alternative decryption algorithm which take the public
key, the master key, the ciphertext and public parameters as input and output
the corresponding plaintext. It first computed a mod N as:

a mod N =
hp′q′ − 1 mod N2

N
· k−1 mod N

in which k−1 denotes the inverse of k modulo N . Then compute r mod N as

r mod N =
Ap′q′ − 1modN2

N
k−1 mod N

Then let δ denote the inverse of p′q′ modulo N and compute γ = ar mod N .
The plaintext is finally computed as

m =
(

β

gγ
)p′q′ − 1 mod N2

N
· δ mod N

The BCP Crypto system has flowing special properties.

1. Additive Homomorphism. For the cipertext encrypted using the same
public key, the BCP crytosystem satisfies the addictive homomorphism.

2. Key Homomorphism. The key homomorphism refers to the property that,
if a plaintext is encrypted with the public key pk = pk1 × pk2, it can be
successfully decrypted with the secret key sk = sk1+sk2. Formally, it satisfies

m = Decsk1+sk2 [Encpk1+pk2(m))]

3. Double Trapdoor. The BCP cryptosystem provides two independent mech-
anisms for decryption. Except for decrypting a ciphertext (encrypted with
public key pi) with the corresponding secret key (i.e., ski) as the traditional
public key cryptosystem does, the BCP cryptosystem allows a master to hold
the master key and decrypt ciphertext encrypted by any public-key without
knowing its corresponding secret key (i.e., the second trapdoor).
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The Goldwasser–Micali Cryptosystem is a bitwise probabilistic (semanti-
cally secure) public key encryption scheme based on the quadratic residuosity
assumption. It satisfies the additive homomorphic property over Z2. That is, for
two plaintext bit m1 and m2 ∈ {0, 1},

Enc(m1) · Enc(m2) mod N = Enc(m1 ⊕ m2)

As its special bitwise homomorphism, the Goldwasser-Micali Cryptosystem
is often used as a basic building block to construct high-level primitives.

2.2 Symbols and Notations

For a plaintext a ∈ ZN2 we use EncpkA
(a) to denote its corresponding ciphertext

encrypted by the BCP cryptosystem with public key pkA. If we do not care which
public key is used in encryption, we use [a] to represent the ciphertext of a for
short. For a plaintext b ∈ Z2, we use ‖b‖ to denote the corresponding ciphertext
encrypted with the Goldwasser-Micali encryption algorithm.

3 Scheme Description

3.1 System Architecture High Level Description

This scheme adopts two non-collusive servers – the storage server S and the
(auxiliary) computing server C. The whole database is stored in server S, and
each sensitive attribute (column) is encrypted using BCP cryptosystem with
a separate public key, whereas the non-sensitive columns remain in plaintext
form. This public key is also stored in the server S along with the ciphertext
of this column. The computing server holds the master key mk of the BCP
cryptosystem, whereas no data is stored on the computing server.

Operation Modes. As some columns are encrypted whereas some are not,
we denote inter-column operations between an encrypted and an unencrypted
column as the [EP] mode and denote inter-column operations in two encrypted
columns as [EE] mode. If there is no sensitive column involved, the database
management system will execute operations as in the traditional manner, and
in this paper, we will not discuss this case. For each operation, if the serve S
gets the encrypted result (which is either used for further operations such as
aggregation or used as a final classified result), we denote this case as [→E]
mode. Likewise, if the serve S gets the plaintext result (which is normally used
for data retrieval such as select clause), we denote this case as [→P] mode.

3.2 Scheme Construction

Aggregation. The SUM() operation considers the setting that, given k values
a1, a2, ..., ak in one column, it requires to compute the sum σa =

∑k
i=1 ai It serves

as the basic step for other aggregation operations such as AGV(), COUNT(), etc.
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Actually, as the addictive homomorphism of the BCP cryptosystem, the sum
operation within a column can simply achieved by S independently, without the
computing server C involved.

Addition. [EP→E mode] Given an encrypted column A encrypted with public
key pkA and a non-sensitive column B in the plaintext form, we want to compute
the column C = A + B, such that each item in C is in encrypted form and can
be decrypted with secret key skA. Specifically, if a is the element in i-th row of
column A and b is the element in i-th row of column B, we want to get c such
that Enc(c) = Enc(a + b) This can be achieved by the following two steps (i.e.,
entire done by S without interaction)

– Encrypt b with public key pkA, which will result in EncpkA
(b).

– based on the addictive homomorphism of the BCP cryptosystem, compute
EncpkA

(c) = EncpkA
(a) · EncpkA

(b)

[EE →E mode] we want to compute the column C = A + B, s.t. each item in
C is in encrypted form and can be decrypted by an individual secret key skC .

Algorithm 1. The cross-column addition in EE→E mode

Input: The storage server S holds
encrypted column A and B, as well
as its corresponding keys pkA and
pkB ; The computing server C holds
the master key mk

Output: Server S gets the encrypted col-
umn C

1: Server S:
2: pkC = pkA · pkBmodN2;
3: for i=1 to n do
4: ri

$←− ZN ;

5: τi
$←− ZN ;

6: ci = ADD(EncpkA(ai), EncpkA(ri));
7: di = ADD(EncpkB (bi), EncpkB (τi));
8: end for
9: C = (c1, c2, ..., cn) D = (d1, d2, ..., dn);

10: send pkA, pkB , C and D to C;
11: Server C:
12: pkC = pkA · pkB modN2;
13: for i=1 to n do
14: xi = mDec(pkA,mk)(ci);
15: di = mDec(pkb,mk)(di);
16: zi = EncpkC (xi + yi);
17: end for
18: Z = (z1, z2, ..., zi);
19: send Z to C;
20: Server C:
21: for i=1 to n do
22: ei = ADD(zi, EncpkC (−ri));
23: ti = ADD(ei, EncpkB (−τi));
24: end for
25: Output T = (t1, t2, ..., tn)

Multiplication. [EP→E mode] In this setting, given a sensitive column A
encrypted by BCP-cryptosystem with public key pk and a none-sensitive column
X in plaintext form (with x denoting an item in column X), we want to compute
B such that B = AX.

Recall that the ciphertext of m under the BCP encryption is in the form of
c = Enc(m) = (α, β), in which α = grmod N2 and β = hr(1 + mN)mod N2.
Thus when multiplay a constant x into the ciphertext c, the storage server just
computer c′ = <αx, βx>, which will get the ciphertext of xm.(as proved below).

xc = <αx, βx>
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Algorithm 2. The cross-column multiplication in EE→ E mode

Input: The storage server S holds
encrypted column A and B, as well
as its corresponding keys pkA and
pkB ; The computing server C holds
the master key mk

Output: Server S gets the encrypted col-
umn C

1: Server S:
2: m = ADD([a], EncpkA(−r1));
3: n = ADD([b], EncpkA(−r2));
4: send pkA, pkB , m and n to C;
5: Server C:
6: pkC = pkA × pkB ;
7: x = mDec(pkA,mk)(m);
8: y = mDec(pkB ,mk)(n) ;
9: z = EncpkA(m × n);

10: send z to Server S:

11: Server S:
12: At this phase the server S aquires

CT0–the ciphertext of ab−ar2 − br1 +
r1r2 encrypted under public key pkC

13: compute CTa = EncpkA(ar2), CTb =
EncpkB (br1)

14: send CTa, CTb to the Server C
15: Server C decrypt the CTa and CTb, re-

encrypt them with pkC , getting CT ′
a

and CT ′
b, the ciphertext of ar2 and br1

encrypted with the public key pkC

16: send CT ′
a and CT ′

b to Server S
17: Server S:
18: CTrr = Encpkc(r1r2)
19: CT = CT0 + CT ′

a + CT ′
b − CTrr

20: Output CT

α = grmod N2, β = h2(1 + mN)mod N2

αa = graxmod N2

βx

αxa
=

hxr(1 + mN)xmod N2
grxamod N2

=
gxar(1 + mN)xmod N2

grxamod N2
=

(1 + mN)xmod N2 = (1 + xmN + C2
xmN2 + ...)modN2 = (1 + xmN)mod N2

Dec =
βx

αxa − 1mod N2

N
modN2 =

xmN

N
mod N2 = xm

[EE→E mode] Given an encrypted column A (encrypted with pkA) and
column B (encrypted with pkB), we want to computed C = A × B, such that C
is in the encrypt form and can be decrypted by a separate key skC . Recall that
the ciphertext of BCP cryptosystem is in the form like < α, β >. We denote
the i-th item in column A as [a] =< α, β > and the i-th item in column B as
[b] =< α′, β′ >. The output [c] of Algorithm 2 (i.e., CT ) is the ciphertext of
a × b that can be decrypted with secret key skC = skA + skB .

Comparison. For the functionality of secure comparison protocol, the server S
holds two values (either both in encrypted form, or one in encrypted and the
other in unencrypted form) and hopes to know the relationship (i.e., whether a ≤
b or not) among the two numbers. Normally, the server C is an external service
provider that concentrates on providing auxiliary computing service (especially
cryptographic operation). Thus, as one design principle, we hope the server C
gets as little information as possible.

As the server S holds the BCP public key of each column, both EE or EP
mode can be transformed to EE mode.
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Table 1. Functionality of comparison protocols.

The protocols Inputs of S Inputs of C Protocols’ Output

P1: Comparing encrypted data
enrypted by same key with plain-
text comparison output

pk, skQR, [a], [b] mk, pkQR (a ≤ b)?

P2: Comparing encrypted data
enrypted by same key with
encrypted comparison output

pk, pkQR, [a], [b] mk, skQR ‖(a ≤ b)?‖

P3: Comparing encrypted data
enrypted by different keys with
plaintext comparison output

pkA, pkB , skQR, [a], [b] mk, pkQR (a ≤ b)?

P4: Comparing encrypted data
enrypted by different keys with
encrypted comparison output

pkA, pkB , pkQR, [a], [b] mk, skQR ‖(a ≤ b)?‖

P5: Changing encryption schemes pkQR, ||t|| mk, skQR ||t||
P6: Equality test pkA, pkB , pkQR, [a], [b] mk, skQR ‖(a = b)‖?

[EE→E mode] Get the BCP-encrypted comparison result, which is normally
used for SELECT COUNT(*).

[EE→P mode] Get the comparison result in plaintext form. Normally used
for directly retrieve the tuples that satisfy the query condition (e.g., SELECT
COUNT * where Production ≤ Sells).
The functionality of comparison protocols in different modes is listed in Table 1.

Equality Test. Similar to the comparison protocol, all cases can be converted
to equality test among two encrypted ciphertexts (either encrypted in the same
or different keys). As demonstrated in Sect. 3.2, we have composed protocols for
encrypted ciphertext comparison, i.e., for two encrypted items [a] and [b], the
server S can get the encrypted or unencrypted bit t indicating whether a ≤ b.
In order to determine whether a = b, the servers firstly run the comparison
protocol to get the encrypted bit ||t1||, indicating whether a ≤ b; and then, ran
the comparison to get the encrypted bit ||t2|| indicating whether b ≤ b. Note
that, during the excursion of these two protocol, the server S get the encrypt
bits whereas the server C get no information about a and b. Then the server S
computer ||t|| = ||t1|| · ||t2||, which equals to ||t1 ⊕ t2||, and t1 ⊕ t2 = 1 if and only
if t1 = t2 (i.e., when a ≤ b and b ≤ a satisfies simultaneously, indicating a = b).

After acquiring the QR-encrypted comparison result, if we want to get the
plaintext of the result, the server S first generate a random bit τ and blind the
QR-encrypted ||t|| with τ and send the blind result to server C. Then, the server
C decrypted the blind equality test result and sent back the decrypted result to
S, which will afterward remove the blind factor τ and get the result in plaintext
setting (Algorithm 8). Likewise, if the server is required to get BCP encrypted
result, then we apply the Chenging Encryption Schemes (Algorithm 9).

Unlike theirs, in our scheme, each column is encrypted with BCP cryptosys-
tem of independent keys, and the randomness of each ciphertext is derived from
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Algorithm 3. Comparing same BCP-key encrypted data with plaintext output

Input:
1: Server S: pkA, pkB , skQR, [a], [b]
2: Server C: mk, pkQR

Output: S get (a ≤ b)?
3: Server S:
4: [x] ← [2l] · [b] · [a]−1mod N2;

5: r
$← {0, 1}l+λ;

6: [z] ← [x] · [r] mod N2

7: sent [z] to C;
8: Server C:
9: z = mDec([z]);

10: Server S : c ← r mod 2l;
11: Server C : d ← z mod 2l;

12: Using another comparison protocol
(DGK protocol) to get ‖t′‖(i.e., the
ciphertext of t′ with Goldwasser-
Micali cryptosystem), s.t.

t′ =

{
1, if c<d

0, otherwise

13: S: encrypt the l-th bit of r getting ‖rl‖
and send ‖rl‖ to C;

14: C: encrypt the l-th bit of z getting ‖zl‖
15: Compute ‖t‖ ← ‖t′‖ · ‖zl‖ · ‖rl‖
16: send ‖t‖ to S
17: S: decrypt ||t|| and get the result t

the cryptosystem itself. In this way, a random number does not exist that influ-
ences all the encrypted data items in a whole tuple, and thus, the Cartesian
product is natively supported. Joint is actually performing selection operation
on the Cartesian product, and accordingly, it is natively supported.

4 Performance Evaluation

We deployed our system on top of Amazon AWS and Aliyun and conducted
a comprehensive performance evaluation of our scheme. Specifically, we deploy
the storage server (i.e., server S) on a standard VM (with a dual-core CPU
@2.5 GHz, 32-GB memory, and 256-GB SSD storage) rented from Amazon EC2
located at N. Virginia datacenter. The computing server (i.e., server C) is run
on Aliyun (Silicon Valley datacenter). Both server S and server C are connected
with a high-bandwidth network. Our experiments are designed to answer the
following two questions:
Q1: What is the efficiency of the building blocks, and
Q2: How practical our proposed method is for typical database query workloads.

To answer Q1 we implement each cryptographic primitive with C++, and
we adopt the GMP(https://gmplib.org) and NTL (http://www.shoup.net/ntl/)
library for large integer representation and algebraic manipulation. To answer
question Q2, we build a prototype based on our design. We use MySQL 5.7.19 as
the underlying DBMS. To examine the performance of our scheme in the general
setting, we conducted the evaluation with the TPC-H benchmark.

Performance of Each Cryptographic Primitive. We tested each building
block used in our scheme (i.e., used in query evaluation). In our experiment, we
run the aforementioned algorithms/protocols 50 times and record their average
exerting time in Table 2. From Table 2 we can see that all the building blocks

https://gmplib.org
http://www.shoup.net/ntl/
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Algorithm 4. Comparing data encrypted by same BCP-key with QR-encrypted
comparison output

Input:
1: Server S: pkA, pkB , pkQR, [a], [b]
2: Server C: mk, skQR

Output: S get ||(a ≤ b)?||
3: Server S:
4: [x] ← [2l] · [b] · [a]−1mod N2;

5: r
$← {0, 1}l+λ;

6: [z] ← [x] · [r] mod N2

7: sent [z] to C;
8: Server C:
9: z = mDec([z]);

10: Server S : c ← r mod 2l;
11: Server C : d ← z mod 2l;

12: Using another comparison protocol
(DGK protocol) the server get the
‖t′‖(i.e., the ciphertext of t′ with
Goldwasser-Micali cryptosystem), s.t.

t′ =

{
1, if c<d

0, otherwise

13: S: encrypt the l-th bit of r getting
‖rl‖;

14: C: encrypt the l-th bit of z getting ‖zl‖
and send ‖zl‖ to S;

15: S compute ‖t‖ ← ‖t′‖ · ‖zl‖ · ‖rl‖

Table 2. Overhead of each cryptographic algorithm and protocol.

Protocals S (ms) C (ms) Network lattency

Homomorphic add 0.74 0.00 0.00

Cross-column add in [EP → E] mode 1.22 0.00 0.00

Cross-column add in [EE→E] mode 4.31 1.12 204.7

Cross-column multiplication in [EP→E] mode 2.53 0.00 0.00

Cross-column multiplication in [EE→E] mode 5.56 4.37 832.1

Comparison in [EE→E] mode 8.43 0.00 0.00

Comparison in [EE→p] mode 4.87 1.77 243.1

Fast comparison 2.21 2.11 242.8

Equality test 9.11 9.72 1523.4

Changing encryption scheme 4.43 2.21 265.4

can be finished in millisecond-level, which indicates that they are efficiently
constructed and can be used to build practical query evaluation schemes on an
encrypted database.

The TPC-H Benchmark. We run our scheme on TPC-H (version 3.0) bench-
mark (http://www.tpc.org/tpch). Meanwhile, we also compare the performance
of our scheme with CryptDB, a state-of-the-art system for encrypted database
queries. There are 22 decision-support queries named Q1 to Q22 in the TPC-H
workload, and we select Q1-18 to present the performance evaluation. Among
them, some of the workloads (e.g., Q13 and Q16) are so complicated that they
cannot be run on both our scheme and CryptDB in encrypted form. We record
the running time of each workload and record the total time consumption on
Table 3. In general, encrypted data query in both our system and CryptDB takes

http://www.tpc.org/tpch
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Algorithm 5. Comparing data encrypted by different BCP keys with plaintext
output

Input:
1: Server S: pkA, pkB , skQR, [a], [b]
2: Server C: mk, pkQR

Output: S get (a ≤ b)?
3: Server S:
4: r1, r2

$←− {0, 1}l+λ

5: [x] = [a] · EncpkA(r1)
6: [y] = [b] · EncpkB (r2);
7: Sent [x] and [y] to C
8: Server C:
9: x = mDec(mk,pkA)([x]);

10: y = mDec(mk,pkB)([y]);
11: z = 2l + y − x;
12: d = z mod 2l;
13: Send z to S
14: Server S:
15: r = r2 − r1;
16: c = r mod 2l;

17: Using another comparison protocol
(DGK protocol) to get ‖t′‖(i.e., the
ciphertext of t′ with Goldwasser-
Micali cryptosystem),s.t.

t′ =

{
1, if c<d

0, otherwise

18: ServerS:
19: encrypt the l-th bit of r getting ‖rl‖

and send ‖rl‖ to C;
20: Server C:
21: encrypt the l-th bit of z getting ‖zl‖ ;
22: Compute ‖t‖ ← ‖t′‖ · ‖zl‖ · ‖rl‖
23: send ‖t‖ to S
24: Server S: decrypt ||t|| and get the

comparison result t

Table 3. Performance of our scheme under TPC-H workload, compared with CryptDB;
“–” denotes the corresponding system cannot work on this workload.

Benchmark Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Plaintext 121.51 64.44 81.23 45.33 176.32 62.32 291.27 201.29 672.01

CryptoDB 4860.22 148.23 332.12 182.23 534.34 582.21 973.32 523.23 2932.21

Our scheme 3731.98 127.23 1623.32 164.71 201.23 1243.32 628.23 667.23 2123.21

Benchmark Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18

Plaintext 132.42 56.73 71.20 398.22 72.34 64.23 41.22 3423.32 1187.23

CryptoDB 542.23 263.12 362.12 – 534.32 – – 17342.66 73238.78

Our scheme 412.31 59.23 372.81 – 342.23 372.23 – 12029.30 36439.91

several times (less than 10 ×) than query on plaintext setting. Only a few of them
take longer times (e.g., Q1, Q17 and Q18), but still less than 100× of plaintext
data query. Most importantly, we can also see that our scheme achieves a better
performance than CryptDB in most cases.

5 Related Works

Encrypted Database. The notion of executing SQL query on encrypted rela-
tional database was firstly considered by Hacigümüş et al. [16]. They proposed
a prospective architecture in which the client outsources his encrypted database
along with some additional auxiliary information (i.e., serves as a secure index)
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Algorithm 6 . Comparing data encrypted by different BCP-key with QR-
encrypted comparison output

Input:
1: Server S: pkA, pkB , pkQR, [a], [b]
2: Server C: mk, skQR

Output: S get ||(a ≤ b)?||
3: Server S:
4: r1, r2

$←− {0, 1}l+λ;
5: [x] = [a] · EncpkA(r1);
6: [y] = [b] · EncpkB (r2);
7: Sent [x] and [y] to C
8: Server C:
9: x = mDec(mk,pkA)([x]);

10: y = mDec(mk,pkB)([y]);
11: z = 2l + y − x;
12: d = z mod 2l;
13: Send z to S
14: Server S:

15: r = r2 − r1;
16: c = r mod 2l;
17: Using another comparison protocol

(DGK protocol) the server get the
‖t′‖(i.e., the ciphertext of t′ with
Goldwasser-Micali cryptosystem), s.t.

t′ =

{
1 if c¡d

0 otherwise

18: ServerS: encrypt the l-th bit of r get-
ting ‖rl‖;

19: Server C: encrypt the l-th bit of z get-
ting ‖zl‖ and send it to S;

20: Server S: compute ‖t‖ ← ‖t′‖ · ‖zl‖ ·
‖rl‖

Algorithm 7. Equality Test (protocol 4)
Output: S get ‖u‖ = (a = b?)
1: Using protocol 2 to compute ‖u1‖, which is the comparison result of (a ≤ b?)

encrypted under QR.
2: Using protocol 2 to compute ‖u2‖, which is the comparison result of (b ≤ a?)

encrypted under QR.
3: ‖u‖ = ‖u1 ⊕ u2‖ = ‖u1‖ · ‖u2‖

into the server and can latterly issue the SQL queries to this database. In their
scheme, the database is encrypted by a traditional encryption scheme (i.e., sym-
metric encryption scheme such as DES and AES), and the aforementioned split-
and-transformation mechanism is achieved by a delicately designed algebraic
framework. Followed by this approach, Hacıgümüs et al. proposed a query opti-
mization method in [18] and constructed a secure DBMS that support aggrega-
tion query in [17]. However, for the sake of query processing efficiency, DBMS
built in this approach only provides very limited notions of data privacy.

Property-Preserving Encryption Approach. In order to accelerate data
processing operations meanwhile provide appropriate privacy guarantees,
researchers proposed some specific cryptographic primitives that support partic-
ular calculations to be performed on encrypted data. Specifically, for example,
Order-Preserving Encryption [2,9] enables the ciphertext to maintain the numer-
ical order of its corresponding plaintext, and the Order-Revealing Encryption[11]
enables efficient comparison among multiple (randomly-encrypted) ciphertexts.
Deterministic encryption [7] have advantage on equality search and match. Using
these primitives, Popa et al. [25] proposed the first practical system, CryptDB,
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Algorithm 8. Changing QR-encrypted (equality test) result into plaintext

Input:
1: Server S : pkQR, ||t||
2: Server C : skQR

Output: S get t = (a = b?)
3: Server S:
4: τ

$←− {0, 1}
5: x′ = ||t|| · ||τ ||

6: Send x′ to server C
7: Server C
8: x = DecQR(x′);
9: Send back x to S

10: Server S:
11: t = x ⊕ τ

Algorithm 9. Changing Encryption Schemes (Protocol 5)

Input:
1: Server S : pkQR, ||t||
2: Server C : skQR

Output: S get v = [t]
3: Server S:
4: x1 = ||t|| · ||0||;
5: x2 = ||t|| · ||1||;
6: r

$←− {0, 1}
7: if r = 1 then
8: s1 = x1, s2 = x2;
9: else

10: s1 = x1, s2 = x1;
11: end if

12: Send s1 and s2 tp C
13: Server C:
14: m1 = DecQR(s1), m2 = DecQR(s2);

15: n1 = Enc
(BCP )
pkA

(m1)

16: n2 = Enc
(BCP )
pkA

(m2);
17: Send n1, n2 to S
18: Server S:
19: if r = 1 then
20: v = n1;
21: else
22: v = n2

23: end if
24: Output v;

an integrated system that can perform query processing on encrypted data.
Afterwards, several systems, like MONOMI [29], are proposed.

FHE and SMPC Based Approach. Fully homomorphic encryption
(FHE) [15] is a cryptographic encryption primitive that enables to compute any
function on encrypted data. Boneh et al. [10] firstly implement the database-
query functionally with a specific homomorphic encryption scheme. This line
of work is based on the prerequisite that efficient fully homomorphic encryp-
tion schemes exist; nevertheless, the efficiency for FHE is still far more satis-
factory. Similarly, SMPC enables multiple distributed parties to jointly compute
an arbitrary functionality in an privacy-preserving manner. Secure database sys-
tems implemented SMPC include Blindseer [14,22], Arx [24], sharemind [8] and
SDB [19,32].

Secure Hardware Based Approach. Secure hardware enclaves (e.g., Intel
SGX [13] and Catalyst [21] etc.) promise data confidentiality and secure execu-
tion of arbitrary computation. The TrustDB [5,6], constructed with an ordinary
commodity cryptographic co-processor, is the first practical outsourced database
prototype that supports a subset of SQL operation, and the Cipherbase [3,4]
achieves the similar functionality with FPGA serving as the tamper-proof hard-
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ware. SGX based systems include include VC3 [26], Ryoan [20] and Opaque [33].
However, the secure hardware may not be as “secure” as it claims [31], and there
are lots of effective attacks targeted to hardware that can totally devastate the
underlying systems[27,30].

6 Conclusion

Reliable, secure, and trustworthy services are essential for industries with highly
sensitive data. In SGCC, we deployed our systems that ensure only authorized
users have access to the expected data, while unauthorized entities, including
cloud service providers and unapproved internal staff, know nothing about the
data. To achieve these goals, we devise an authority separation mechanism, store
data in encrypted form, and design a set of mechanisms to enable search and
query on encrypted data using searchable encryption (SE) and homomorphic
encryption (HE). Experimental and real-work running experiences indicate the
practicability of our system.

Acknowledgement. This work is funded by the “Research on Key Technologies for
Secure Query on Encrypted Electric Power Data” program of the Big Data Center,
SGCC.
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