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Applications in Cotton Production
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Abstract Cotton (Gossypium hirsutum L.) is an important cash crop and primary
materials for clothing, fine paper, animal feed, and oil industries. Cotton production
is affected by a combination effect of crop varieties, environment, and management.
Precision agriculture technology has shown great potential to improve cotton produc-
tion with sufficient high-resolution spatiotemporal data of soil, environment, and
cotton development from seedling to harvest. The advances in unmanned aerial vehi-
cles (UAVs), computer vision, and remote and proximal sensing technologies make
it possible to scan large-scale field efficiently and quantify crop development. The
big data analytics enabled by artificial intelligence (AI) have significantly increased
the capacity in processing and analyzing complex data to quantify the interactions of
environment andmanagement on crop growth and yield. This chapter aims to summa-
rize UAV applications in cotton production, focusing on field scouting and decision
making, such as stand count, growthmonitoring, and yield prediction, under different
soil, weather conditions, and irrigation management. Meanwhile, the potentials and
challenges of using UAV technologies in cotton production are also discussed.

Keywords UAV imaging · Remote sensing · Field management · Crop
emergence · Growth monitoring · Yield prediction

3.1 Introduction

3.1.1 Precision Agriculture Technology in Agricultural
Production

Cotton (Gossypium hirsutum L.) is an important cash crop that provides approxi-
mately 35% of the total fibers for textile industry, including clothing and fine paper
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[1, 2]. Cotton seeds are also critical sources for feed and oil industries because of
their rich oil (18 - 24%) and protein (20–40%) [1, 2]. Cotton plays an important role
in human daily life and livestock industry, and is grown in 17 states and as a major
crop in 14 states of the United States of America [3]. There is a great need to increase
cotton production due to the increasing global population of more than nine billion
in 2050. However, there are adverse conditions for improving agricultural produc-
tion, such as decreasing arable land due to urbanization, declining soil quality (e.g.,
soil erosion, salinization, and nutrient reduction) due to long-term cultivation, and
insufficient freshwater for crop irrigation [4]. It is time to improve cotton production
using emerging technologies to reduce the inputs of natural resources and impacts
on environments.

Cotton production is determined by the combined effects of genotype, environ-
ment, and management (G × E × M) [5]. To understand the G × E × M interaction,
acquiring high-resolution data of crop, water, and other environments is needed using
emerging remote and proximal sensing technologies. Studies have shown that timely
crop monitoring and accurate yield estimation are important in making optimal deci-
sions for field management, increasing cotton production, and reducing the negative
impacts on environments. For example, the information of cotton plants and the envi-
ronment obtained from different growing stages can be used to quantify the envi-
ronmental impacts and nutrient deficiencies [6] on cotton development and yield.
Precision agriculture (PA) technology has been used as a promising field manage-
ment strategy to improve crop production and management efficiency based on site-
specific information. The key factors for the success of PA include fast and accurate
data acquisition of crops, soil, and environments in a large field. It also needs timely
data processing and analysis pipelines to translate sensor data to executive data for
field management decisions [7–9].

Sensor systems are the key components for the implementation of PA for agricul-
tural production. Various sensors have been used to quantify crop development and
environmental variations [10, 11], which provide necessary information to develop
decision-making tools for fieldmanagement. Some examples include in-fieldweather
stations that continuously record environmental conditions, e.g., air temperature,
humidity, solar radiation, and precipitation. Proximal sensors (e.g., soil apparent
electrical conductivity (ECa) sensor and soil moisture sensor) are used to estimate
soil texture, organicmatter content [12], and soil moisture content at different depths.
Infrared thermometers (IRTs) are used to measure crop canopy temperature to deter-
mine cotton water stress and schedule irrigation [13]. In addition, remote sensing
systems based on satellite, airplane, unmanned aerial vehicles (UAVs), and ground
vehicles are equipped with different sensors (e.g., optical sensors) for crop moni-
toring. The above site-specific information has been used to improve the efficiency
of field management and crop production.
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3.1.2 UAV-Based Remote Sensing (RS) for Crop Monitoring

Unmanned aerial vehicle (UAV)-based RS is currently widely used for crop moni-
toring due to the advantages of flexibility in sensor selection and data collection time
when compared to satellite-based and ground-based sensing platforms. The UAV-
based RS systems are usually equipped with multiple cameras and a global navi-
gation satellite system (GNSS) to collect georeferenced imagery data of crops and
soil in a high-throughput manner [14]. These systems are widely used to scout crops
and collect site-specific information to make accurate decisions of crop manage-
ment [15, 16]. Typical cameras used in UAV-based RS systems include visible
red–green–blue (RGB) cameras, multispectral cameras, hyperspectral cameras, and
infrared (IR) thermal cameras [14, 17]. Imagery data are processed using advanced
machine learning (ML) to quantify crop characteristics in architecture, physiology,
and chemical compositions [18], which are associated with plant health conditions
and responses to the variation of environment and management.

The visible RGB cameras are themost ready-to-use sensors that are less expensive
and in higher resolution comparing to multispectral and thermal cameras. The RGB
cameras consist of three optical sensors with spectral bands of red (typical 550–
650 nm), green (typical 470–600 nm), and blue (typical 420–530 nm) to produce
digital images [19]. They have been used to acquire color information of different
plant organs (e.g., leaf, stem, flower, and cotton boll) that can be used to characterize
plants, quantify their health conditions and responses to biotic and abiotic stresses.
The RGB images are also used to build point cloud data of plants to extract three-
dimensional (3D) information, such as plant height and 3D architecture. As shown
in Table 3.1, RGB images are used to calculate different image features that are used
to quantify cotton development and yield. For example, plant height (PH), canopy
cover (CC), greenness described as a* and triangular greenness index (TGI) are used
for the assessment of cotton stand count [14, 20]. Moreover, the cotton fiber index
(CFI) derived from RGB images has been used as a useful index for cotton yield
estimation [14, 21].

Despite the advantages of using RGB cameras, they are still limited by only
being able to acquire information of plants in the spectral range of 400 to 700 nm
wavelength. Research has found that some spectral bands in near-infrared range
(800–2,500 nm) are more sensitive to the variations of plants due to biotic and abiotic
stresses. Multispectral and hyperspectral cameras have been used in many studies
to acquire high spatial resolution spectral information from the plants. Multispectral
cameras usually consist of optical sensors with less than ten independent spectral
bands, and hyperspectral cameras consist of up to 300 spectral bands. The image
features extracted from these spectral cameras include spectral information of each
band and their combination, which have shown great potential to quantify plant heath
conditions and estimate yield. Some examples (as summarized in Table 3.1) show
that different vegetation indices (VIs) based on the combination of multiple spectral
bands are able to monitor plant health status and estimate cotton yield [14, 33, 40].
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Table 3.1 Useful image features for cotton monitoring with UAV-based RS systems

Image type Image
features

Equations Related traits References

RGB Seedling size Total pixel number of a plant Seedling
stand count

[17, 22]

Canopy
cover (CC)

CC =
number of pi xels o f crop in a RO I
overall number of pi xels in the RO I

Yield,
biomass, crop
density

[23–26]

Plant height The difference in elevation
between crop canopy and soil
surface

Yield [27–29]

Cotton fiber
index (CFI)

CF I =
number of pi xels f or f ibre in a RO I
overall number of pi xels in the RO I

Yield [14, 21]

a∗ a∗ channel in the CIE-LAB color
space; a* represents the green–red
color components

Yield, water
content,
nitrogen,
chlorophyll
content

[10, 30–32]

Triangular
greenness
index (TGI)

TGI = -0.5 × ((R-G) × 0.19-(R-B)
× 0.12), where R, G and B are
pixel values in three channels

Yield, water
content,
nitrogen,
chlorophyll
content

[10, 30–32]

MS/ HS NDVI NDV I = N I R−R
N I R+R

where NIR and R are pixel values
in the near-infrared and red
channels, respectively

Yield,
chlorophyll
content,
biomass

[23, 33–35]

GNDVI GNDV I = N I R−G
N I R+G

where G are pixel values in the
green channel

Yield,
chlorophyll
content,
biomass

[23, 34]

NDRE NDRE = N I R−RE
N I R+RE

where RE are pixel values in the
red edge channel

Crop
senescence,
maturity

[36, 37]

Thermal Crop water
stress index
(CWSI)

CW SI = Tc−Tw
Tb−Tw

where Tc is the crop canopy
temperature, Tb is the temperature
of the black poster board, and Tw
is the temperature of the white
poster board

Yield, water
stress

[38, 39]

$ ROI: region of interest; RGB: red–green–blue; MS: multispectral; HS: hyperspectral; NDVI:
normalized difference vegetation index; GNDVI: green-based normalized difference vegetation
index; and NDRE: normalized difference red edge index
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In addition, thermal cameras have been used to quantify the energy of infrared
(IR) radiation of an object with a temperature above absolute zero (-273 °C). Infrared
thermal cameras capture the long-wave IR radiation (7.5–14µm) emitted from crops
and convert such radiation to electrical signals [41]. Plant temperature measurement
has been primarily used to study plant water relations (e.g., stomatal conductance)
since a major determinant of leaf temperature is the rate of evaporation or tran-
spiration from the leaf [41]. Canopy temperature is highly correlated with canopy
water stress and is used to capture plant responses to biotic and abiotic stresses [38].
Canopy temperature and the calculated crop water stress index (CWSI, Table 3.1)
are found to be related to leaf water content [42–44] and show great potential for
yield prediction [14].

3.1.3 UAV Imagery Data Processing Pipeline

Generally, the UAV imagery data collected are in the format of interval snapshots
(still images) or videos. A large number of images may be collected for a large field.
Figure 3.1 illustrates one of the typical data processing pipelines for UAV images,
including image pre-processing, image processing, and analysis. The pre-processing
steps consist of generating geo-referenced orthomosaic images and digital surface
models (DSMs) [16] from the collected hundreds and thousands of sequential images

Fig. 3.1 General steps for UAV imagery data collection, processing, and analysis
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or videos. The processes are usually conducted using customized or commercial
UAV image stitching software such as Agisoft PhotoScan (Agisoft LLC, St. Peters-
burg, Russia) and Pix4D (Pix4D S.A., Prilly, Switzerland). Geo-referenced ortho-
mosaic images and DSMs are further processed using advanced image processing
techniques to remove background, segment plants, and extract image features. The
image processing can be performed using commercial or open-source software such
as Matlab (The MathWorks, Inc., Natick, MA, USA) and OpenCV (https://opencv.
org/). The final step, image analysis, uses advanced ML models to translate the orig-
inal images or extracted image features to useful information that is important for
cropmanagement. Some example applications include seedling assessment and stand
count,water stress identification, andyield estimation. Somewidely used commercial
and open-source software for this step include Matlab, RStudio (RStudio, Boston,
MA, USA) and PyTorch (https://pytorch.org/).

3.2 UAV Systems in Cotton Production

3.2.1 Field Management for Cotton Production

Cotton production includes several key growth stages, as shown in Fig. 3.2, including
seed emergence, seedling, squaring, blooming (flowering), open boll, and harvest,
that need different management strategies. The life span of cotton is about 150 –
180 days in theUnited States [3]. Germination and emergence usually take 5–15 days
depending on the weather condition, soil temperature andmoisture [45–47]. Some of

Fig. 3.2 Cotton development and related field managements. DAP: days after planting

https://opencv.org/
https://pytorch.org/
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Fig. 3.3 UAV systems for cotton monitoring from emergence, development to harvest. RGB: red–
green–blue; MS: multispectral; HS: hyperspectral; VIs: vegetation indices

themajor factors that influence cotton growth and yield include planting rate, planting
depth, row spacing, and seed placement [48–50]. Early stage field management in
crop emergence and seedling establishment includes emergence and stand count
assessment [50, 51] andweed control [3]. Pests, such as spidermites, aphids, whitefly
and lygus bugs, are the primary targets to bemanaged at the stage after the first square
[50, 52]. In addition, irrigation management is also an important practice in cotton
production during square to bloom growth stages to improve yield [3, 13, 53–55].
Lastly, harvesting at the right time can potentially reduce crop yield loss.

Based on the general field management for cotton production mentioned pervi-
ously, the following sections will discuss the applications of UAV-based RS systems
in making decisions on these field management. The sections are arranged based
on different growth stages: (1) cotton emergence evaluations, (2) full-season cotton
growth and health monitoring, and (3) yield estimation. The contents consist of the
progress and advances of UAV applications in cotton production and the poten-
tials and challenges of adopting UAVs in large-scale cotton production. Figure 3.3
summarizes the general approaches (sensors and image features used) and associated
applications of using UAV-based RS systems in cotton production.

3.2.2 Cotton Emergence Assessment

Crop emergence is an important agronomic factor for field management in early
stages. Cotton emergence is usually assessed based on plant population, stand count,
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uniformity, seedling size, and etc. [50, 51]. Accurate and timely assessment of cotton
stand count and seedling size helps farmers to make important management deci-
sions, such as replanting, to reduce the yield loss due to missing plants [52]. Mean-
while, accurate cotton emergence information can be used to quantify the impact of
soil and environments on crop emergence [56, 57], which may help farmers make
optimal decisions on seed placement and planting. Conventionally, cotton emer-
gence is assessed through visual observation (manual counts) in a small number
of sampling sites [58], which is time-consuming, labor-intensive, and not suited
to cover a large production field. Hence, UAV-based imaging technology has been
used to assess some cotton emergence parameters such as stand count, canopy size,
seedling number, and uniformity based on plant spacing as indicated in Table 3.2.

The primary challenge of assessing the cotton emergence using UAV imaging
systems is the small seedling size at the early stage. For instance, their diameters
were 2.4 and 3.5 cm on 11 and 17 DAP, respectively [61]. Hence, sufficient image
resolution or GSD is needed and high-resolution RGB cameras have been widely
used compared to other cameras (Table 3.1). With a low flight height of 10 to 20 m,
images taken from the RGB cameras can achieve a better GSD ranging from 0.25
to 0.9 cm pixel−1. However, using RGB cameras give another challenge on image
segmentation to remove the background and detect the small seedlings. The large
portion of soil background in the images caused the color distortion of seedlings due
to the strong reflectance of soil [62] and the color contrast between crops and soil was
weak [17]. Previous research indicated that RGB images were potentially affected
by sunlight conditions and suggested that using multispectral images with near-
infrared (NIR) spectral bands could be more efficient for crop seedling segmentation

Table 3.2 Studies related to cotton emergence assessment (stand count, canopy size, and seedling
number) using UAV imagery

Emergence
parameter

Sensor DAP
(days)

Flight
Height
(m)

GSD (cm
pixel−1)

Performance
(Accuracy)

References

Stand
count/plant
density

RGB 6–11 15–20 0.6–0. 9 88.6% [59]

16 10 0.3 R2 = 0.95 [22]

10–20 10 0.25 R2 =
0.82–0.97

[60]

11–17 20 0.3 R2 =
0.48–0.98

[61]

Hyperspectral 15 50 0.8 R2 = 0.61 [17]

Canopy size RGB 16 10 0.3 R2 = 0.95 [22]

Seedling
number

Hyperspectral 15 50 0.8 84.1% [17]

Uniformity:
plant spacing

Hyperspectral 15 50 0.8 R2 =
0.91–1.00

[17]

Abbreviations DAP = days after planting; GSD = ground sample distance; R2 = coefficient of
determination
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[63]. For example, Feng et al. [22] assessed cotton emergence using a UAV-based
hyperspectral imager for quantifying cotton plant density and uniformity. However,
the accuracy for plant density could only achieve 0.61, which was lower than that
of the studies using RGB cameras. The advantage of using hyperspectral imagers is
the higher spectral resolution, which can be useful for other stress studies during the
growing season, but they are limited by their higher cost and a large amount of data
with proper data processing and analysis needed [64] as compared to simple RGB
cameras.

Deep learning (DL) models are widely used to directly locate and detect each
cotton seedlings [60, 61] and extract information such as average stand count and
canopy size [22] from the UAV images. The DL models used included Resnet18,
YOLOv3, MobileNet, and CenterNet and achieved the highest R2 of 0.98 [22, 60,
61]. One example of the DL model used by Feng, Zhou, et al. [14] is illustrated in
Fig. 3.4, where the DL model was able to extract “hidden” information (a subtle
difference) using multiple convolution and pooling layers to distinguish seedlings
and background information.

The commonly used image processing pipeline (Fig. 3.1) requires stitching
collected images using commercial software. The image stitching process may take
a long time when thousands of images are collected from high-resolution cameras
and at low flight height in field-scale studies. This issue may restrict their usage
for PA applications to conduct timely management practices at the right time with
accurate data. To improve the efficiency, Feng, Zhou [22] proposed a novel pipeline,
as illustrated in Fig. 3.5, to process and analyze each UAV image directly to avoid
image stitching procedure. The pipeline can process one image (20 M pixels) in
about 2 s to extract the information of emergence, which provides an alternative
method to assess cotton emergence in near real-time. It is possible to implement the
image processing pipeline to an edge computing system that is integrated with a UAV
system for real-time and on-site data processing and decision making. To conclude,

Fig. 3.4 The Resnet18 deep learning model used for cotton stand count and seedling canopy size
estimation in the study of [22]
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Fig. 3.5 A framework (pipeline) for processing single frame of UAV images in a near real-time
manner. The pipeline was validated in the study of cotton emergence evaluation [22]

DL and real-time image processing will enhance the UAV-based imaging systems in
the cotton emergence assessment in commercial farms in the future.

3.2.3 Cotton Growth Monitoring Using UAV-Based RS

Crop growth and production are complex and determined by many factors, including
crop genotypes (varieties), environments (e.g., weather, soil, microclimate, and loca-
tion), and agronomic management strategies [65]. During the cotton growing season,
several field management practices, including irrigation and chemicals (fertilization,
pesticides, and herbicides) applications, need to be optimized to achieve optimal
production. High-resolution site-specific crop information is needed to determine
crop stresses for variable rate applications.

Irrigation is one of the most important management practices in cotton production
since cotton’s growth and yield are sensitive to water deficit [66, 67]. The optimal
irrigation schedule can be made according to the cotton water demand to replace the
water loss due to evapotranspiration (ET), determined by cotton varieties, weather
conditions, soil texture, and irrigation treatment [68, 69]. Infrared thermal cameras
mounted on UAV had been widely used to detect cotton water stress by first esti-
mating the canopy temperature and computing stress indices such as CWSI in Table
3.1 [44, 70–72]. Stomatal conductance has been used as one of the ground truth data
to describe crop water stress response. Studies have shown a moderate to high corre-
lation between stomatal conductance and CWSI computed using canopy temperature
from UAV-based thermal cameras with r = -0.48 [71] and R2 = 0.66 to 0.91 [44,
70]. One of the challenges in using thermal imagery from thermal cameras is the
background (i.e., soil and residue) removal since the pixel numbers from the thermal
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images are based on temperature values and not color information. Hence, some
other image segmentation methods have been used, such as edge detection algo-
rithms (Canny, Prewitt, and Roberts methods) [44]. Some thermal cameras have
visible cameras attached, which could be used for the image segmentation based
on visible images and creating a mask and co-registered with the thermal images
to remove background [73]. These procedures are required to ensure that only crop
canopy temperature is used in the crop water stress indices to improve the estimation
accuracy.

Besides thermal cameras, some studies also demonstrated the usage of VIs
computed fromRGB andmultispectral images in determining the cotton water stress
and plant water content [44, 70, 74]. For instance, moderate to high correlations
(significant r = 0.3 to 0.9 regardless of negative or positive correlation; R2 = 0.6 to
0.9) were found between different VIs from multispectral cameras with plant water
contents at different parts (leaves, petioles, buds and bolls, stalks) [74].When relating
the different VIs to stomatal conductance, mixed results were found with low to high
R2 (for example, NDVI ranged from 0.01 to 0.89) and their R2s were mostly lower
as compared to thermal images [44, 70]. However, RGB and multispectral cameras
are frequently used for other purposes such as weed and pest detection and mapping
for UAV-based variable-rate spraying during the growing seasons as delineated in
the following.

Using UAV-based RS systems is a promising way for weed, pest, nutrient and
disease control in commercial cotton fields [3, 50, 52, 75, 76] and harvest aids [77,
78]. The key to efficient UAV-based variable-rate spraying is to identify the right
regions of the cotton field and the right volume and time of spraying [78–81]. Optimal
crop managment decisions are usually made according to cotton plant growth status
that can be quantified by VIs [82, 83], canopy coverage [80], boll opening rate
[77–79, 84], and pressure of weed [17, 85, 86], disease [87–91] and pest [81] of
cotton fields. Advanced image processing methods and ML models (such as support
vector machine, k-means classification, maximum likelihood, and random forest) are
still the key for weed and disease identification and management decision making
[81, 85, 87, 88]. Considering the complexity in field background of the images, DL
methods are also promising image processing tools for cotton leaves disease and
stress identification [91, 92].

Overall, UAV-based imagery from RGB, multispectral, and thermal cameras has
demonstrated their great potential for in-season cotton field management. Some
applicaitons include irrigation scheduling through plant water content and stress
detection, variable rate chemical applications through mapping weeds and pests, and
UAV variable-rate spraying. Most of these studies only used a single factor when
developing the estimation models, such as crop response to irrigation [93, 94] or
fertilizer [95, 96]. Few studies have integrated the interaction effects of environment
and management due to the lack of long-term data and efficient tools for devel-
oping reliable models [97]. With the advance in the UAV-based RS, high-resolution
imagery data can quickly quantify characteristics of crops and soil, which brings
challenges in efficiently processing and analyzing the big data of different variety,
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resolution, and data structures. Hence, future studies will be focused on more inte-
gration of different UAV-based cameras with more advancedML and DLmodellings
to explore the relationships between soil properties, weather conditions, and cotton
growth variation [98].

3.2.4 Cotton Yield Estimation

Accurate cotton yield estimation could help farmers make better decisions on
management, such as harvest, transportation, and storage [99]. Cotton yield esti-
mation can also provide needed information to understand the interaction effect of
environment and management on crop development and yield, which is important in
developing precision management strategies for cotton production [14]. The UAV-
based imagery has been used to predict cotton yield using different image features,
including plant height, canopy cover, canopy temperature, VIs (NDVI and GNDVI),
and open cotton bolls (Table 3.1) [14, 21, 100–103]. The UAV imagery data are
typically collected on the critical stages, such as flowering and/or boll opening [14].
Research showed that the combination of the image features could estimate yield
with R2 > 0.80 [14].

Several studies used high-resolution RGB images to detect and count open cotton
bolls [101, 102]. Yeom et al. (2018) used image processing techniques (e.g. Otsu
automatic thresholding) to extract the cotton bolls from the UAV images collected
in the boll opening stage, achieving an accuracy of R2 close to 0.6. Xu et al. (2020)
used two fully convolutional DL networks to extract the cotton bolls, obtaining a
better accuracy of R2 = 0.8.

Current studies in yield estimation based on UAV imagery usually used data
within a single year, i.e., using data from the same year for both model training
and validation [104–107]. Future studies should focus on developing models for
predicting crop yield of the coming years using historical data, which may have
higher values for farmers to make proper decisions in advance to maximize their
profit. In recent years, ML and DL techniques have been used to predict crop yield of
future years using historical data of environment, management, and crop production
[108–111]. Integration of the soil, weather, and crop data with different spatial and
temporal resolutions utilizing advanced data analytic methods has the potential to
improve the performance in quantifying field-scale crop growth and yield in a future
year. One such example is a study conducted by Feng et al. (2021) that used an
improved recurrent neural network (RNN) [112] model known as Gated Recurrent
Units (GRU) [113] to analyze sets of sequential data, including soil, weather, and
time-series imagery, for predicting cotton yield. As shown in Fig. 3.6, the architecture
of theGRUcomprises a reset gate and anupdate gate to control howmuch information
is needed to be forgotten and memorized through the sequence.

The architecture of the yield prediction model based on the GRU is shown in
Fig. 3.7, which included four layers, i.e., soil features (S_CNN) and weather features
(W_CNN)pre-processed usingCNNfilters,GRU layers forNDVIprediction (‘GRU’
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Fig. 3.6 Illustration of the Gated Recurrent Unit (GRU). a GRU continuously accepts inputs from
a sequence. To easily understand the loop operation in the GRU, the GRU was drawn with the
unfolded way. The ‘t’ represented each time step. b The architecture of the GRU

Fig. 3.7 The architecture of the GRU network. SL is sequence length, which was set to 1 in this
study. BZ is the batch size for the training procedure. FCL means fully connected layer. IF is image
feature (i.e., NDVI). All the GRUs highlighted with yellow color were the same loop processing
unit in the network and had the same parameters. All FCL_1 units highlighted with green color
were using the same parameters

in Fig. 3.7), and the fully connected layers for yield prediction (‘FCL_2’ in Fig. 3.7).
The input parameters of the GRU network included eleven soil features processed
by the S_CNN and weather data from May 1 to October 29, 2019, processed by the
W_CNN. The initial hidden-input vector (‘Init’ in Fig. 3.7) of the GRU was set as
zeros and the corresponding output was assumed to be the NDVI in July (the GRU
output of its first loop). The hidden outputs of the July GRU were passed to the next
loop of the GRU unit (i.e., the GRU in August). The processed weather data from
July 31 to September 3 were also passed to the August GRU, which had an output
assumed to be the NDVI in August. The NDVI in July was used to replace the ‘Init’
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to input to the August GRU. Similar procedures then defined the GRU processing
units for September NDVI and for yield. The GRU unit was a three-month loop
processing unit that each loop received the weather data from current month and the
NDVI images from the previous month. The GRU was used to predict the NDVI
spatial distribution of the current month based on the weather of the current month
and the NDVI of the previous month.

The study indicates that the yield predictionmodel based onDL is able to integrate
data of soil, weather, imagery, and yield that have different resolutions and data
structures. The yield prediction model shows an improved performance compared to
the models without the full integration of related environmental factors, which could
explain 68–84% of yield measured with the yield monitor (ground truth data), with
the prediction errors ofMAE= 247 kg ha−1 (8.9%) - 345 kg ha−1 (12.3%) at different
years. In summary, the study indicates the potential of predicting the cotton yield of
a future year based on soil texture, weather conditions, and UAV imagery. Future
research could investigate more leading methods in integrating multiple source data
of multiple years to estimate field-scale yield in the following years.

3.3 Summary

This chapter introduced theUAVapplications in cotton production, from stand count,
growth monitoring to yield prediction. UAV-based RS systems, equipped with RGB,
multispectral, hyperspectral and thermal cameras, provide a low-cost and efficient
tool for monitoring cotton growth at different stages. The collected information will
then be used to improve crop management, such as seedling replanting, weed and
disease control, and irrigation. Future research would focus on integrating multiple
source data (i.e., environmental, ground, and UAV data) to develop near real-time
tools using advanced ML and DL modellings for more effective and accurate cotton
emergence, growth, and yield estimation for commercial applications.
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