
Chapter 8
Corn Goss’s Wilt Disease Assessment
Based on UAV Imagery

Anup Kumar Das, Jithin Mathew, Zhao Zhang, Andrew Friskop,
Yuxiang Huang, Paulo Flores, and Xiongzhe Han

Abstract GossWilt is a common and serious disease during corn production.With a
goal of automatic diseasemonitoring, this study assessedGoss’sWilt disease severity
using machine (ML) and deep learning (DL) algorithms. A dataset containing 200
corn plot images was generated from an unmanned aerial vehicle (UAV) flying at five
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different mission heights (15, 30, 45, 60, and 75 m) above the ground level (AGL).
Three different datasets including non-augmentation, segmentation and augmen-
tation were prepared. The augmentation dataset consisting of 6200 images was
prepared using geometric augmentation techniques, such as rotation, and flip. Eight
different ML algorithms (i.e., Logistic Regression, Ada Boost, Gradient Boosting,
Support Vector Machine, Multilayer Perceptron, Random Forest, Naive Bayes, K-
NearestNeighbors) and twodifferentDLalgorithms (i.e., GoogLeNet andResNet18)
were implanted to classify Goss Wilt severity as a binary issue (i.e., high and low).
Two different types of features, including textural (contrast, dissimilarity, homo-
geneity, angular second moment) and color (hue, saturation, value, lightness, chro-
matic components: a* and b*, red, green, blue) features were extracted from indi-
vidual plot image. For ML, the Random Forest yielded 0.99 precision, 0.99 recall
and 0.99 F-score in augmented dataset and outperformed all other classifiers. For
DL, Resnet18 achieved slightly better results: 0.81 precision, 0.78 recall and 0.79
F-score than GoogleNet, which has 0.75 precision, 0.70 recall, and 0.73 F-score. The
ML model (Random Forest) performed satisfactorily by resulting in higher preci-
sion, recall and F-score in augmented dataset. However, MLmodels underperformed
on segmentation dataset. Therefore, Random Forest coupled with UAV imagery is a
potential valuable tool for automatic assessment of Goss Wilt disease.

Keywords Corn · Goss’s Wilt · Machine learning · Deep learning

8.1 Introduction

Corn (Zea mays L.) accounts for more than 95% of the feed grain produced in the
United States [27]. Goss’sWilt, a corn leaf disease, has been recognized as one of the
most yield-limiting diseases, causing up to 50% production losses in North Dakota
[5]. Field visits coupled with visual observation are used to assess Goss Wilt, which
is time consuming (inefficiency), subjective, and leading to incorrect assessments
due to evaluator’s fatigue. As a result, developing an automated, quick, and reliable
approach for Goss Wilt disease monitoring has been a top priority.

Unmanned aerial vehicles (UAVs) appear in a number of agricultural applications
due to rapid and high-quality collected data, and ability to replace human labor for
data collection [17]. TheUAV imagery is now extensively used in agriculture for crop
disease detection, such as citrus canker [1], vine disease [9, 10], yield monitoring
for rice grain [12], glyphosate-resistant and glyphosate-susceptible weed and pest
management [26], crop health monitoring of winter corn and barley [21]. Kerkech
et al. [9] also used UAV imagery to develop automatic grape vine detection using a
convolutional neural network (CNN) and achieved 96% detection accuracy.

Kerkech et al. [10] proposed UAV based automated vine disease detection system
using deep learning (DL) techniques and achievedmore than 92%detection accuracy.
A majority of the existing studies focus on the identification of diseases. However,
very few researchers extended the detection problem to the disease severity levels.
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Liu et al. [14] developed a relationship between image parameters andwheat powdery
mildew severity and achieved positive correlations. They extracted several features
from the UAV images and found color features had a positive correlation with
powdery mildew severity. Salgadoe et al. [23] used two different types of images
(RGB and eight bands satellite image) for quantifying the severity of root rot disease
of avocado and found promising results generated from the satellite images.However,
limited study has been conducted using RGB color images for determining the
severity of Goss’s Wilt diseases.

Progress and applications of sensing and automation technology in agriculture
have benefitted the agricultural production [7, 8, 15, 29, 30, 33–35]. The current
advances in drone technology provide new ways in collecting crop information and
assisting growers in decision making [3, 4, 31]. Researchers used machine learning
(ML) techniques to detect corn leaf disease. Supervised ML pipeline involves data
preparation, feature extractions, feature selection, training, testing, and validation.
For ML algorithms, features (e.g., color, textural, and shape) are usually extracted
manually, after which they are generally selected using selection algorithms and used
for training. Ren et al. [22] extracted 129 features, including 30 color features, 9 shape
features, and 90 textural features and observed shape features highly contributing
to classify spot diseases in corn leaves. Panigrahi et al. [18] used ML techniques,
including random forest (RF), decision tree (DT), and naive bayes (NB), to accurately
identify corn leaf diseases. Support vector machine (SVM) classifier was used for
corn leaf disease classification, which generated a high success rate of 87% byMeng
et al. [16], 96% by Liu et al. [14] and 89% by Ren et al. [22]. Kusumo et al. [11] used
SVM,DT,RF, andNB to distinguish healthy leaves fromcorn gray leaf spot, common
rust, and leaf blight and achieved good performance from SVM with color features
and RF with local features (Speeded Up Robust Features). Many studies utilized ML
systems to predict the severity of plant leaf diseases [2, 13, 19, 24]. However, few
studies on the severity of Goss Wilt disease in corn have been conducted.

In recent years, the use of DL in agriculture has grown considerably. Deep
neural networks consisting of layers can learn high-level features from data. For
feature extraction, ML needs domain knowledge, while DL can extract features
automatically, and eliminate the need for human feature extraction and selection.
Wang et al. [28] presented an automated plant disease severity assessment system
based on VGG16, VGG19, Inception-v3, and ResNet50. They categorized apple leaf
images into four groups: healthy, early, middle, and end stage of apple leaf black
rot. They reported that the VGG16 model outperformed the VGG19, Inception-v3,
and ResNet50 models, yielding a 90% accuracy. For categorizing and evaluating the
severity of coffee leaf biotic into four categories (i.e., healthy, low, and very low),
Esgario et al. utilized AlexNet, GoogLeNet, VGG16, ResNet50, and MobileNetV2
and effectively evaluated severity with 87% accuracy. DL methods, on the other
hand, are data hungry and computationally expensive. With small dataset, training
DLalgorithmsmay easily result inmodel overfitting. Several studies trainedDLalgo-
rithms using augmentation datasets to cope with small datasets and reduce the risk
of model overfitting. Data augmentation is an artificial data enlargement technique
that optimizes parameters and reduces model overfitting.
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Researchers utilized data augmentation techniques including random rotation,
shearing, zooming, and flipping, horizontal and verticalmirroring, rotation, and color
brightness, contrast, and saturation (Esgario et al. 2020) [28] and observed uses of
the techniques improved system accuracy. Zhang et al. [32] also observed 5% of
accuracy improvement using data augmentation techniques. Thus, for small dataset,
it is desirable to conduct data augmentation before training models.

With a final goal of realizing automatic corn Goss’s Wilt disease detection, this
study focuses on testing different ML and DL algorithms and then recommend the
desirable one. Specific research objectives are to: (1) collect UAV images and then
prepare the dataset, (2) train, test and compare different ML and DL algorithms, (3)
Recommend a model for assessing Goss’s Wilt disease.

8.2 Material and Methodology

8.2.1 Data Collection and Data Preprocessing

A field, located in Horace, North Dakota, U.S., was rented from a local farmer
(Fig. 8.1). A DJI Phantom 4D RTK (DJI-Innovations, Inc., ShenZhen, China) drone
equipped with a 20-megapixel 2.54 cm CMOS camera with 4864 × 3648 resolution
and a high-precision (±10 cm) RTK GNSS system was utilized to capture image
data on August 11, 2020, at 1:00 PM (local time; sunny). A total of five missions
were carried out at five different flying heights, including 15, 30, 45, 60, and 75 m
above ground level (AGL). The flights were set 80% of the side and front overlap
and at a speed of 2.5 m/s. Following data collection, a plant pathologist visited each
plot to manually and visually inspect the Goss’sWilt severity, which was categorized
into two grades (high and low severity). The experimental plots (40 in total) were
divided into two categories: high severity (23 in total) and low severity (17 in total).

The individual images obtained from the UAV for the five flight altitudes were
automatically stitched using Pix4D software (Pix4D SA, Lausanne, Switzerland)

Fig. 8.1 Location of the
field in Google Maps™
(Adapted from Google LLC.,
2021)
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and then cropped in ImageJ (ImageJ version 1.50e, USA; http://rsbweb.nih.gov/ij).
Plots from the cropped images were generated using a plot splitting tool developed
in this study (Fig. 8.2). A total of 200 plot images (40 plots/height × 5 heights) were
generated. The developed tool took an image as input and divided it into a grid (4
× 10) for given input (column: 4 and row: 10) automatically where each cell repre-
sented a plot. The plot image dimensions (i.e., length and width) were calculated
using Eqs. (8.1) and (8.2). A region of interest (ROI) was calculated by Eqs. (8.3)
and (8.4) and placed in each cell using the function setRoi (xx, yy, roiw, roih)method.
The function creates a rectangular selection on the image for cropping and saving
plots.

ROI wi tdh = Imagewidth

T otal number of column
(8.1)

ROI height = Image height

T otal number of row
(8.2)

ROI posi tion (xx) = i ∗ ROI wi tdh where i < Total number of column
(8.3)

ROI posi tion (yy) = i ∗ ROI height where i < Total number of row
(8.4)

Excess Green = 2 × Green (G) − Red(R) − Blue(B) (8.5)

After obtaining the plot image, the next work is to segment plants from the noisy
background. Soil and shadows in the plot images were eliminated using excess green
(E × G) thresholding (Eq. 8.5). The pixel with an E × G value less than the cutoff
(25) was replaced with black (255, black). The cutoff value was chosen empirically
and through visual observation of segmented images. Then the three middle rows
of each plot were manually cropped for further investigation since they had been
chemically treated differently by plant pathologists (Fig. 8.3).

(a)                          (b)                                                  (c)

Fig. 8.2 Dataset generation process a stitched image of corn filed for feeding to a plot splitting
tool developed in ImageJ; b the plot spitting tool for generating plots from stitched image; c output
of the plot splitting tool: samples plot images

http://rsbweb.nih.gov/ij
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Fig. 8.3 Segmentation of plot images using excess green with threshold of 25

8.2.2 Preparation of Datasets

Three different datasets were prepared using the original plot images including non-
augmentation, segmentation, augmentation. Non-augmentation dataset was prepared
using 200 original plot images. Segmentation dataset also contained 200 plot images
inwhich plantswere segmented frombackgrounds usingE×G then croppingmiddle
three rows of plants. Another dataset augmentation was prepared using original plot
images in which geometric transformation techniques were used such as rotation,
and flip (i.e., right, top, and random) (Table 8.1). The image rotation probability was
set to 100%, implying that every image produced through augmentation was rotated
slightly with a random chance. The parameters for rotation to the left were set to a
maximum of 5 degrees and 10 degrees to the right (random rotation). With a proba-
bility of 50%, images were flipped to the left and right at random. Similarly, random
flips from the top and bottom of the images were done with a 0.5 likelihood. Finally,
images were zoomed randomly with a frequency of 30%, at a minimum scaling
factor of 1.1, and a maximum scaling factor of 1.6. Augmentation dataset containing
6200 images, consisting of 3015 for high severity and 3185 for low severity. The
parameters and techniques used for data augmentation is shown in Table 8.2. Photo-
metric transformations were not used with the consideration that it might generate
unreliable data with changed color values on individual pixels.

Table 8.1 Dataset description

Dataset Description Total Training Testing

Non augmentation Original images 200 160 40

Segmentation Original segmented images 200 160 40

Augmentation Using augmentation techniques 6200 4960 1240
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Table 8.2 Techniques used
for preparing augmentation
dataset

Augmentation
techniques

Parameters Values

Rotation Probability, Angle 100%, 5°

Flipping (vertical,
horizontal)

Probability 50%

Zooming Probability, Scaling
factors

30%, 1.1–1.6

8.2.2.1 Dataset for Training and Testing ML Algorithms

Features were extracted from all three datasets. A total of five textural features
(i.e., contrast, dissimilarity, homogeneity, angular second moment, energy), nine
color-based features (hue, saturation, value, red, green blue, lightness, and chro-
matic components *a and *b) were extracted. Gray-Level Co-occurrence Matrices
(GLCMs) [6] based textural features were extracted. The code for textural were run
in python (v3.8) using skimage python library. A function greycomatrix (image,
distances, angles, levels, symmetric = False, normed = False) from the texture
module was implemented. At first RGB images were converted into gray images
using OpenCV. Images were fed to the function with 1-pixel distance offset, angle
value of 90 and maximum 255 level to obtain GLCM matrices. Then the textural
properties of theGLCM, such as contrast, dissimilarity, homogeneity, angular second
moment was calculated using Eqs. (8.6), (8.7), (8.8), (8.9) and (8.10) respectively.
Where i and j indicated the row and column number of the image window respec-
tively; Pi j is the probability value in the cell i, j. Levels indicates number of rows or
columns.

Contrast =
∑levels−1

i, j=0
Pi j (i − j)2 (8.6)

Dissimilari t y =
∑levels−1

i, j=0
Pi j | i − j | (8.7)

Homogeneity =
∑levels−1

i, j=0

Pi, j
1 + (i − j)2

(8.8)

Angular SecondMoment (ASM) =
∑levels−1

i, j=0
P2
i, j (8.9)

Energy = √
ASM (8.10)

Color features such red (R), green (G), and blue (B) pixel values were extracted
from the datasets. Similarly, hue (H), saturation (S) value (V) features and lightness
(L), chromatic components (*a and *b) were extracted images after converting RGB
to HSV and L*a*b respectively. A total of 80% a dataset was used for training and
remaining 20% were used for testing ML algorithms.
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8.2.2.2 Dataset for Training and Testing DL Algorithms

The DL can extract features from the images automatically and it doesn’t require
handcrafted feature during training. Thus, features were not extracted from the
datasets. All three datasets were used for modelingML algorithms, but only augmen-
tation dataset was used for modeling DL algorithms. The reason for excluding non-
augmentation, and segmentation dataset for training DL was the insufficient number
of training images. To avoid overfitting problem, only augmentation dataset were
used for training DL algorithms.

8.2.3 Training and Validation of ML and DL Algorithms

ML algorithms were trained and validated on a computer configured with Intel®
core™ i5-4300U CPU @ 1.90 GHz. Eight different machine learning classifiers
were used to classify disease severity levels: Logistic Regression (LR), Ada Boost
(AB), Gradient Boosting (GB), Support Vector Machine (SVM), Multilayer Percep-
tron (MLP), Random Forest (Rnaïveaive Bayes (NB), K-Nearest Neighbors (KNN).
Machine learning algorithms were implemented using Scikit-learn [20] in python
(v3.8). Parameters of ML algorithms were set default however the solver type and
kernel for the LR and SVM was set to ‘liblinear’ and ‘linear’ respectively.

Two popular used DL algorithms (e.g., GoogLeNet and ResNet) were used for
Goss’s Wilt disease severity classifications. The DL algorithms were trained and
validated on a computer configured with Intel® Core™ i7-4770 CPU @ 3.40 GHz.
For consistency, bothmodels’ training epochswere set to 100. Cross entropy losswas
used as the loss function, and stochastic gradient descent was used as the optimizer.
The learning rate was set to 0.001, the momentum was set to 0.9, the step size was
set to 7 and the gamma value was set to 0.1.

The performance ofML and DL algorithms were evaluated using precision, recall
and F-score based on Eqs. 8.12, 8.13, and 8.14. True positive (TP) refers to correct
predictions of high severity plots when plots are actually high severity. True negative
(TN) indicates correct prediction of low severity plot when plots are actually low
severity. False positive (FP) means incorrect predictions of high severity plots when
plots are actually low severity. False negative (FN) indicates incorrect predictions of
low severity plots when plots are actually high severity (Table 8.3).

Table 8.3 Confusion matrix
for high severity and low
severity class

Predicted class

High severity Low severity

Actual class High severity TP FN

Low severity FP TN
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Precision = T P

T P + FP
(8.12)

Recall = T P

T P + FN
(8.13)

F − score = 2 ∗ Recall ∗ Precision

Recall + Precision
(8.14)

8.2.4 Results

Regarding non-augmentation, GB achieved comparatively higher precision (0.85),
recall (0.81) F-score (0.82) than other classifiers in this study (Table 8.4). In terms of
precision (0.62) recall (0.61), and F-score (0.61), KNN had the lowest performance
(Table 8.4). KNN achieved higher number of FN (10) than the other classifiers
(Fig. 8.4). RF achieved comparatively similar precision (0.83), recall (0.78) and
F-score (0.79) than the GB (Table 8.4).

On Segmentation dataset, RF achieved comparatively higher F-score (0.56) than
other classifiers. LR and GB achieved similar precisions of 0.58 and 0.57, respec-
tively and recalls of 0.56 and 0.57, respectively (Table 8.4). However, MLP achieved
lowest precision (0.41) and F-score (0.40) comparatively to the other classifiers.MLP
yielded highest FN (16) and lowest TP (3) than other classifiers (Fig. 8.4). Moreover,
all the classifiers also yielded poor classification results (Table 8.4) (Fig. 8.5).

On augmentation dataset, RF classifiers outperformed other ML classifiers and
achieved highest precision (0.99), recall (0.99) and F-score (0.99) (Table 8.4). It
achieved higher TP (589) and TN (640) however, lower FN (5) and FP (6) among
other classifiers (Fig. 8.6). The NB and MLP yielded lower precisions of 0.61 and
0.62 respectively, lower recall of 0.61 and 0.56 respectively and F-score of 0.60 and
0.51 respectively. The MLP and SVM yielded higher number of FN (465) higher
number of FP (290) respectively (Fig. 8.6).

In this study, GoogLeNet and ResNet18 both performed good in classifying the
disease severity. Though GoogleNet achieved 0.75 of precision, 0.70 of recall and
0.73 of F-score, Resnet18 yielded comparatively better precision (0.81), recall (0.78)
and F-score (0.79). GoogleNet and ResNet both performed lower than ML classifier
(RF) in terms of precision, recall and F-score on augmentation dataset (Table 8.5).

Figures 8.7 and 8.8 showed accuracy and loss curve of GoogLeNet and ResNet18
respectively. The lower gaps between training and validation loss indicated that the
ResNet18 is good fitted with the dataset and free from overfitting problems (Fig. 8.8).
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Table 8.4 Performance comparison of different machine learning (ML) algorithms in classifying
Goss’s Wilt disease severity on different types of dataset

Datasets Machine learning classifiers Precision Recall F-score

No augmentation Logistic regression 0.79 0.76 0.76

Ada boost 0.72 0.72 0.72

Gradient boosting 0.85 0.81 0.82

Support vector machine 0.80 0.73 0.73

Multilayer perceptron 0.74 0.71 0.71

Random forest 0.83 0.78 0.79

Naive Bayes 0.82 0.76 0.76

K-nearest neighbors 0.62 0.61 0.61

Segmentation Logistic regression 0.58 0.56 0.54

Ada boost 0.55 0.54 0.53

Gradient boosting 0.57 0.57 0.57

Support vector machine 0.55 0.54 0.52

Multilayer perceptron 0.41 0.44 0.40

Random forest 0.57 0.57 0.56

Naive Bayes 0.43 0.42 0.42

K-nearest neighbors 0.46 0.47 0.45

Augmentation Logistic regression 0.68 0.67 0.67

Ada boost 0.80 0.80 0.79

Gradient boosting 0.89 0.89 0.89

Support vector machine 0.73 0.71 0.70

Multilayer perceptron 0.62 0.56 0.51

Random forest 0.99 0.99 0.99

Naive Bayes 0.61 0.61 0.60

K-nearest neighbors 0.94 0.94 0.94

Fig. 8.4 Confusion matrix of classifications on non-augmentation dataset



8 Corn Goss’s Wilt Disease Assessment Based on UAV Imagery 133

Fig. 8.5 Confusion matrix of classifications on segmentation dataset

Fig. 8.6 Confusion matrix of classifications on augmentation dataset

Table 8.5 Evaluation
matrices of Deep learning
algorithms obtained during
validation

Deep Learning Classifiers Precision Recall F-score

GoogleNet 0.75 0.70 0.73

ResNet18 0.81 0.78 0.79

)b()a(

Fig. 8.7 Accuracy and loss curve of GoogLeNet. a Training accuracy of 90% with 1–1.5% of
training loss; b validation accuracy of 50 to 60% and 2.5% validation loss
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(a) (b) 

Fig. 8.8 Accuracy and loss curve of ResNet18. a ResNet18 yielded around 90% of training accu-
racy and validation accuracy around 60–70%. b Training loss decreased gradually and reached 0%
and validation loss reached between 0.5 and 1.5%

8.2.5 Discussion

The ML based algorithms constantly performed poor in terms of Precision, Recall
and F-score on segmentation dataset. The probable reason for underperforming ML
models on segmentation dataset was loss of information during segmentation. Plots
were segmented using the threshold a value (25) which were determined empiri-
cally or manually. Dataset contained plot images from five different heights. The
images from higher height might lose information higher than shorter heights which
requires further investigations. RF algorithm outperformed other ML and DL based
algorithms in this study and achieved F-score of 0.99. Conversely DL algorithms
can extract features automatically and avoid manual feature extraction and selection
process. Data augmentation enhanced the number of instances in training dataset
helps ML and DL algorithms learn from adequate dataset.

8.2.6 Conclusion

This study concluded thatML algorithm (RandomForest) performed better in Goss’s
Wilt disease severity assessment in augmentationdataset,which canbe recommended
for severity assessment in future practical application. Random Forest yielded higher
precision (0.99), recall (0.99) and F-score (0.99) among all ML algorithms. Random
Forest can be incorporated to unmanned aerial imagery to build an automatic Goss’s
Wilt disease assessment system. ML models performed poor on the segmentation
dataset. The effect of flight height on classification accuracy has not been investigated
due to data limitations of individual heights (Total 40 images; training set: 32 images;
testing set: 8 images). This could lead tomodel overfitting inML.The effect of heights
on accuracies will be investigated in future.



8 Corn Goss’s Wilt Disease Assessment Based on UAV Imagery 135

Acknowledgements Authors would like to express their gratitude to Jensen Kenton for his prelim-
inary processing images collected by the unmanned aerial vehicle, which includes stitching them
using Pixle4D and georeferencing them using ArcGIS10. Additionally, the authors would like to
thank Dr. Friskop’s specialists for assisting in the preparation of the experimental sites. This study
was conducted in collaborationwith theNorthDakotaCornCommission and theUSDAAgricultural
Research Service under the project No. 6064-21660-001-32S. Project accession No. 435589.

References

1. Abdulridha J, Batuman O, Ampatzidis Y (2019) UAV-based remote sensing technique to
detect citrus canker disease utilizing hyperspectral imaging and machine learning. Remote
Sens 11(11):1373

2. Chemura A, Mutanga O, Sibanda M, Chidoko P (2018) Machine learning prediction of coffee
rust severity on leaves using spectroradiometer data. Tropical Plant Pathology 43(2):117–127

3. Das AK, Friskop A, Flores P, Igathinathan C, Mathew JJ, Zhang Z (2021) Using aerial imagery
coupled with machine learning to assess Goss’s Wilt disease severity in field corn. In: 2021
ASABE annual international virtual meeting. American Society of Agricultural and Biological
Engineers

4. Flores P, Zhang Z (2021) Wheat lodging ratio detection based on UAS imagery coupled with
different machine learning and deep learning algorithms. Smart Agric 3(2):23–34

5. Greg Endres (2018, December 3) Goss’s leaf blight and wilt of corn—carrington REC. https://
www.ag.ndsu.edu/carringtonrec/center-points/2018/goss2019s-leaf-blight-and-wilt-of-corn

6. Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification.
IEEE Trans Syst Man Cybern 6:610–621

7. Jahan N, Flores P, Liu Z, Friskop A, Mathew J, Zhang Z (2020) Detecting and distinguishing
wheat diseases using image processing and machine learning algorithms. ASABE Paper No.
2000372. St. Joseph, MI: ASABE. https://doi.org/10.13031/aim.202000372

8. Jahan N, Zhang Z, Liu Z, Friskop A, Flores P, Mathew J, Das A (2021) Using images from
a handheld camera to detect wheat bacterial leaf streak disease severities. ASABE Paper No.
2100112. St. Joseph, MI: ASABE. https://doi.org/10.13031/aim.202100112

9. Kerkech M, Hafiane A, Canals R (2018) Deep leaning approach with colorimetric spaces
and vegetation indices for vine diseases detection in UAV images. Comput Electron Agric
155:237–243

10. Kerkech M, Hafiane A, Canals R (2020) Vine disease detection in UAV multispectral images
using optimized image registration and deep learning segmentation approach. Comput Electron
Agric 174:105446

11. Kusumo BS, Heryana A, Mahendra O, Pardede HF (2018) Machine learning-based for
automatic detection of corn-plant diseases using image processing. In: 2018 international
conference on computer, control, informatics and its applications (IC3INA). IEEE, pp 93–97

12. Lee K, An H, Park C, So K, Na S, Jang S (2019) Estimation of rice grain yield distribution
using UAV imagery. J Korean Soc Agric Eng 61(4):1–10

13. Liang Q, Xiang S, Hu Y, Coppola G, Zhang D, Sun W (2019) PD2SE-Net: Computer-assisted
plant disease diagnosis and severity estimation network. Comput Electron Agric 157:518–529

14. Liu Z, Du Z, Peng Y, TongM, Liu X, ChenW (2020, June) Study on corn disease identification
based on PCA and SVM. In: 2020 IEEE 4th information technology, networking, electronic
and automation control conference (ITNEC), vol 1. IEEE, pp 661–664

15. Mathew J, Zhang Y, Flores P, Igathinathane C, Zhang Z (2021) Development and testing of
an RGB-D camera-based rock detection system and path optimization algorithm in an indoor
environment. ASABE Paper No. 2100105. St. Joseph, MI: ASABE. https://doi.org/10.13031/
aim.202100105

https://www.ag.ndsu.edu/carringtonrec/center-points/2018/goss2019s-leaf-blight-and-wilt-of-corn
https://doi.org/10.13031/aim.202000372
https://doi.org/10.13031/aim.202100112
https://doi.org/10.13031/aim.202100105


136 A. K. Das et al.

16. Meng R, Lv Z, Yan J, Chen G, Zhao F, Zeng L, Xu B (2020) Development of spectral disease
indices for southern corn rust detection and severity classification. Remote Sens 12(19):3233

17. Mogili UR, Deepak BBVL (2018) Review on application of drone systems in precision
agriculture. Procedia Comput Sci 133:502–509

18. Panigrahi KP,DasH, SahooAK,Moharana SC (2020)Maize leaf disease detection and classifi-
cation usingmachine learning algorithms. In: Progress in computing, analytics and networking.
Springer, Singapore, pp 659–669

19. Parikh A, Raval MS, Parmar C, Chaudhary S (2016, October) Disease detection and severity
estimation in cotton plant from unconstrained images. In: 2016 IEEE international conference
on data science and advanced analytics (DSAA). IEEE, pp 594–601

20. Pedregosa F, VaroquauxG,Gramfort A,Michel V, Thirion B,Grisel O,…,Duchesnay E (2011)
Scikit-learn: machine learning in Python.J Mach Learn Res 12:2825–2830

21. Raeva PL, Šedina J, Dlesk A (2019) Monitoring of crop fields using multispectral and thermal
imagery from UAV. Eur J Remote Sens 52(sup1):192–201

22. Ren T, Zhang Y, Wang C (2019, September) Identification of corn leaf disease based on image
processing. In: 2019 2nd international conference on information systems and computer aided
education (ICISCAE). IEEE, pp 165–168

23. Salgadoe ASA, Robson AJ, Lamb DW, Dann EK, Searle C (2018) Quantifying the severity of
phytophthora root rot disease in avocado trees using image analysis. Remote Sens 10(2):226

24. Santoso H, Tani H, Wang X, Prasetyo AE, Sonobe R (2019) Classifying the severity of basal
stem rot disease in oil palm plantations using WorldView-3 imagery and machine learning
algorithms. Int J Remote Sens 40(19):7624–7646

25. Singh V, Misra AK (2017) Detection of plant leaf diseases using image segmentation and
soft computing techniques. Inf Process Agric 4(1):41–49. https://doi.org/10.1016/j.inpa.2016.
10.005

26. Stroppiana D, Villa P, Sona G, Ronchetti G, Candiani G, Pepe M, ... , Boschetti M (2018)
Early season weed mapping in rice crops using multi-spectral UAV data. Int J Remote Sens
39(15–16):5432–5452

27. USDA ERS—Feedgrains Sector at a Glance. (n.d.). RetrievedMay 3, 2021, from https://www.
ers.usda.gov/topics/crops/corn-and-other-feedgrains/feedgrains-sector-at-a-glance

28. Wang G, Sun Y,Wang J (2017) Automatic image-based plant disease severity estimation using
deep learning. Comput Intell Neurosci. https://doi.org/10.1155/2017/2917536

29. Yao L, Hu D, Zhao C, Yang Z, Zhang Z (2021) Wireless positioning and path tracking for a
mobile platform in greenhouse. Int J Agric Biol Eng 14(1):216–223. https://doi.org/10.25165/
j.ijabe.20211401.5627

30. Zhang J, Wan L, Igathinathane C, Zhang Z, Guo Y, Sun D, Cen H (2021b) Spatiotemporal
heterogeneity of chlorophyll content and fluorescence response within rice (Oryza sativa L.)
Canopies under different nitrogen treatments. Front Plant Sci 12, 499. https://doi.org/10.3389/
fpls.2021.645977

31. Zhang Z, Flores P (2021) Detection of wheat lodging plots using indices derived from multi-
spectral and visible images. In: Li J, Zhang Z (eds) Nondestructive evaluation of agro-products
by intelligent sensing techniques. Sharjah, United Arab Emirates, pp 1–299. https://doi.org/10.
2174/97898114858001210101

32. Zhang Z, Flores P, Igathinathane C, Naik LD, Kiran R, Ransom JK (2020) Wheat lodging
detection from UAS imagery using machine learning algorithms. Remote Sens 12(11):1838.
https://doi.org/10.3390/rs12111838

33. ZhangZ,HeinemannPH,Liu J,BaugherTA, Schupp JR (2016)The development ofmechanical
apple harvesting technology: a review. Trans ASABE 59(5):1165–1180. https://doi.org/10.
13031/trans.59.11737

34. ZhangZ, IgathinathaneC,Li J,CenH,LuY,Flores P (2020)Technologyprogress inmechanical
harvest of fresh market apples.Comput Electron Agric 175:105606. https://doi.org/10.1016/j.
compag.2020.105606

35. Zhang Z, Lu Y, Lu R (2021) Development and evaluation of an apple infield grading and
sorting system. Postharvest Biol Technol 180:111588. https://doi.org/10.1016/j.postharvbio.
2021.111588

https://doi.org/10.1016/j.inpa.2016.10.005
https://www.ers.usda.gov/topics/crops/corn-and-other-feedgrains/feedgrains-sector-at-a-glance
https://doi.org/10.1155/2017/2917536
https://doi.org/10.25165/j.ijabe.20211401.5627
https://doi.org/10.3389/fpls.2021.645977
https://doi.org/10.2174/97898114858001210101
https://doi.org/10.3390/rs12111838
https://doi.org/10.13031/trans.59.11737
https://doi.org/10.1016/j.compag.2020.105606
https://doi.org/10.1016/j.postharvbio.2021.111588

	8 Corn Goss’s Wilt Disease Assessment Based on UAV Imagery
	8.1 Introduction
	8.2 Material and Methodology
	8.2.1 Data Collection and Data Preprocessing
	8.2.2 Preparation of Datasets
	8.2.3 Training and Validation of ML and DL Algorithms
	8.2.4 Results
	8.2.5 Discussion
	8.2.6 Conclusion

	References


