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1 Introduction

mmWave massive MIMO technology has the advantages of ultra-high transmission
rate, large transmission bandwidth and lower transmission delay, it has become one
of the important development trends of next generation mobile communication [1].
However, mmWave massive MIMO still faces technical problems such as serious
reflection loss, multipath delay, and easy blocking interruption. These problems have
brought challenges to channel estimation [2].

In recent years, the channel estimation algorithms based on compressed sensing
(CS) mainly include greedy algorithms and convex optimization algorithms. Orthog-
onal Matching Pursuit (OMP) is a representative algorithm in greedy algorithms [3,
4]. But the greedy estimation algorithm is more likely to fall into the local optimal
solution. Another type of recovery algorithm is to construct the sparse recovery
problem as a l0-norm optimization problem. It is more difficult to find the optimal
result. Therefore, the convex optimization estimation algorithm is usually used to
approximate. [5] proposed a l1-norm-based channel estimation scheme, which recon-
structs the problem of CS. However, in practice, due to the influence of random noise,
the sparsest solution cannot be obtained in the l1-norm solution. Rong et al. [6] has
clearly pointed out that lq(0 < q < 1)-norm has obtained a more sparse solution,
but the quantization of the angle may introduce errors, so the channel estimation
algorithm needs further improvement. In [7], an objective function based on l1/2-
regularization was constructed, and then the super-resolution channel estimation
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was finally realized through iterative optimization. However, the method proposed
in this document is still unable to achieve the desired effect in terms of complexity.

The paper proposes a novel mmWave massive MIMO channel estimation algo-
rithm. First, an objective function based on l1/2-regularization is constructed. Then,
the channel estimation problem is transformed into an alternative optimization
problem through the gradient descent method, and the optimal angle parameter
estimation value is obtained.

2 System Model

Under the system of hybrid-precoding mmWave massive MIMO, the transmit
antennas is equipped with Nt antennas, the receiving end is equipped with Nr

antennas. The number of transmitter RF chains and receiver RF chains are N RF
t

and N RF
r , respectively. And both the transmitting end and the receiving end are

single-stream communication. The received signal is:

Y = WHHPs + n (1)

where Y is the receiving signal of the system, W is the hybrid combination matrix
at the receiving end, P is the hybrid precoding matrix, H is the channel matrix, s is
the pilot signal at the transmitter, n is the combined received Gaussian white noise.

The paper adopts the widely used Saleh-Valenzuela channel model

H =
√

Nt Nr

L

L∑
l=1

βla
(
θr,l

)
aH

(
θt,l

)
(2)

where L is the effective propagation path (L � min(Nr , Nt)), βl is the complex gain
of the l-th path, θr,l and θt,l are the corresponding arrival angle and transmit angle,
respectively. a

(
θr,l

)
and a

(
θt,l

)
can be expressed as

a(θr ) = 1√
Nt

[
1, e j2πd sin θt/λ, . . . , e j2π(N−1)d sin θt/λ

]T
(3)

a(θt ) = 1√
Nt

[
1, e j2πd sin θt/λ, . . . , e j2π(N−1)d sin θt/λ

]T
(4)

where d = λ
2 is the distance between adjacent elements.

Therefore, the mmWave channel H can also be expressed as

H = A(θ r )βAH(θ t ) (5)
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where β =
√

Nt Nr
L diag[β1, · · · , βL ].

Using x= Ps to represent a pilot signal transmitted, the i-th element in vector x
corresponds to the signal sent by the i-th transmitting antenna. The precoding matrix
and the transmitted signal content tr

(
P PH

) ≤ ρ and E
(
ssH

) = I N , respectively.
The received pilot signal can also be expressed as

Y = UHHX + N (6)

Due to the sparse nature of the channel, the sparse channel estimation problem
can be transformed into

min
β̂,θ̂ r ,θ̂ t

∥∥∥β̂

∥∥∥
0
, s.t.

∥∥∥Y − UH ĤX
∥∥∥
F

≤ ε (7)

ε is a threshold set to control the estimation error.

3 Description of the Proposed Channel Estimation
Algorithm

3.1 Proposed Optimization Alternative Formula

Generally speaking, the optimization of l0-norm is difficult to solve, so in most
researches, l1-norm is often replaced by l0-norm. However, in practice, due to the
influence of random noise, a non-sparse solution is formed in the process of solving
the l1-norm. Therefore, this paper chooses a new regular term l1/2-normwith stronger
anti-noise ability to obtain a more sparse solution. The reason for choosing the l1/2-
norm is that the regular term we need is easier to solve than the l0-norm, and at the
same time obtain a sparser solution than the l1-norm [7]. The sparse representation
ability of the lq(0 < q < 1/2)-norm is equivalent to that of the l1/2-norm, and the
lq(1/2 < q < 1)-norm is weaker than the l1/2-norm. Replacing the l0-norm in the
above formula with l1/2-norm to get

min
β,θ r ,θ t

F(β) = ‖β‖1/2, s.t.
∥∥∥Y − UH ĤX

∥∥∥
F

≤ ε (8)

γ is introduced to control the error between sparsity and data fitting. The problem
(8) can be refactored into the following form

min
β,θ r ,θ t

G(β, θ r , θ t ) = ‖ β‖1/2 + γ

∥∥∥Y − UH ĤX
∥∥∥2

F
(9)
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The lq(0 < q < 1)-norm has non-convex characteristic, and its solution can
be transformed into an iterative convex optimization process, which is a form of
equivalent replacement. The specific expression is

min
β,θ r ,θ t

S(t)(β, θ r , θ t ) �
L∑

i=1

((
β

(t)
i

)2 + δ

)−3/4

β2
i + γ

∥∥∥Y − UH ĤX
∥∥∥2

F
(10)

Based on the above statements, this paper constructs an iterative proxy function for
formula (10). Then the solution G(β, θ r , θ t ) can be converted into an optimization
problem of substitution function [6].

min
β,θ r ,θ t

S(t)(β, θ r , θ t ) � βH D(t)β + γ

∥∥∥Y − UH ĤX
∥∥∥2

F
(11)

where

D(t) � diag

⎡
⎢⎢⎢⎣

1((
β̂

(t)

i1

)2 + δ

)3/4

1((
β̂

(t)

i2

)2 + δ

)3/4 · · · 1((
β̂

(t)

i L

)2 + δ

)3/4

⎤
⎥⎥⎥⎦ (12)

In (10), we will encounter a situation. This situation is when β
(t)
i = 0, if δ is

not introduced, (10) will be undefined. Therefore, in the alternative optimization
process, this article not only needs to introduce δ. In order to obtain better estimation
performance, the parameters will gradually decrease in the iterative process instead
of a fixed value [8].

In the t-th iteration, β̂
(t+1)

, θ̂
(t+1)

r , and θ̂
(t+1)

t will be found so that S(t)(β, θ r , θ t )

satisfies the following inequality

S(t)(β̂
(t+1)

, θ̂
(t+1)

r , θ̂
(t+1)

t ) ≤ S(t)(β̂
(t)

, θ̂
(t)

r , θ̂
(t)

t ) (13)

Combining (9), (10) and (11), we have

G
(
β̂

(t+1)
, θ̂

(t+1)

r , θ̂
(t+1)

t

)
− S(t)

(
β̂

(t+1)
, θ̂

(t+1)

r , θ̂
(t+1)

t

)

= F
(
β̂

(t+1)) −
L∑

l=1

∣∣∣β̂(t+1)
∣∣∣2(∣∣∣β̂(t+1)

∣∣∣2 + δ

)3/4
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≤ F
(
β̂

(t)) −
L∑

l=1

∣∣∣β̂(t)
∣∣∣2(∣∣∣β̂(t)

∣∣∣2 + δ

)3/4

= G
(
β̂

(t)
, θ̂

(t)

r , θ̂
(t)

t

)
− S(t)

(
β̂

(t)
, θ̂

(t)

r , θ̂
(t)

t

)
(14)

It is worth noting that when β = β̂
(t)
, G(β, θ r , θ t )−S(t)(β, θ r , θ t ) gets the

maximum. And we can get

G(β̂
(t+1)

, θ̂
(t+1)

r , θ̂
(t+1)

t )

= G(β̂
(t+1)

, θ̂
(t+1)

r , θ̂
(t+1)

t ) − S(t)(β̂
(t+1)

, θ̂
(t+1)

r , θ̂
(t+1)

t )

+ S(t)(β̂
(t+1)

, θ̂
(t+1)

r , θ̂
(t+1)

t )

≤ G(β̂
(t)

, θ̂
(t)

r , θ̂
(t)

t ) −
[
S(t)(β̂

(t)
, θ̂

(t)

r , θ̂
(t)

t ) − S(t)(β̂
(t+1)

, θ̂
(t+1)

r , θ̂
(t+1)

t )
]

≤ G(β̂
(t)

, θ̂
(t)

r , θ̂
(t)

t ) (15)

To simplify S(t)(β, θ r , θ t ), this algorithm constructs two functions. One is to use
θ r and θ t to represent the correlation function of β, and the other is to use θ r and θ t

to represent the function of S. The specific expression is as follows

β
(t)
opt � argmin

β
S(t)(β, θ r , θ t ) = (

γ −1D(t)+K H K
)−1(

K HY
)

(16)

where

K = UH A(θ r )diag
(
AH (θ t )X

)
(17)

Finally, substituting (16) into (11), it converts S(t)(β, θ r , θ t ) into a function only
related to the angle parameter.

S(t)
opt (θ r , θ t ) � min

β
S(t)(β, θ r , θ t ) = −(

K HY
)H (

γ −1D(t)K H K
)−1

+ (
K HY

) + Y HY (18)

After that, in (5), we only need to estimate θ r and θ t .
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3.2 Channel Estimation Based on IR

In order to solve the problem of angle parameter estimation the IR-based channel
estimation method is used in this paper.

γ is used to adjust the weight between βH D(t)β and ‖Y − Kβ‖2F . γ will be
updated in the following ways

γ = min(d/r (t), γmax) (19)

where γmax is used to ensure the good operation of the algorithm. r (t) is the residual
square of the previous iteration.

r (t) =
∥∥∥Y − UH A(θ

∧(t)

r )β
∧(t)

AH (θ
∧(t)

t )X
∥∥∥2

F
(20)

The algorithm uses gradient descent method to estimate the angle parameters.
The method is expressed as follows

θ
∧(t+1)

r = θ
∧(t)

r −ς · ∇θ r S
(t)
opt (θ

∧(t)

r , θ
∧(t)

t )

θ
∧(t+1)

t = θ
∧(t)

t −ς · ∇θ t S
(t)
opt (θ

∧(t)

r , θ
∧(t)

t )
(21)

where ∇ is the gradient operator, ς is the step size.
In this algorithm, a SVD-based scheme is used to initialize the angle parameters.

The received signal Y is simplified by SVD. We have Y = W�V H , � is a diagonal
matrix. The angle parameter initialization formula is expressed as

θ
∧(0)

r = argminW HUH A(θ r )

θ
∧(0)

t = argminV HXH A(θ t )
(22)

The pre-processing method based on SVD can debase the complexity and at the
same time find the angular domain grid closest to the real AoA/AoD.

Algorithm 1. The specific Flow of the Algorithm

Input The receive signal Y ; Initialize the angle parameter θ̂
(0)
r and θ̂

(0)
t ; Delete threshold βth;

Fault tolerance threshold εth

Step 1 Initialize β̂
(0) = βopt (θ̂

(0)
r , θ̂

(0)
t ) according to (16)

Step 2 Update γ by (20)

Step 3 Calculated S(
optt)(θr, θ t) by (18)

Step 4 Estimate the new θ̂
(t+1)
r and θ̂

(t+1)
t by (22)

(continued)
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(continued)

Input The receive signal Y ; Initialize the angle parameter θ̂
(0)
r and θ̂

(0)
t ; Delete threshold βth;

Fault tolerance threshold εth

Step 5 Estimate β̂
(t+1)

by (16); If β̂
(t+1)
l < βth, then trim the path

Step 6 Until L(t) = L(t+1) and
∥∥∥β̂

(t+1)−β̂
(t)

∥∥∥
2

< εth, the iteration ends

4 Simulation Results

The properties of the proposed algorithm is verified through some simulation
comparison results in this section.

The simulation parameter is set to Nt = Nr = 64. We use four algorithms for
comparison, includingLS-based channel estimation,OMP-based channel estimation,
ADMM-based channel estimation [9], and Cramer-Rao bound (CRB).

Figure 1a shows the NMSE for channel estimation of various algorithms under
different SNRs. The accuracy of each algorithm increases as the SNR increases. The
performance of the LS-based algorithm has the worst estimation accuracy and almost
no change, indicating that the traditional LS is not suitable for mmWave massive
MIMO channel estimation. This is mainly due to the easy attenuation characteristics
ofmmWave, and its estimated environment is often lowSNR. From the overall effect,
the proposed algorithm is closer to CRB.

The effect of path numbers on the NMSE of the four algorithms is shown in
Fig. 1b. Figure 1b shows that with the number of paths increases, the estimation
accuracy of the three algorithms show a downward trend. Under the same number of

(a) (b)

Fig. 1 a NMSE versus SNR. b NMSE versus L
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paths, the channel estimation performance of the proposed algorithm is better than
the other algorithms.

In summary, the traditional channel estimation method is not suitable for mm-
Wave massive MIMO system to a certain extent. The proposed algorithm based on
CS becomes a better choice.

5 Conclusion

In short, a channel estimation method based on l1/2-SVD is proposed. The basic idea
of the algorithm is to transform the channel estimation into the recovery of sparse
signals. The iterative replacement function based on l1/2 is constructed first, and then
preprocessed by SVD, which reduces the computational complexity. Finally, the
objective function is optimized by the gradient descent method to obtain the optimal
solution of the angle parameter. After simulation analysis, it can be gained that the
proposed algorithm has certain advantages and provides guidance for subsequent
channel estimation algorithm research.
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