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Abstract Disposal of waste has become a major challenge throughout the world
due to uncontrolled disposal of domestic as well as industrial wastes in open spaces.
Exposure to a variety of wastes may eventually lead to the spread of various diseases
and, thus, may pose serious health hazards to the public and adversely affect the
environment. To minimize such issues, integrated waste management system could
be a sustainable solution. It is well known that sorting of the waste at the source
can be the first and the most important step to start with for efficient management
of waste. This can simply be done by putting a number of labeled bins specified
for each kind of wastes at the point of generation itself. However, this is the most
tedious step among all the steps involved in effective waste management. To fasten
the process and efficiently manage the waste collection, artificial intelligence (AI)
may play a critical role in waste management which starts with the use of smart
garbage bins. These bins are often combined with an app that helps the users know
the availability of nearest location of the waste bins, thus preventing the bins from
overflowing. AI can also play an incredible role in sorting of the wastes, as sorting is
another major issue for most of the waste management facilities. AI-based sensors
can discriminate items composed of different materials and distinguish the items of
the samematerialwhether an itemhas been chemically contaminated, ensuring purity
of the waste stream. A number of waste management companies have been using
such techniques and are taking the advantage of Internet of Things (IoT) sensors to
monitor the fullness of trash receptacles throughout the city. The advantage of using
such smart bins have effectively optimized the routes, timing and frequencies ofwaste
collection, and reducing the load of municipalities. Such automated process would
provide the best use of technology for effective waste management to prevent the
human health risks as well as to protect the environment. This review article includes
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details on various techniques based on machine learning and the use of artificial
intelligence for efficient waste management than could significantly minimize the
risks associated with human health and environment.

Keywords Artificial intelligence · Internet of Things · Sensors · Smart waste
management

6.1 Introduction

Solid waste generation is one of emerging issues nowadays. Population growth,
industrialization, rapid urbanization, and lack of financial resources have enormously
increased the generation of solid waste worldwide. The expanding population across
the globe are becoming amain reason for accumulation of solid wastes and should be
answerable for a clean, healthy, and safe climate [1–3]. The globe generates around
2.01 billion tons of municipal waste annually, with about 33% of the waste produced
being dumped into unmonitored landfills and unchecked waste dumps (The World
Bank) [4]. The more the amount of waste produced, the more resources they will
invest in finding solutions. Global waste is expected to increase by 3.4 billion tons
by 2050 (World Bank Group, 2022) [5]. As everyone is getting vaccinated for the
COVID-19 virus, there has been a spike in the clinical waste exposure to various
wastes that may eventually lead to the spread of various diseases, such as, tubercu-
losis, pneumonia, and diarrhea. Moreover, it also adversely affects the environment
leading to soil contamination, land pollution, thereby causing the loss of aquatic,
and terrestrial lives. The lack in handling waste materials and keeping the lanes
clean leads to breeding mosquitoes, which is the sole reason for diseases such as
dengue and malaria [3, 6]. Hence, there is an urgent need for the implementation of
proper solid waste management. Insufficient operation and inadequate planning are
the reasons behind poor solid waste management. Everything must be appropriately
managed starting from the initial steps, i.e., waste disposal, collection, and preventing
overflow of bins to proper disposal of the waste following the waste hierarchy [7].
In evolved countries, several smart waste management strategies are being invented,
implemented, and adopted and enormous benefits are achieved. However, the waste
management appears to be a challenge for developed and developing countries.

The waste hierarchy indicates that prevention (reduction) of waste material,
reusing them, recycling, recovery, and adequate disposal can decrease the amount
of solid waste generated. The overall waste management system comprises various
parameters and are connected by complex processes affected by multiple socioeco-
nomic factors. Sorting the waste at the source can be the first and the most crucial
step to start with for the efficient management of waste management. Exposure of
open municipal solid waste causes several diseases and adversely affects the envi-
ronment [6, 7]. Hence, the industrial waste, biomedical waste, the radioactive waste,
and non-radioactive waste should be segregated properly and handled carefully as
the radioactive wastes may emit radiation leading to lethal skin diseases and increase
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the risk of skin diseases, abnormalities in birth and child maturity, and cancer [10]. In
addition, direct disposal and poor waste management practices may also contaminate
the soil and water, thereby causing land/soil pollution and thus deteriorating the land
and water quality.

Therefore, classifying the solid wastes into domestic, industrial, and biomed-
ical/hazardous waste is the primary step toward waste management. Moreover,
the solid waste can be reused and recycled efficiently. For instance, urban solid
waste (USW) can be converted into a different form of energy via biochemical,
thermochemical, and mechanical ways.

6.2 Waste Management

Each step of waste management is crucial; however, reuse and recycle of waste have
provided an additional advantage of economic gain to solid waste management [11].
Among these, waste-to-energy technology is identified as an excellent opportunity
for sustainable and economical solid waste management. In this approach, the waste
is converted into energy primarily via biochemical, mechanical, and thermochemical
ways (as demonstrated in the Fig. 6.1). Incineration, pyrolysis, and gasification for
conversion of organic matter contain less biodegradable substances, converted via

Fig. 6.1 Waste to energy conversion [12]
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thermal conversion; the anaerobic digestion is done for waste with more extensive
moisture content and biodegradable substance for methane gas production [2, 6, 9].

The waste-to-energy conversion system includes several key steps such as collec-
tion of waste input, bio-conversion approaches, conversion of waste to energy, and
the energy carriers [13]. The waste input includes the carbonaceous wastes which are
collected from sources such as municipal solid waste, agricultural residues, sewage
sludge, forest residues, and wastes from food industries [2, 6]. Subsequently, the
waste materials based on their characteristics are segregated into three groups for
the conversion process. These processes involve the biochemical processes, ther-
mochemical processes, and mechanical processes. The energy carriers are produced
based on abovementioned process. Ultimately, a controlled disposal of waste in
sanitary landfills and preventing overflow should be done.

With the advancement in research toward revolutionizing urban waste manage-
ment, artificial intelligence (AI) and machine learning (ML) are being widely
explored for a sustainable waste management [14–17]. Different methods based on
the Internet of Things (IoT) and AI are being developed to increase waste manage-
ment efficiency [17]. All the smart bins are connected digitally through the Internet
to display the level of waste in the bins and their respective locations [18]. The IoT-
integrated smart bins send the volume of the bins to the Internet over the servers.
With efficient optimization techniques and associated algorithms, different methods
are being proposed.

Recent machine learning techniques including neural networks is being explored
in temporal models to predict the generation of solid waste. The Artificial Neural
Network (ANN), Genetic Algorithm, fuzzy logic (FL), and other AI models can
solve human traits such as problem-solving, reasoning, and understanding [12, 16,
17]. As reported by Zade and Noori [21], a feed-forward artificial neural network
(ANN) was employed for prediction of waste generation pattern on weekly basis in
Mashhad city, Iran [21]. Expert systems, such as, FL can solve complex mapping
systems and provide results wherever systems like Genetic Algorithms (GA) use
the Darwin theory of natural selection to select the set of data that best fits the
procedure for handling certain conditions [22]. The sensors are connected to detect
different types of waste materials. Computer vision annotation and intelligent algo-
rithms allow the sensors to sense the different garbage to be placed in the smart bin.
Artificial intelligence has been employed to solve several issues on large scale such as
air pollution, soil erosion, wastewater management, and several environment-related
problems. Adaptive Neuro-Fuzzy Inference System (ANFIS) models are helpful to
forecast and optimize wastewater plant treatment processes [19]. Multi-layer percep-
tion (MLP) algorithm is used for weather forecasting, measuring the levels of atmo-
spheric carbon dioxide and nitrous oxides [23]. Adaptive Neuro-Fuzzy Inference
System (ANFIS) models help predict particulate matters and check different waste
management processes. There are still several techniques reported in literature, and
many are in their way of being prepared. ANFIS is widely used to remove turbidity
in chemical industries and check methane gas production and other solids during
anaerobic digestion for biochemical conversions of waste to energy [12, 20]. Thus,
AI-based models offer an effective alternative approach with stand-alone and hybrid
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models to optimize urban waste management (UWM) models [11, 21]. This article
has discussed waste segregation, waste hierarchy, and recent trends in artificial intel-
ligence and machine learning for USW (Urban Solid Waste) management, recycling
waste, and fewer case studies. To explore the prospective application of AI models
in solid waste management, the emerging application of AI and machine learning
techniques is crucial to employ for an efficient solid waste management. Various
models based on artificial intelligence and machine learning algorithms have been
explored to improve existing SWM schemes for each of the stages, starting from
waste collection to final disposal. Hybrid AI-based models and various comparative
studies employing AI/non-AI models have been included in this article for better
understanding of the waste management.

6.3 Waste Management

6.3.1 Classification of Waste Management

If we go by the definition of waste, there would be several definitions for waste.
According to the waste framework directive of the European Union, “Waste” means
any substance or object which the holder discards or intends or is required to discard
(European Union, 2011). Defining waste can be a case-to-case decision as well.
Removal ofwaste improves the quality of life. Efforts are beingmade globally at their
best to reorient the face of solid waste management (SWM) toward sustainability.
There are different ways of managing the solid waste produced in the developed
countries, such as USA, South Korea, and Japan, and in the developing countries
like India and China. In most cases, a significant amount of waste generated is taken
care by the respectivemunicipal bodies, as per theGovernment norms. The facility for
the recyclable materials (papers, drink cans, and plastics) is better in the developed
economies, whereas compostable organic matter is minor in countries with lower
GDP (INTOSAI, 2020). In developed countries, recycling occurs almost at every
stage of product usage, whereas this system is lacking in developed countries, leading
us to understand a more solid waste approach. The classification of solid waste can
be done on different criteria such as source of waste generation, composition of
wastes, hazardous properties of the waste, and who manages the waste. Broadly, the
solid waste is categorized into Hazardous and Non-Hazardous waste (Depicted in
Figure 6.2). Further classifications occur under these two divisions. Hazardous waste
constitutes radioactive waste, e-waste, and biomedical waste. The radioactive waste
emits radiation that can either degrade theDNAof the cells or mutate them. Exposure
to such radiation may cause acute respiratory syndrome (ARS) or even cancer (CDC,
2021). Hence, the separate bins have been used to collect these wastes separately.
Finally, they should be disposed of properly. Incineration, high temperature, and
chemical treatments are a few ways to treat them.
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Fig. 6.2 Classification of waste

6.3.1.1 Types of Hazardous Waste

E-waste: These waste materials are produced from unused or broken electrical and
electronic appliances after the end of their useful life. It contains toxic elements like
radium, barium, mercury, lead, cadmium, arsenic, and certain carcinogens leaching
into the environment and may cause cancer in humans and animals, and particularly,
lead can trigger neurological damage [5, 8, 23]. When these electronic parts are
mishandled during disposal, they mix with soil, water, and air and adversely affect
the human, animal health, and environment.

Biomedical waste: It arises frommedicals, hospitals, pharmaceuticals, bandages,
and body fluids. They can be infectious and may contain toxic and radioactive
microorganisms [27]. Exposure to these chemical compounds can interfere with
the immune system and cause diseases [25, 26]. Around 16 billion injections are
dispensed globally every year, however, most of these needles and syringes are not
discarded properly after their use. Sometimes, these are burnt directly through open
burning or incineration of such biomedical wastes which may result in the emission
of dioxins, furans, and particulate matter in some cases (WHO, 2018).

Radioactive waste: These wastes are produced from nuclear activities including
earth mining, nuclear research, fuel processing plants, and nuclear power generation.
They need special treatment for handling and disposal processes. Storage of used fuel
is usually done underwater for five years and then in dry storage. Deep geological is
the widely used method for their disposal [30].

6.3.1.2 Non-Hazardous Waste

Non-hazardous wastes include waste that can be recycled and reused but may lead
to profound environmental and health impacts when left untreated and uncontrolled.
They are broadly classified into municipal waste and industrial waste. Municipal
waste can be classified into organic, packaging, and industrial wastes. They are



6 AI in Waste Management: The Savage of Environment 103

disposed of in different ways, like taking them to a disposable site, recycling the
waste, and working with a disposable company [31].

6.3.2 The Waste Hierarchy

With increasing population and urbanization, the solid waste generation rate has
been increasing tremendously. Currently, as several countries have chosen to follow
social distancing and declare a lockdown as a protection measure from COVID-
19, waste production has increased again. The pandemic effect is forcing retailers
to use low-grade plastic materials for packaging. The recycling of waste products
has slowed down due to COVID virus transmission and disturbance in the supply
chain. The International Finance Corporation (IFC, 2021) report also notes an uptick
in single-use plastic production, mainly prompted by the increased use of plastic-
based personal protective equipment (PPE) and packaging materials (ISM Waste
and Recycling, 2021). The waste hierarchy is a ranking system used for different
environmental wastemanagement options at the individual and organizational levels.
Prevention is themost preferred, followed by reuse, recycling, recovery, and disposal.
All these five priorities are often illustrated as the five-tier pyramid, as depicted in
Figure 6.3 (ISM Waste and Recycling, 2021). Thus, the maximum benefits can be
extracted from the products we use while minimizing the waste output produced
when waste management hierarchy is being followed. These includes:

1. Reduce: We can prevent extra packaging materials, reuse materials, less dispos-
able, and less filled landfill sites. Avoiding waste is the essential and most
preferred option in the waste industry. Wherever possible, reducing the usage

Fig. 6.3 Waste management hierarchy
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of materials before it becomes waste is preferred. Cleaning, repairing, and
refurbishing items can increase reusability.

2. Reuse: Reusing materials is the second-best waste management approach. It
also allows us to avoid spending money on new goods and materials.

3. Recycling: Recycling turns into new items that can be used for different
purposes, thus reducing the industrial raw materials used. Plastics, paper,
cardboard, and metal products can be recycled.

4. Recover: Wherever we cannot use the 3R’s (reduce, reuse, and recycle), we
should recover thewastematerial in the form ofwaste to energy.Waste to energy
helps reduce fossil fuel emissions and carbon footprints. Domestic wastes from
the kitchen can be converted to compost and manures by composting.

5. Disposal: The least sustainable option in the waste hierarchy is disposal which
is the most expensive method. This is the most unsustainable method done by
incineration and filling landfills. For example, one ton of landfilled food waste
can produce 450 kg of carbon emissions.

6.3.3 Conventional Waste Management Scenario

The waste management and its handling rules in India are governed by the Ministry
of Environment and Forests (MOEF). Waste is a potential resource; the primary
goal is to extract waste and effective waste management. In small towns, per capita
MSW generation in India is approximately 0.17 kg per person per day whereas, in
cities, it is about 0.62 kg per person per day (CJES, 2009). Solid waste management
(SWM) is a major challenge for urban places in India due to the rising population,
industrialization, and economic growth. Currently, the solid waste produced in India
is approximately 42 million tons on annual basis, which fluctuates from 200 to 600
kg/capita/day, with a collection efficiency varying from 50 to 90% (CJES, 2009).
Achieving sustainablewastemanagement is difficult for India, with a high population
density. The informal sector, which accounts for almost 90% of the waste produced,
dumps it randomly rather than properly landfilling it (CJES, 2009).

6.3.4 Current Waste Management Practices in India

Municipal authorities are accountable for enforcing the laws issued by management
and handling the rules of MOEF. The municipal authorities formulate the rules for
executing the regulations and develop the methods and techniques for waste manage-
ment including the collection, transportation, segregation, storage, processing, and
final disposal. However, rag pickers are usually seen collecting the domestic and
industrial waste manually and sell the collected waste to earn money and thus are
dependent on waste for their social and economic benefits despite the health risks
associatedwith it. Someof themcollect fromhome, somework in recycling industries
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and waste management associations. Sometimes, it is the only source of livelihood
for a significant population.

Biodegradable waste and inert waste are often dumped openly at several places.
Municipality and other local bodies are involved in their management who put an
expenses of around Rs. 500–1000 per tons on SWM, and out of which, 70% of the
total amount is spent on collection and 20% on transport [2]. Nowadays, engineered
landfills provide an alternative way of solid waste disposal that minimizes the expo-
sure of the waste with the environment. Properly managed landfills in India will
allow the safe removal and protect groundwater from contamination, avoid odors,
fire hazards, and air emissions, and reduce the emission of greenhouse gases [2].
Properly managed landfills will slowly replace waste dumping areas in India.

6.3.5 Barrier and Challenges for Waste Management in India

India is facing challenges in waste management due to lack of awareness among
people, lack of proper knowledge, and training for the workers which is required
for an efficient waste management. Ever-increasing urbanization is driving addi-
tional force on landfill sites situated in urban areas. Waste management becomes
difficult when the waste segregation is not accomplished and different kinds of
wastes including the recyclables, biodegradable waste, and industrial and toxic
wastes all are dumped together [32]. In general, people directly throw the house-
hold/domestic solid waste in a common bin which is not a good option. It is because
domestic waste also contains several hazardous/toxic materials which should not be
discarded directly with other non-toxic/non-hazardous household wastes. Dumping
them together makes all the wastes hazardous in nature. This reduces the possibility
of recycling of the wastes or conversion of wastes into other usable forms. Hence,
household wastes must be segregated at the household level itself and should be
collected separately into wet, dry and domestic/household hazardous waste cate-
gories. As per the Solid Waste Management Rules, 2016, domestic hazardous waste
includes the discarded paint drums, pesticide cans, compact fluorescent lightbulbs,
tube lights, expired medicines, broken mercury thermometers, used batteries, used
needles and syringes and so on generated in houses. Hence, the most crucial barriers
in rural part of India are recognized as household hazardous waste, inadequate assets
for research on SWM, lack of local architecture, a shortage of staff capability, and a
lack of a standard operating process for data collection and analysis. There is insuf-
ficient budget allocated for managing the urban waste produced. Limited qualified
waste management professionals, lack of environmental awareness, and less moti-
vation among people have hindered the adoption of new technologies to solve waste
management in India. In such cases, AI, along with machine learning techniques,
could give a unique shape to waste management in India. When coupled with proper
management skills from the people and waste management association, an effective
and sustainable waste management may be achieved in India.
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6.4 Waste-to-Energy Technologies: Transformation
Through Biochemical, Thermochemical,
and Mechanical Pathways

At a time, it was being predicted that the developing countries like India and other
such countries in theworldmay also increase thewaste generation rate andmay reach
to value comparable to the MSW generation rate of developed countries [8, 9]. The
rate of solid waste generation is projected to achieve 2.2 billion tons per year by 2025
and 4.2 billion tons per year by 2050 [33]. In other words, the solid waste produced
is directly proportional to the country’s Gross Domestic Product (GDP). Hence, this
might have become a huge problem for developing countries like India. Subsequently,
people around the globe realize the power of waste to energy (WTE) as the energy
supply in the current situation is less as compared to the real energy expected for
consumption. This paves the way for WTE from Urban Solid waste (USW). WTE is
sustainable, ecofriendly, and economically attainable for developing countries like
India. They can be applied to different kinds of waste: from solid (thickened sludge
from treatment plants) to liquid (sewage discharge) and gaseous (refinery gases)
waste. Various methods including thermochemical, biochemical, and mechanical
conversion approaches can be employed toward energy generation from the waste
(as summarized in Table 6.1), which are discussed in the following sub-section.

6.4.1 Thermochemical Conversion

Thermochemical conversion involves thermal organic matter treatment into heat
energy, fuel, and gases. They are mainly used for dry waste with a high concentration
of non-biodegradable waste. It involves three treatment processes that differ among

Table 6.1 Methods for waste-to-energy conversion

Methods for
waste-to-energy
conversion

Thermal conversion Biochemical
conversion

Mechanical
conversion

Temperature Incineration:850–1200 °C
Pyrolysis: 400–800 °C
Gasification: 800–1600 °C

150–450 °C 900–1200 °C

Type of waste Dry waste Organic waste Organic and dry
waste

Methodologies
used

Incineration
Pyrolysis
Gasification

Decomposition
Anaerobic sludge
digestion

Aerobic
degradation
Fermentation
Acetogenesis
Methanogenesis
Oxidation
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the temperature and oxygen content used. Incineration is the complete oxidative
combustion at 850–1200 °C of any kinds of solid combustible wastes (i.e., solid,
liquid, or gaseous) predominantly to carbon dioxide, water vapor, other gases, and
a relatively small, non-combustible residue known as ashes. The ashes are disposed
further in the landfills in an ecofriendly manner. The incineration process includes
two key processes: primary and secondary processes. Primary processes include a
number of stages,which comprises drying, volatilization, combustionoffixed carbon,
and burnout of char of the solids, whereas a secondary process includes the complete
combustion of the products generated during the primary process, i.e., vapor, gases,
and particulates driven off.

Pyrolysis is the degradation of organic matter without oxygen at 400–800 °C,
which can be used for any kinds of solid waste and are easy to be adapted to any
changes in their composition. Gasification is the partial oxidation at 800–1600 °C.
Gasification can be described as the thermo chemical conversion of a solid or
liquid carbon-based waste material (feedstock) into a combustible gaseous product
(combustible gas) in the presence of suitable gasification agent. It converts solid
wastes into combustible gases, integrated into other technology sources (Paul and
Helmet, 2015).

In thermochemical conversion, all types of waste materials, i.e., of the organic
matter, biodegradable as well as non-biodegradable, produces the energy output.
However, the amount of energy recovered is dependent on the efficiency of the
selected process in SW management schemes; In other words, the efficiency of
energy recovery is dependent on the rate of conversion of heat energy contained in
fuel into usable energy. The two key factors influencing process efficiency are as
follows: (a) electrical efficiency of the power generation technology and (b) amount
of heat recovery [28]. The choice of technology such as incineration vs. gasification is
an important determining factor for determining the process efficacy, and the degree
of productive utilization of generated heat and electricity.

6.4.2 Biochemical Conversion

This is the decomposition of the organic waste of USW by microbial decomposi-
tion, mainly used when the waste is filled with biodegradable organic materials and
moisture content. Anaerobic digestion degrades organic biowaste without oxygen
that produces biogas and stabilizes the sludge. The sludge can be used as manure in
agricultural fields. As reported in literature, the anaerobic digestion is more efficient
as it can generate 2–4 times of the methane per tons of solid waste in just 3 weeks
as compared to that produced through landfill approach in 6–7 years [35].
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6.4.3 Mechanical Conversion

Sanitary landfilling is the regulated disposal of the waste on landfills for decreasing
environmental impacts through the leachate method and biogas recovery. The degra-
dation of organic matter in landfills produces landfill gas (LFG) by five different
methods: aerobic degradation, fermentation, acetogenesis, methanogenesis, and
oxidation [1, 6].

Although waste-to-energy technologies for solid waste management are devel-
oping nowadays, the inconsistent composition of solid waste, the complexities of
the designing of the system, and specific social, economic, and environmental issues
may limit the applicability of the waste-to-energy technologies [12]. To improve
the efficacy of such technologies, there is a critical requirements of the analysis of
composition of the solidwastes, and accordingly, a suitable preprocessing step should
be included along with minimal impacts on environment. Overall, the overall process
should be done in such as a way that the technologies should provide a solution to the
solid waste management in a cost-effective and environmentally sustainable manner.
Energy technologies may arise afterward. All these factors should be considered for
the development of this technology.

6.5 Opportunities of Digitalization in Waste Sorting

Increasing population is increasing the human need in day-to-day life. Hence, there is
advancement in science and technology to improve the lifestyle and fulfill the human
need in a more efficient manner and in less time. As we all know that the twenty-first
century is becoming a digital world, so many processes are being improved due to
digitalization. This is not only improving human life in their daily life, but also has
created revolution in industrial sector including the environmental sector. As a result
of digitization, there is significant revolutionary changes in the waste management
sector [35]. This is because the digitalization will empower any economy in recov-
ering the economic gain and useful substances through efficient conversion of the
waste materials. In addition, this will provide additional advantages that it minimized
the amount of waste to be handled and raw materials, thereby reducing the adverse
impacts on the environment and climate. The consequences have been felt in all
developed economies.

Waste management processes are a complex managerial task that involves signif-
icant involvement of manpower which increases the expenses tremendously, thereby
putting an economical pressure [36]. This created an urgent need of alternative tech-
nologies that may reduce the requirement of manpower. Digitalization may play a
crucial role in minimizing such economic stress due to highmanpower requirements.
Moreover, it also increases the job opportunities in high-value sectors of the supply
chain. One of such opportunities is waste sorting, which is associated with increased
possibility of reuse and recycling of the waste [32, 33].
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Several major manufacturers of commodities, such as electronics, are already
using artificial intelligence-based image processing techniques aided by robotic
sorters [35]. Alternative possibilities include using watermarks, quick-response
codes, or other digitally readable identifiers on product labels. The advantage of
using such technique assist the automated sorters by sending the required data on
composition of waste material and the product setup, allowing high-value materials
to be recoveredmore easily [2, 25]. Robotic sorters could also generate data about the
materials they have sorted, allowing them to improve artificial intelligence or opti-
mize following procedures. For example, these data streams may be used to identify
trends in incoming garbage loads and to acquire the information about efficacy of
the waste sorting in order to forecast how sorting lines should be set up. When these
information are connected to other data, such as market prices of secondary raw
material, the procedures to be employed may be modified as and when required.
As illustrated in Fig. 6.4, various digital technologies which includes robotics, the
IoTs, artificial intelligence, cloud computing, and data analytics can be employed
to predict the influence on the efficiency of the industries in waste management in
future (European Environmental Agency, 2021).

Recently, the digital technology has been widely explored in various stages of
waste management including garbage collection [36]. An advancement in digital
technologies has improved various stages of garbage collection, predominantly the
logistics which involves the process of organizing, creating scheduled collection,

Fig. 6.4 Applications of digital technologies for waste sorting and management [38]
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and demonstrating the tasks, persons, and vehicles for garbage collection. Using
the digital technologies has enhanced the overall efficiency by storing the data,
processing, analyzing, and optimizing the required information. The data can be
monitored in real time for the garbage collection process, including the progress of
the task or any incidents. The overall process starts becoming complicated in nature
as more and more data is collected over time. The use of optimization algorithms
may be helpful in defining and selecting the most suitable options for allocating
various resources, such as manpower or vehicles in such cases. Hence, application
of telematics plays a crucial role, which involves vehicle routing systems, navigation
and use of vehicle tracking software, enterprise resource planning systems, and other
associated digital technologies. The outcome of employing such technologies can be
seen in terms of enhanced efficiency of the overall process.

The application of IoTs in improving the efficacy of waste management is another
suitable example, which incorporates various applications, such as use of smart bins
for waste collection at the site of waste generation and use of robotics for semi-
autonomous trash collection vehicles [15, 35]. However, there is still a lot of scope
of improvement to further enhance the efficiency of the garbage collection and linking
them in the future, as per the demands of a circular economy. Hence, it must be flex-
ible in adapting the new and emerging technologies rapidly to everchanging pattern
of waste generation and waste management purposes, including the installation of
required system and services to make the customized services better. The conven-
tional garbage collection process involves paperwork, communication, and billing
processes as their part. A transition from paper-based management systems toward
digital systems on continuous basis will enhance the process efficiency and informa-
tion flow. Use of digital identity tags for trash bins and waste containers, digital mode
of order processing, invoicing, and payment can improve the efficacy. The digital user
interfaces for communication with the customer and linking the garbage collection
corporations to the appropriate governmental databases are also the part of digital
technologies that can improve the overall efficacy. Such digital technologies can be
exploited toward collection of the data related towaste generation/collection from the
public working in documentation-related sectors. Subsequently, the collected data
can be converted into valuable information by the data analytics. This might help in
endorsing a circular economy by offering an “improved knowledge of the geograph-
ical and temporal patterns of trash creation” [39]. Moreover, the local governments
may be provided with further information by collecting multiple single-data points
than only providing cumulative values of the data.

6.5.1 Recent Trends of Artificial Intelligence Usage
in Municipal Solid Waste Management

Due to various interrelated processes at work and the highly variable demographic
and socioeconomic aspects affecting the complete waste management systems, the
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wastemanagement processes have complex processes and non-linear features.More-
over, it is a challenging task to achieve good performance in solid waste management
systems without threatening other health and environmental issues. Therefore, arti-
ficial intelligence approaches are being explored to determine their suitability in the
solid waste management system sector [11–13, 21]. AI is concerned with the use
of computer systems and programs to imitate human characteristics to solve the
problem, gain knowledge, perceive, understand, find reasons, and awareness of their
environment. Therefore, application of variousAImodels, such as the artificial neural
network, expert system, genetic algorithm, and fuzzy logic, can solve the complex
issues, create complicated maps, and anticipate consequences [19].

Recent trends suggest that there are six main AI application sectors in municipal
solid waste management. Detection of levels in the waste bin, prediction of the waste
characteristics, forecasting the process parameters, process output, vehicle routing,
and approaches used for solid waste management are the key sectors where AI can
be applicable. Detection of levels in the waste bin is linked with the monitoring the
filling of waste bins, whereas prediction of the waste characteristic involves catego-
rization of thewaste, waste compression ratio, waste creation, patterns, or trends. The
heating value and co-melting temperature of the waste comes under the projected
process parameters. Similarly, simulation and optimization of biogas generation in
the landfill and leachate creation over time comes under the process output fore-
cast. The garbage collection route and frequency optimization problem is part of the
vehicle routing problem. Finally, waste management planning includes the place-
ment of waste facilities, the build-up of garbage, and unlawful dumping locations,
as well as the financial and environmental implications of collection, transportation,
treatment, and disposal. Evidently, there has been a recent surge in enthusiasm for
AI research in solid waste management [23].

6.5.2 Machine Learning for Forecasting the Generation
of Municipal Solid Wastes

Most of the applications of artificial intelligence toward solid waste management
have focused on forecasting the characteristics of municipal solid waste. Predicting
municipal solid waste generation is an application that has received the greatest
attention in these investigations. In such applications, artificial neural networks are
commonly used, followed by support vector machines. Spectral analysis, correlation
analysis, response surface modeling, generalized linear modeling, gene expression
programming, partial least squares, hybridizedwavelet de-noising, Gaussianmixture
models, hidden Markov models, Viterbi algorithms, and principal component anal-
ysis are all used in conjunction with the AI models [36–38]. For waste generation,
several short-term and long-term forecasting periods are used. The rarity of research
mimicking everydaywaste generation is almost certainly a result of the unavailability
of such data.
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Various research studies have examined a broad variety of input variables
impactingwaste creation. They have also examined the categorization of wastemate-
rials for automated sorting systems that reduce the need for manual waste segrega-
tion. The bulk of these investigations employed artificial neural networks to classify
various waste components. One such study employed hyperspectral imaging and
multi-layer artificial neural networks to identify different varieties of plastics in e-
waste [41]. The suggested technique identified these materials with an accuracy of
99%. Another group of researchers used deep convoluted neural networks to attempt
to automate the waste sorting procedure [16]. In comparison with human sorting,
the automated procedure significantly reduced the time required for garbage sorting
and categorization. Similar to the previous example, deep convoluted neural networks
were utilized to differentiatemultiple kinds of paper and cardboard [36]. Themodel’s
mean accuracy varied between 61.9 and 77.5%; these low results were linked to the
training database’s small size comprising of only 24 images. Chu et al. employed
convoluted neural networks to extract features and MLP to classify garbage into
recyclable and non-recyclable components [44]. The hybrid technique achieved a
maximum accuracy of 98.2%, which was almost 10% greater than the accuracy
achieved using simply convoluted neural networks. Additionally, a few researchers
evaluated the usefulness of other machine learning algorithms for garbage catego-
rization [25, 45]. Singh et al. demonstrated that RF, Nu-, and C-LibSVM were all
capable of classifying with an accuracy of better than 90%. On the other side, Naïve
Bayes and closest neighbor algorithms scored badly, with accuracy rates of 44.8 and
84.8%, respectively. Only a few studies have been conducted to determine the influ-
ence of various characteristics on waste creation. Márquez et al. used data mining
algorithms like cluster analysis and decision tree classifier to associate sociodemo-
graphic and behavioral characteristics with garbage creation [46]. The tree classifier
performed admirably,with an error rate of as lowas 3.6%.Another research employed
data mining techniques to ascertain garbage generation patterns by home type and
seasonal fluctuations [47]. Furthermore, decision tree has been used in conjunction
with Quinlan’s M5 method to anticipate the MSW compression ratio, a valuable
tool for assessing settlement of the waste during municipal landfill design [48]. The
model has been trained and validated using a variety of solid waste elements and
properties, including dry density, moisture content, and biodegradable proportion.
The model performed satisfactorily throughout the testing phase, with a correlation
value of 0.92.

6.5.3 Smart Waste Management Using Artificial Intelligence

Smart waste management is the practice of proposing solutions to the current waste
management problem using Internet, Smart Sensors, and Mobile Applications [10,
35, 38, 44].Wastemanagement, in general, canbebrokendown into several problems,
such as waste segregation where we have to separate solid waste from the wet one,
a task which when left to every individual sees minimal success and when given to
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an organization seems very difficult to overcome due to the overwhelming amount
of waste that is created on a daily basis which will only increase with the increase in
population. Some other problems are the collection of waste, when to collect them,
the amount of manpower required, and the next obvious problem after collection is
disposing of waste. Smart waste management tries to solve some of these problems
using sensors, Internet, and continuous monitoring but there is only so much that
can be done by this because there comes a point where human intelligence needs to
intervene like sending a truck when a Smart Bin notifies that is has been filled or
deciding the route for the truck, the manpower required, etc.

Artificial intelligence can play a big role in Smart Waste Management [13, 45].
Deep learning models for Image Recognition and Object Identification can be used
to help segregate the waste inside a Smart Bin, or Predictive models that can
predict changes in environment to see how carbon dioxide emissions will change
and schedule a pickup [46, 47]. Fuzzy Logic Algorithm that can markup the route
for the pickup truck reducing manpower and fuel consumption can also decide the
destination of the dumping ground using sensors information provided by the ones
fixed there and calculating which would be the most optimum for waste dumping at
that given point of time [19, 20].

6.5.3.1 Smart Bins

The most logical problem to conquer would be waste segregation. And the point
where we can tackle is right at the start of the waste management cycle that would
be the bin where people dump their garbage. Many researches have been done to
create a smart bin let us talk about one that particularly picked my interest, where
the researchers have developed smart bin using Internet-based smart system [52],
where they have created a Smart Bin (Figs. 6.5 and 6.6). In the smart bin, the camera
module is associated with Raspberry Pi to catch the waste picture with the end goal of
item location and recognizable proof. After the waste is distinguished, servo engines
constrained by the Raspberry Pi will activate the opening and shutting of the top of
the waste compartment. The kickoff of the cover permits waste to tumble from the
waste location compartment into its particular waste compartment.

A radio-frequency identification (RFID) module is associated with the Rasp-
berry Pi to distinguish approved staff having access cards. When approved faculty
are distinguished, RFID module will activate Arduino Uno to open the electronic
compartment. Correspondence of the RFID module comprises two sections, a RFID
module that has a receivingwire liable for sending and getting a transmission through
radio waves, and a detached RFID label that contains a receiving wire and incorpo-
rated circuit that stores the ID code and other data. Since the motivation behind the
RFID module is to just permit approved staff to get to the receptacle using RFID
labels, a rundown of distinguishing proof codes that accompany the RFID labels are
encoded into the framework so the frameworkwill possibly react when it experiences
enlisted RFID labels. The framework reacts by opening the electronic compartment.
Since the RFID module depends on a backscattered framework, the power sent
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Fig. 6.5 Block diagram representing the overall system [52]

Fig. 6.6 3D model of smart bin [52]
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between the RFID module and tag may fluctuate with its position, which eventually
influences the exhibition of the RFID module. To settle this issue, we have arranged
the RFID so it is effectively reachable and has no hindrances over the outer layer of
the RFID module. The last option guarantees great transmission of force between
both the RFID module and tag [15, 35, 47, 48].

The ultrasonic sensor is associated with Arduino Uno to screen the filling level of
every one of the receptacle’s waste compartments. It involves a plastic, metal, paper,
and general waste compartment. The ultrasonic sensor utilizes sonar to quantify the
time taken for the sign to go from the transmitter end to the recipient end, and the time
contrast is utilized to compute the filling level of waste inside the container. A GPS
module gives data on the area (scope, longitude) just as the constant of the canister
from the satellite. The filling level, area, and constant container are gathered and
moved through a LoRa module from the canister to the Waspmote passage, which is
associated with the PC [15, 47].

Waste ID is performed utilizing the TensorFlow article discovery API running on
the Raspberry Pi. This object identification API runs on a pre-prepared item loca-
tion model, SSD MobileNetV2, which is lightweight and appropriate to run on low
registering power gadgets like Raspberry Pi [54]. The engineering of MobileNetV2
depends on straight bottlenecks profundity distinguishable convolution with upset
residuals, and it is an improvement over the past variant, MobileNetV1 [55]. Profun-
dity distinct convolution requires less calculation by parting convolution into two
separate layers, depth wise convolution and point wise convolution (Fig. 6.7).

Here, the ArticleNote button was provided to capture any note to the content that
will be placed in the first page according to the author preference.

6.5.4 Vehicle Routing

The most logical problem to conquer would be waste segregation. And the point
where we can tackle is right at the start of the waste management cycle that would be
the bin where people dump their garbage. Vehicle Routing is another area that can
be focused on using AI models and algorithms let us have a look at Assessment of
waste characteristics and their impact on GIS vehicle collection route optimization
using ANN waste forecasts [56].

Information of week-by-week gathered trash, fortnightly gathered single stream
recyclables, waste structure, and number of families were gathered from Austin’s
Open Data Portal. Thickness of waste was determined in light of waste organization
and explicit load of every material from a USEPA study (2016b). The following
stage is an ANN time-series examination to figure out future recyclables and trash
age paces of each sub-assortment region in the year 2023 (Fig. 6.8).

Various situations are considered with various recyclables and trash creations.
The anticipated recyclables and trash age rates were utilized to process anticipated
volume of waste in trucks. The anticipated waste volumes from the objective regions
are inputs into the GIS–Network Analysis apparatus (ArcGIS—adaptation 10.5.1) to
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Fig. 6.7 Flowchart of obtaining Object Detection Model [52]

foster ideal truck courses. It is expected that during the 5-year gauging period there
will be no significant changes in the road and street network setup and the number
and area of assortment focuses (family) are comparative. A sum of 36 situations are
created to analyze the impacts of changing waste attributes on ideal truck courses
with negligible travel distance [20, 51].

ANN time series and GIS–Network Analysis–VRP models were joined to look at
what waste creation and themass of wastemeans for truck courses just as air outflows
from the trucks. The ANNmodel showed better outcomes when waste info informa-
tion had less outrageous qualities for both recyclables and trash. The coordination of
ANN expectation model with GIS streamlining detailed in this study uncovers the
interrelationships betweenwaste organization andGIS enhanced courses and permits
WMS chiefs to better reaction to the progressions in waste synthesis [20, 51].
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Fig. 6.8 Methodology flowchart for vehicle routing [56]

6.5.5 By-Product Utilization

Being able to predict useful by-products of garbage and the harmful ones and the
quantity in which they are used is big part of waste management and AI can help us
with this too. Combining fuzzy logic (FL) and artificial neural networks (ANN) in
modeling landfill gas production is a great paper that has worked on this exact field
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[23]. The work utilizes a cross breed ANN-FL model that utilizes information-based
FL to depict the interaction subjectively and carries out the learning calculation of
ANN to enhance model boundaries. The model was created to recreate and antici-
pate the landfill gas creation at a given time in view of functional boundaries. The
exploratory information utilized were ordered from laboratory-scale try that elab-
orate different working situations. The created model was approved and genuinely
examined utilizing F-test, straight relapse among real and anticipated information,
and mean squared error measures. Generally, the reenacted landfill gas creation rates
showed sensible concurrence with genuine information [23].

6.6 Influential Factors for Smart Waste Prediction

Waste prediction is a very important field of study which helps us to predict and
prepare the required steps formanagement of upcomingbulk of garbage being created
at an unprecedented rate but to predict this we need to pinpoint the factors that
contribute to water generation. There are some common factors that determine the
amount of waste generated and disposed. Below are the factors that influence waste
generation:

1. Institutional Factors
2. Social conditions
3. Financial and Economic Factors
4. Technical Factors
5. Geographic Conditions
6. Environmental Conditions.

6.6.1 Institutional Factors

There are certain rules and regulations for proper solid waste management. These
laws and policy come under institutional factors that give consent to the Government
for effective implementation of an Integrated SolidWasteManagement. The possible
steps to be taken for effective waste management involve launching a national and/or
local policy and permit laws on SWM standards and practices, identifying the roles
and responsibilities for each level of government and ensuring that the authority
and resources for the implementation of an ISWM plan are provided with the local
governments.
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6.6.2 Social Conditions

Social conditions dictate how people manage their wastes, when their culture for
example has festivals how much waste is created during them and what kind of
waste is being created. Social conditions also tell us to what extents rule governing
waste management are followed (people littering on road, people segregating their
waste).

6.6.3 Financial and Economic Factors

The next factor that influences the waste predictions is the funds that need to be
used to dispose the waste. More fund equals more waste disposal equals less waste
generation. Economic factors affecting solid waste management system should be
differentiated from the financial factors. It is because the economic factors include
the financial turnout of the integrated solid waste management (IWSM) plans, for
instance, the creation of jobs creation, improvement of public trade and tourism,
political gain, and so on. The local government must determine the requirements of
the initial capital investment and operating, and maintenance costs associated with
each activity conducted for waste management in long term. Furthermore, the ability
of people and their willingness to pay for the services and to determine the efficacy
of job creation for the activities based on handling waste are the additional factors
that needs to be taken into consideration.

6.6.4 Technical Factors

The technical factors include finding the requirements of equipment and the required
facilities for an effective execution of the ISWM plan and determining the loca-
tions where these equipment and facilities will be kept; however, it will depend on
geological factors, distances used for transportation, and forecast ofwaste generation.

6.6.5 Environmental Factors

Each stage of the ISWMplan significantly affects the natural resources, humanhealth,
and the environment. One must consider the environmental cost of these activities,
for instance, landfilling or combustion of wastematerials and attempt should bemade
to reduce their impact on public health and environment. Therefore, there should be
an established practices to validate the groundwater and drinking water protection
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and the local authority should examine the compliance with the national standards
assuring the minimum impacts on the human health.

6.6.6 Geographic Conditions

The area of the land, the population, and the location play a great role in predicting
how much waste will be generated. The climate of the land will also determine how
the waste needs to be disposed of and thus in turn affecting the financial resources
required.

6.7 Conclusion

Generation of waste is increasing day by day with increasing population and urban-
ization. These wastes can be categorized into different categories, hazardous and
non-hazardous waste. Hazardous wastes are particularly toxic and may pose severe
adverse impacts on human, animal, and environmental health.Waste such as e-waste,
Plastic waste, and Metal waste can cause a significant risk to the ecosystem if they
are not managed properly. The most logical problem to conquer such issues would
be waste segregation where we can tackle right at the start of the waste management
cycle that would be the bin where people dump their garbage. Artificial intelligence
and machine learning can be employed for smart waste management. Deep learning
models for ImageRecognition andObject Identification can be used to help segregate
thewaste inside a SmartBin, or Predictivemodels that can predict changes in environ-
ment to see how carbon dioxide emissions will change and schedule a pickup. Fuzzy
Logic Algorithm that can markup the route for the pickup truck reducing manpower
and fuel consumption can also decide the destination of the dumping ground using
sensors information provided by the ones fixed there and calculating which would
be the most optimum for waste dumping at that given point of time. Such automated
segregation and monitoring system implementation in the bin significantly decrease
the operating cost and improve the overall waste management system. Furthermore,
an automated routing system can be created to find and determine the shortest path
to the bin for the purpose of maintenance. Thus, the convention solid waste manage-
ment system can be enhanced and risk to the society due to waste exposure, thereby
providing a greener and healthier life.
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