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Chapter 1
Applications of UAVs and Machine
Learning in Agriculture

Sri Charan Kakarla, Lucas Costa, Yiannis Ampatzidis, and Zhao Zhang

Abstract Farmers across the world are looking for more efficient ways to collect
data about various plant physiological factors. This data collection is conventionally
done using manual methods, which are time-consuming and labor intensive. Remote
sensing technologies (aerial and ground based) combined with machine learning
techniques can be used for high-throughput phenotyping and provide critical infor-
mation for precision crop management. In this chapter, different types of unmanned
aerial vehicles (UAVs) equipped with various types of sensors are presented. The
advantages and disadvantages of each type of UAV and sensing system are discussed
for precision agriculture applications. Furthermore, an overview of artificial intelli-
gence algorithms is presented with examples of their usage in precision agriculture.
Machine learning, which is an application of AI, is used to process and analyze
data generated by these remote sensing systems. These algorithms are used for
their capabilities to process complex big data to estimate plant needs and predict
production.

1.1 Introduction

Unmanned aerial vehicles (UAVs) have become a great tool for various agricul-
tural applications that helps growers across the world. UAVs are currently used
for applications such as plant health and stress monitoring, pest and disease detec-
tion and management, plant phenotyping and yield estimation, etc. When compared
to conventional methods and strategies, UAV based agricultural applications are
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efficient, require less labor, and can cover large areas. UAVs are now commonly
used in remote sensing applications for precision agriculture. With the integration of
spectral sensors to the UAVs, they can sense beyond the human vision. For exam-
ples, UAVs are being used to detect and differentiate diseases that have similar
visual symptoms at the early stage [1, 2]. Scouting of plants for disease detection is
an essential component of integrated pest management. Visual/manual scouting is
labor-intensive, expensive, requires expertise in pest identification, and the observa-
tions may be subjective and biased in terms of disease identification [3–5]. Accurate
disease identification at the beginning of an outbreak is essential for the selection of
effective active ingredients in spray treatments and reduces the dosage required with
significant environmental and economic benefits. Diseases are currently detected in
the field by visual scouting of plants and fruits. However, diagnosis based on visual
symptoms is difficult due to the inability to differentiate among similar foliar symp-
toms of diseases. Initially, symptoms for these diseases may appear alike requiring
additional confirmatory tests in a lab that could delay the diagnosis by hours or even
days. UAVs equippedwith sensors like hyperspectral camera can significantly reduce
the time taken for this process and can also be cheaper than the traditional process
[6, 7].

Tree height and canopy size measurements are other applications of the UAVs.
Traditional sensing technologies for evaluation of field phenotypes rely on manual
sampling and are often very labor intensive and time consuming, especially when
covering large areas. Additionally, field surveys for pest and disease detection, plant
inventory, and plant health assessments are expensive, labor intensive and time
consuming. Small UAVs equipped with RGB (Red, Green, Blue), and multispec-
tral sensors have recently become flexible and cost-effective solutions for rapid,
precise, and non-destructive high-throughput phenotyping. UAVs equipped with
RGB cameras combined with cloud-based web applications integrated with deep
learning networks allow growers to constantly monitor crop health status, estimate
plant water needs, detect diseases and pests, and quantify pruning strategies and
impacts. UAVs equipped with LiDAR sensors are also used to monitor landscape
and terrain changes in forests. There are several artificial intelligence and machine
learning algorithms and platforms that have been developed in recent years that use
post processed UAV data to present growers with various crop parameters, such
as health conditions, canopy size and density. They can also be used to generate
different maps (e.g., weed intensity, soil, and yield). In addition, UAVs can be used
for spraying applications. They can be used for site specific spraying where the UAV
based imagery data identifies a high-risk area affected with a disease and the UAV
is programmed to be able to travel to the high-risk location and spray that specific
area.
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1.2 Types of UAVs

Unmanned aerial vehicles can be classified into different types based on their aero-
dynamic features. The four major types are (Fig. 1.1 and Table 1.1): multi-rotor,
fixed-wing, single-rotor, and hybrid vertical take-off and landing (VTOL).

1. Multi-rotor UAVs: These are the most commonly used UAVs by professionals
and hobbyists. They are widely used for applications like aerial photography,
aerial mapping, and recreational sports. These types of UAVs are the cheapest
option available in the market currently. They can be further classified into
different types based on the number of rotors on theUAV: (i) Tricopter (3 rotors);
(ii) Quadcopter (4 rotors); (iii) Hexacopter (6 rotors); and (iv) octocopter (8
rotors). Generally, the payload capacity increases with the number of rotors the
UAV is equipped with. Compared to the low cost as the advantage, multi-rotor
UAVS have several disadvantages. They have limited flight time and endurance
when compared to the other types of UAVs. This is due to the fact that they need
to consume a lot of energy to remain stable in air fighting against gravity and
winds. The average flight time for multi-rotor UAVs ranges around 20–40 min.

2. Fixed-wing UAVs: The design of these types of UAVs are akin to regular
airplanes with wings. In contrast to the multi-rotor UAVs, they do not require
a lot of energy to stay in the air as they take advantage of the aerodynamic lift
provided by its structure. Due to this, they can fly for a longer time compared
to the multi-rotor UAVs. The average flight time for fixed-wing UAVs can last
around 1–2 h. A disadvantage of these types of UAVs is that they usually need
a lot of space for takeoff and landing. They also lack the ability to hover and are
considered to be more complex and difficult to manipulate/operate than multi-
rotor UAVs, requiring professional training. These types of UAVs also typically
cost more than the multi-rotor UAVs.

3. Single-rotor UAVs: This type of UAVs looks very similar to helicopters in their
design and structure. They are usually equippedwith a large rotor on its top and a
small rotor on its tail to control the direction of heading. These UAVs are usually
powered by gas engines and therefore can fly for longer time when compared
to multi-rotor UAVs (powered by rechargeable batteries). The downside of this
type of UAVs is the operational dangers that comes with its large sized andmore
powerful rotors. They are also more difficult to fly than multi-rotor UAVs, and
professional training is required. They usually cost even more than the fixed-
wing UAVs but compensate for this price difference with a higher payload
carrying capacity than fixed-wing UAVs.

4. HybridVTOLUAVs: This type of UAVs combines the advantages of fixed-wing
and multi-rotors UAVs with vertical takeoff and landing capabilities. These
UAVs are relatively new in the market and there are limited options available.
They have a long flight time and can carry larger payloads, but the efficiency of
these UAVs needs to be tested and evaluated.
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Fig. 1.1 Different types of UAVs

Table 1.1 Different types of UAVs with price points and payload capabilities

Type of UAV Price Payload capabilities

Multi-rotor Starts from $100 • Can hold up to 4 sensors at once
• Depends on the number of gimbal spots available but
can also mount using self-made mounts

Fixed wing Starts from $1,000 • Usually, can carry 1 to 2 sensors at once
• Sensors already come preinstalled in the UAV

Single rotor Starts from $10,000 • Mostly used for spraying applications

Hybrid VTOL Starts from $8,000 • Usually, can carry 1 to 2 sensors at once
• Comes with preinstalled sensors

Types of Sensing Technologies:

1. RGB sensors

The RGB sensors are commonly referred to as visual or color cameras. They are
widely used in a huge number of common devices such as cellphones, tablets, digital
cameras, etc. These sensors measure the reflectance in the red, green, and blue spec-
trums and provide the users with a visible image. When UAVs equipped with RGB
cameras are flown over large areas, they collect thousands of images, which are then
stitched together using photogrammetry software to produce amap of the entire field.
These maps can be used for several agricultural applications (e.g., to develop plant
inventories, estimate plant leaf density and plant canopy volume) [8, 9].
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2. Multispectral sensors

Multispectral sensors are an advanced version of RGB sensors, which can provide
data beyond what the naked human eyes can see, and thus can capture information
beyond the human vision. They provide reflectance data from the near infrared (NIR)
spectrum in additional to the red, green, and blue spectrums that are usually captured
by the RGB sensors. These data can be used for the calculation of several vegetation
indices (VIs), among which the mostly used is the normalized difference vegetation
index (NDVI). In agriculture, NDVI is measured on a scale from 0 to 1, with 0 being
a stressed and 1 being a healthy plant. NDVI is being widely used by researchers to
identify plant stress, predict crop yield, etc. The following is the formula to calculate
NDVI:

NDV I = (N I R − Red)

(N I R + Red)

where Red and NIR are the spectral reflectance measurements in the red and near-
infrared regions, respectively.

3. Hyperspectral sensors

The hyperspectral sensor is one of the most complex spectral sensing technolo-
gies being used in agricultural applications. It is not being as widely used as the
other spectral sensors, due to very high cost of equipment and complex operating
procedures. Contrary to the RGB and multispectral sensors, hyperspectral sensors
collect reflectance data in continuous scans along a spectrum, usually ranging from
400 to 2,400 nm. While multispectral sensors collect reflectance data over discrete
broader bands (e.g., 4–10 bands), hyperspectral sensors collect reflectance data from
much narrow bands (e.g., 4–20 nm). Researchers have been using hyperspectral
sensors combined with machine learning (ML) algorithms to correlate the collected
reflectance data with various agricultural parameters. For example, hyperspectral
sensors are being used to detect, identify, and distinguish plant diseases with similar
visual symptoms, which can be a very complex task for RGB and multispectral
cameras [2, 10–12].

4. Thermal sensors

Thermal sensors measure the energy radiated by an object at a wavelength (ranging
from 7,000 to 12,000 nm) corresponding to its surface temperature. They can provide
the users with surface temperature of various objects present in a field. Thermal
cameras are widely used for precision irrigation applications. They can also be used
with ML to detect leaf wetness [13] and fruits on trees [14].

5. LiDAR sensors

Light detection and ranging (LiDAR) sensors measure the distance to objects around
them by illuminating the target with laser light and calculating the time required for
the light to return to the sensor. LiDAR sensors have been used historically to map
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Fig. 1.2 Different types of sensors outfitted to UAVs

digital elevation and surface models of the earth’s surface. In agriculture, LiDAR
sensors are being used for 3D modelling of the farms and farm buildings. They can
also be used to measure various parameters such as crop height, crop density, canopy
size, etc. Garcia et al. [15] used LiDAR data to model forest canopy height and
Sankey et al. [16] used LiDAR and hyperspectral fusion for topography modelling in
southwestern forests of USA, which can help monitoring landscape changes. LiDAR
sensors can be used both on ground and air-based platforms for various applications
(Fig. 1.2).

1.3 Examples of UAV-Based Agricultural Applications

1. Weed Mapping: Weed mapping is one of most popular applications of UAVs in
precision agriculture. Weeds are undesirable plants that can grow near agricul-
tural crops and can lead to various issues. They are competing with the crops for
water, nutrients, and space, causing crop growth issues and resulting in yield
loss. Since weed control is closely related to crop yield, it is very important
to eliminate weeds in an agricultural field. Weed control is usually done by
the use of herbicides. The most conventional spraying strategy in farming is
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to spray herbicides uniformly over the entire field (blanket application), even
where there are no weeds. However, this strategy may not be efficient in terms
of cost and time, and also the overuse of herbicides can result in the evolution
of herbicide-resistant weeds and can affect the growth and yield of the crops. In
addition, indiscriminate herbicide spraying causes environmental issues (e.g.,
soil and water contamination) and agrochemical residues on food products. To
overcome these problems, through precision agriculture practices, site-specific
weed management (SSWM) is used [17]. SSWM refers to the spatially vari-
able application of herbicides rather than spraying them in the whole field. In
this context, the field is divided into management zones that each receives a
customized management, as usually weed plants spread through only few spots
of the field. To achieve this goal, it is necessary to generate an accurate weed
cover map for precise spraying of herbicide. UAVs can gather images and derive
data from the whole field that can be used to generate a precise weed cover map
depicting the spots where the chemicals are needed: (a) the most; (b) the least;
or (c) not at all.

2. Plant growth monitoring: UAVs are most frequently used for monitoring the
growth of vegetation and providing yield estimates. For a grower to system-
atically monitor the progress of crop growth, there is a lot of human effort
and time involved which makes it almost practically impossible. This problem
is compounded by presence of diseases and pests in the fields which makes
even more challenging to track the crop growth. In addition, under extreme
weather conditions (e.g., rain), growers have challenges to get access to crop
fields. Regular collection of information and visualization of crops using UAVs
provides increased opportunities to monitor crop growth and record the vari-
ability observed in several parameters of the field. The information acquired by
the UAVs can be used for the creation of three-dimensional digital maps of the
crop, and for the measurement of various parameters, such as crop height, plant
inter- and intra-row distance, leaf area index (LAI), etc. UAVs offer the potential
to systematically collect crop information, therefore farmers can optimize crop
management, such as use of inputs (e.g., nutrients, water), timing of harvest,
pest and disease control, or even identify possible management errors.

3. Crop health and disease monitoring: UAVs are also used to monitor vegeta-
tion health. Crop health is a very important factor that needs to be monitored, as
pests, diseases and improper/insufficient nutrients in crops can cause significant
economic loss due to the reducedyield and lowered cropquality.Crops should be
monitored constantly to early detect the pests and diseases and avoid spreading
throughout the field. Traditionally, this task is performed by human experts who
visually inspect the crop. However, this can be very time consuming, as it can
require months to inspect an entire field preventing the potentials of “continu-
ous” monitoring. Furthermore, several diseases have similar visual symptoms,
which makes it difficult even for the experts to accurately detect and distin-
guish diseases in early stages. To overcome this challenge, remote sensing tech-
nologies, such as multispectral and hyperspectral sensors, combined with ML
algorithms have been used to detect and distinguish diseases that have similar



8 S. C. Kakarla et al.

visual symptoms. There are studies that indicate that early detection of disease
(e.g., in an asymptomatic stage) is possible (e.g., [1, 18, 19]), which can help
growers to timely identify disease hotspots, and thereby treating the hotspots
and avoid the spread of disease to other parts of the field. NDVI is the mostly
used vegetation index that has been used extensively to estimate the crop health
status in large fields by using images collected from UAVs. Another common
disease control method is the proactive and frequent application of pesticides.
Such strategies incur a high cost and increase the likelihood of ground water
contamination and pesticide residues in the products. In precision agriculture,
site-specific disease control takes place. Precision agriculture practices adopt
a decision-based disease management strategy, in which automated and non-
destructive crop disease detection plays a very important role. Disease detection
is feasible as diseases induce changes in biophysical and biochemical charac-
teristics of the crops. UAV-based data processing technologies use crop imaging
information to identify changes in plant biomass and their health. Therefore,
diseases can be detected in their early stages enabling farmers to intervene in
order to reduce losses. In this context, UAVs can be used in the two different
stages of disease control: (a) at the initial stage of infection by collecting crop
health relevant information, during which UAVs can detect a possible infection
before visual indications appear and map the size of the infection to different
parts of a culture; and (b) during the treatment of infection when farmers can
use UAVs for targeted spraying as well as for accurately monitoring the course
of their intervention.

4. Yield prediction andmonitoring: Themostwidely adoptedmethod for gathering
information about yield and crop quality is through actual harvesting, weighing,
and sorting either by human workforce or using automated machines [20–22].
For example, several automated systems were developed for yield monitoring in
specialty crops, utilizing weighing systems and identification technologies [23–
25]. However, the development of accurate yield estimation/prediction models
is a very challenging task. Yield prediction is a critical step in defining the
adequate resources, management strategies, and logistics related to the work-
force, storage, packaging, and transportation [26]. UAV-based remote sensing
and artificial intelligence can be used to predict crop yield [27, 28] and fruit
quality [29] with an acceptable accuracy.

5. Crop spraying: An application of UAVs in precision agriculture that is more
rarely met is crop spraying. The main spraying equipment used in conventional
farming are the manual air-pressure and battery-powered knapsack sprayers.
However, these conventional sprayers can cause major pesticide losses. In addi-
tion, the operators need to be present when spraying, which leads to exposure to
biohazards. In this manner, UAVs can be useful due to the lower operator expo-
sure and improved ability to apply chemicals in a timely and highly spatially
resolved manner. The use of precision systems for measuring distances allows
UAVs to follow the morphology of the ground, keeping their height constant.
Therefore, an aircraft can spray the appropriate amount of herbicide spatially,
adjusting both its height and the amount it sprays based on the crop site in which
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it is located. Crop spraying is particularly important in caseswhere diseases have
been identified where it is important to reduce pesticide use without affecting
crop yield. In conclusion, UAV-based systems can make a decisive contribution
to crop spray management.

In addition to the common applications mentioned above, UAVs have also been
used for soil analysis, assessment of soil electrical conductivity, genotype selection,
animal detection and management, and other applications.

1.4 Artificial Intelligence and Machine Learning

The simulation of human intelligence processes by machines, particularly computer
systems, is known as artificial intelligence (AI). Expert systems, natural language
processing, speech recognition, and machine vision are examples of AI applications.

Artificial intelligence systemswork by learning from amassive amount of training
data, analyzing the data for correlations and patterns, and then using these patterns
to predict future status. By evaluating millions of samples, an image recognition
technology may learn to identify and characterize objects in pictures.

The science of computer algorithms that improve automatically over experience,
which has been a fundamental concept in AI research since the field’s inception, is
called machine learning (ML). Machine learning algorithms create a model based on
sample data, referred to as “training data”, in order to make predictions or judgments
without being explicitly programmed.

Machine learning algorithms typically involve three main steps: learning, testing,
and self-adjusting. The learning stage comes from the training data, where the
computer creates a set of rules and reasoning from the data. These solutions are
then compared to a testing dataset, which generates a score quantifying how good
or accurate the created models are. The algorithm then uses these scores to either
generate the final model if the scores are high (good) or continue training to search
for better possibilities.

The application of ML in human tasks began with algorithms that mimicked the
step-by-step reasoning that humans employwhen solving problems ormaking logical
inferences. Using notions from probability and economics, the earliest AI investiga-
tions devised ways for coping with uncertain or partial information. However, these
methods proved insufficient for answering huge reasoning problems, as they got
exponentially slower as the size of the problems increased.

Artificial neural networks, a methodology from the early machine-learning days,
came and went over the decades. Neural networks are inspired by our understanding
of the biology of our brains- mimicking the vast number of interconnected neurons.
However, unlike a biological brain,where any neuronwithin a given physical distance
can link to any other neuron, these artificial neural networks have discrete layers,
connections, and data propagation directions.
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Fig. 1.3 Illustration of the
relationship between
artificial intelligence,
machine learning, and deep
learning

As the problem increased in both size and complexity, so did the size and
complexity of the neural networks required to solve them. This came to a point
where this approach proved to generate reliable and accurate solutions but would
only be possible with a much larger amount of data and training. Deep learning is a
subset of a larger family of machine learning techniques (Fig. 1.3) based on repre-
sentation learning and artificial neural networks. In deep learning, the word “deep”
refers to the employment of numerous layers in the network. Deep learning is a
more recent form that has an unbounded number of layers of bounded size, allowing
for practical application and optimization while maintaining theoretical universality
under mild conditions. The simplest approach to illustrate their relationship is to see
them as AI—the original idea—at the center, containing machine learning—which
grew later—and ultimately deep learning—which is driving today’s AI explosion
(Fig. 1.3).

There are three types of learning: supervised, unsupervised, semi-supervised
learning, and reinforcement learning.

Supervised learning

The major distinction of supervised learning is the presence of the labeled datasets
for training. Labels identify what the observed data represents and are prepared by
a human operator. They are used by the algorithm as the truth to be compared when
training and testing the model. Those developing the algorithm must manually go
through the dataset and apply labels to objects or features of interest. This gives devel-
opers a fair amount of control over the learning process, hence the name “supervised”
learning. Through this learning process, the algorithm learns to essentially create its
own labels based on the provided parameters, with the end goal being to apply the
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Fig. 1.4 Workflow of a supervised learningmodel with a supervisor labeling the raw dataset, which
is used by the training algorithm to develop the model

algorithm on new, unlabeled datasets for autonomous labeling. Figure 1.4 presents
the workflow of a supervised learning model training process. The main applications
of supervised learning include object detection, recognition, and classification. An
example of supervised learning in agriculture can be seen through the study from
Varela et al. [30], where the objective of this study was to develop a method for
counting corn plants based on ultra-high-resolution imagery obtained from UAVs
utilizing supervised learning. To achieve this aim, an excess greenness (ExG) index
was utilized to distinguish green pixels from the background, which allowed for the
rows and inter-row contours to be identified and extracted. A training procedure was
then implemented using geometric descriptors as inputs of the classifier. Following
this, a decision tree was implemented and tested using two training modes in each
site to allow the workflow to experience varying ground conditions at the time of the
aerial data acquisition. For an object classification task, there was an overall accuracy
of 0.96 and 0.93 acquired for local classifications based on the correctly assessed
corn and non-corn objects and for the combined training modes respectively.
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Unsupervised learning

In contrast to supervised learning, in unsupervised learning the provided datasets are
completely unlabeled. To compensate for the lack of labels and thus foundational
knowledge, much larger datasets are usually used when compared to supervised
learning. Unsupervised learning is more akin to human learning than supervised
learning in that it involves drawing from past experiences to augment future deci-
sions, rather than needing to be explicitly taught everything. Because the datasets
being used in unsupervised learning are unlabeled, there is less upfront manual
labor required from developers to begin learning, however the results are gener-
ally less reliable than those generated from supervised learning and often require
more manual labor in verification processes post-learning. Figure 1.5 presents the
workflow of an unsupervised learning model process. The primary applications of
unsupervised learning involve clustering datapoints by similarity, detecting anomaly
datapoints, dimensionality reduction, and discovering variable associations or rela-
tionships. Common real-world examples include online shopping suggestions and
credit card fraud detection systems. An example of semi-supervised learning in agri-
culture can be seen through the study from Shorewala et al. [31], where the aim was
to estimate weed density and distribution across farmlands using only limited color
images acquired from autonomous robots. To accomplish this task, the foreground
vegetation pixels containing crops and weeds were first identified using a convolu-
tional neural network (CNN) based unsupervised segmentation. Proceeding this, the
weed infected regions were identified through a ‘fine-tuned’ CNN, which eliminated
the need for manual labeling. The approach was verified through two datasets with
differing crop and weed species. This method was able to localize weed-infested
regions with a maximum recall of 0.99 and estimated weed density with a maximum
accuracy of 82%.

Fig. 1.5 Workflow of an unsupervised learning model differentiating 3 object classes
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Fig. 1.6 Workflow of a semi supervised learning model using a small number of labels to better
understand the dataset

Semi-supervised learning

Semi-supervised learning is a hybrid method of machine learning that benefits from
the strengths of supervised and unsupervised learning, while mitigating their weak-
nesses. Labeled data can provide higher accuracy than inexpensive unlabeled data,
however its acquisition is often labor intensive and time consuming which can render
it impractical. Semi-supervised learning uses these two data types in tandem to
produce a superior algorithm maintaining decent accuracy with reasonable time and
cost expense. This is achieved by training a small, labeled dataset first,which provides
a model capable of labeling a large, unlabeled dataset. Figure 1.6 presents the work-
flow of a semi supervised model process. The resulting labels are not ideal but can
be used in conjunction with the initial labeled dataset to retrain the model and reduce
error in the subsequent training session. An example of unsupervised learning in
agriculture can be seen through De Rainville et al. [32], where the aim was to utilize
supervised and unsupervised learningmethods to obtain themorphological attributes
of the crops and weeds present within various fields. The feature extraction process
for the study was based on the spatial localization of vegetation in the fields. Features
from the weed leaf area distribution were extracted from the cultivation inter-rows,
which allowed for the features of the crops to be inferred from the mixture model
equation. These extracted features were then passed to a naive bayesian classifier
and a gaussian mixture clustering algorithm to distinguish weeds from crop plants.
This technique was able to correctly classify an average of 94% of corn and soybean
plants and 85% of the multiple weed species without prior knowledge on the species
present in the field.

Reinforcement learning

In contrast to the other algorithms, reinforcement learning does not utilize datasets at
all, and instead learns through an experimental learning environment and a scoring
system from an interpreter. The interpreter is designed by the developer to understand
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Fig. 1.7 Workflow of a reinforcement learning model training

the objective and reward scores to themodel in the training stage. At the training stage
the algorithm is taught to do a task through trial and error, with actions bringing the
task closer to completion receiving higher scores from the interpreter. Through this
positive feedback, the algorithmattempts to improve the actionpolicy to solve the task
upon positively scored actions. Figure 1.7 presents the workflow of a reinforcement
learning training process. Throughmany iterations, the algorithm can learn to perfect
a specific task based on the required specifications. This task mastery, however, is
very dependent on the task environment being identical to that on which it was
trained on. This type of learning is the basis of AI programs that are taught to play
certain electronic games to the level of which they can defeat highly skilled human
players. An example of reinforced learning in agriculture can be seen through Zhang
et al. [33], where the aim was to develop a UAV that preserves battery life through
sampling specific sections of a field and predicting the crop health for the whole field
based on the samples obtained. Reinforcement learning (RL) and CNNwere utilized
to accurately and autonomously sample the field. The flight simulations were run
on an aerial image dataset collected from an 80-acre corn field to develop and test
the methodology. The ExG vegetation Index was utilized as the measurement for the
crop health condition which was the criteria the AI was judged upon. Compared to
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the conventional UAV scouting approach, which can be costly and time consuming
due to the need to exchange depleted batteries multiple times, the proposed scouting
approach sampled 40%of the field, predicted crop healthwith 90%accuracy, reduced
labor cost by 4.8 times and increased agricultural profits by 1.4 times.

More use cases of UAV data combined with artificial intelligence

UAVs can be used to collect survey places that are difficult to be reached by foot,
which can help increase the possibility to detect wildfires early. Gonzalez et al.
[34] used thermal images and videos acquired from a UAV and applied artificial
intelligence image processing using OpenCV to detect, classify, and locate wildlife
in their natural habitats. The detection results from aerial data were compared to the
ground data and the accuracy was 100%.

For fast and accurate plant disease detection, Sandino et al. [35] integrated hyper-
spectral imaging, UAVs, and machine learning algorithms to detect paperbark tea
trees affected with myrtle rust. They used the spectral data acquired using UAVs and
processed the data using Python programming language with the help of eXtreme
Gradient Boosting (XGBoost). XGBoost is a common machine learning algorithm
for complex and high dimensional data sets, such as spectral data. The detected trees
were located using the Geospatial Data Abstraction Library (GDAL). The Scikit-
learn third-party library was used to fine-tune the detection with statistical analyses
and robustmathematicalmodels. Theywere able to achieve detection rates of 97.24%
for healthy trees and 94.72% for affected trees. The algorithm obtained a multiclass
detection rate of 97.35%.

For livestock tracking and autonomous monitoring without attaching wearable
sensors to animals (e.g., [36, 37]) used a UAV equipped with a high-resolution
camera to count and track livestock animals. They used a CNN for object detection
to detect and count several animal species and achieved detection accuracy rates of
97.1%. This information can be used to monitor a large number of livestock with
minimal labor and discomfort to animals.

Han et al. [38] used spectral and structural information from aUAV equipped with
a RGB and multispectral imaging systems. They used this information to estimate
the above-ground biomass (AGB) using fourmachine-learning regression algorithms
(e.g., multiple linear regression-MLR, support vectormachine-SVM, artificial neural
network-ANN, and random forest-RF). These four algorithms were evaluated and
compared to create a suitable model that achieved highest accuracy rate in estimating
the AGB biomass. ANN and RF models had a higher R2 (coefficient of determina-
tion) and a lower RMSE (root-mean-square deviation), which indicates that they
performed better than MLR and SVMmodels. R2 and RMSE values respectively for
test set are as follows: MLR (0.661,1.28), SVM (0.689,1.22), ANN (0.691,1.21) and
RF (0.699, 1.2).

To expedite vegetable indices development, Costa et al. [39] created a workflow
for developing agricultural indices using genetic algorithms. This study proposed a
new index, vNDVI (visible NDVI), which estimates NDVI values of vegetation from
uncalibrated RGB cameras mounted on UAVs (or other remote sensing platforms)
with an average error of 6.89% on three crops (citrus, wheat, and sugarcane) tested.
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This solution can provide effective indices to track different plant conditions while
minimizing sensor costs.

For large scale grove monitoring and managing, Ampatzidis et al. [40] developed
a cloud-based application to process, analyze, and visualize UAV collected data.
This application can automatically create tree inventories and assess plant charac-
teristics such as tree health, height, canopy size, and leaf density. It was found that
this emerging technology detected citrus trees with mean absolute percentage error
(MAPE) of 2.3% in a commercial citrus orchard with 175,977 trees (1,871 acres; 39
normal and high-density spacing blocks). Furthermore, it accurately estimated tree
height with 4.5% and 13.0% MAPE for normal and high-density spacing respec-
tively, and canopy size withMAPE of 12.9% and 34.6% for normal and high-density
spacing, respectively. It provides a consistent, more direct, cost-effective, and rapid
method for field survey and plant phenotyping.

To minimize labor and costs involving in plant nutrient analysis and manage-
ment, Costa et al. [41] developed a gradient boosting regression trees model to esti-
mate citrus tree leaf nutrient content based on multispectral reflectance from UAV
imagery. The model was trained on Valencia and Hamlin citrus varieties. This novel
methodology estimated macronutrients [Nitrogen (N), Phosphorus (P), Potassium
(K), Magnesium (Mg), Calcium (ca), and Sulfur (S)] with high precision (under
15% average) and micronutrients with good accuracies (under 25% average error).

1.5 Conclusion

The use of UAVs for agricultural applications have been steadily growing, providing
growers with practical information in a short time using minimal resources. There
are various types of UAVs available in the market providing growers with a choice
to choose a type that is best suited for their application. UAVs can also be equipped
with several types of sensors such as RGB, multispectral, hyperspectral, thermal and
LiDAR ranging from $500 to $30,000. The data collected from the UAVs equipped
with these sensors can be processed and analyzed using various artificial intelli-
gence techniques and machine learning models to provide growers with valuable
use cases such as disease detection, nutrient management, phenotyping, inventory
management, yield prediction, etc.
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Chapter 2
Robot Operating System Powered Data
Acquisition for Unmanned Aircraft
Systems in Digital Agriculture

Yu Jiang

Abstract Unmanned aircraft systems (UAS) have been popularized recently for
agricultural applications. While many commercial and open-source solutions have
been and are being developed, limited efforts have been made for custom data acqui-
sition systems which are crucial to address major technical issues in the current
UAS systems for agriculture. This chapter aims to provide a conceptual framework
based on robot operating system (ROS) for the design and development of custom
data acquisition (DAQ) systems for UAS in agriculture. Design concepts and major
implementation details are provided to facilitate future development. A case study is
given in this chapter to demonstrate the use of the conceptual framework to design and
implement a ROS-based data acquisition system for a commercial drone. The case
study also demonstrated the success of the developed system for image acquisition
in a hemp breeding experiment and the value of using UAS sensing systems for high
throughput phenotyping in hemp. Therefore, the proposed conceptual framework
can be used as a reference to develop custom DAQ systems in future studies.

2.1 Introduction

Agriculture is facing tremendous challenges caused by the continuously growing
world population along with major environmental [13] and social issues [19] such as
climate change [12], limited arable land and water resources [24], and labor shortage
[39]. Past efforts have focused on addressing specific issues: the Green Revolution
aimed for yield increases but not resource use efficiency; agricultural mechanization
revolution aimed for productivity but not pollution and environmental consequences;
and precision agriculture aimed for optimal return over investment but not equity.
The new digital agriculture (DA) revolution aims to digitize the whole supply chain
of agrifood systems and provides systems solutions to massive aforementioned chal-
lenges [2].
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Unmanned aircraft systems (UAS), or drones in many recent research studies,
are a key DA component that offers mobility to sensing and actuation operations for
agricultural applications [1, 9, 14, 18, 32, 35]. Based on the driving-mode, UAS
platforms can be categorized as three groups: (1) single-rotors, (2) multirotors, and
(3) fixed-wing platforms [14]. Single-rotors (e.g., helicopters) and fixed-wing plat-
forms have been widely used in remote sensing and spraying in agriculture for a long
time [35]. Due to improved operability, reduced cost, and sufficient market availabil-
ity, multirotors have been recently popularized for both agricultural research and
production management, especially for high throughput plant phenotyping [9, 35].
Compared with other mobile platforms (e.g., ground and satellite systems), multi-
rotors offer a unique balance between sensing coverage and resolution. Typically, a
multirotor-based system has a flight duration of 20 to 30 minutes, which can cover
up to 100 acres with a sensing resolution at the millimeter to centimeter (or organ
to plot) levels [29, 30, 37]. This throughput and resolution combination would be
sufficient for plant- and plot-level research studies and breeding as well as decision-
making support in production systems. Depending on the sensing modules (e.g.,
RGB,multi/hyper-spectral imaging, thermal imaging, and LiDAR) used, UAS-based
systems have demonstrated success in measuring traits related to plant morphology
(e.g., plant height and volume) [17, 21], physiology [10], stresses [1], crop yield [15,
38], and crop quality [27, 33]. Particularly, many off-the-shelf UAS-based systems
have been well integrated with RGB, multi-/hyper-spectral, and thermal imaging
modules, which allow non-engineering experts to readily utilize these new tools for
collecting needed raw data in research fields and production farms [14, 29, 35].
Therefore, recent interests and efforts have been concentrated on the development
of data analytical methodologies and processing pipelines to extract and interpret
important crop traits from raw data collected by UAS systems, leading to new bio-
logical and agronomic findings and precision management practices. On the other
hand, two major engineering needs have been identified for UAS in agriculture: (1)
multimodal sensing UAS for agricultural applications and (2) coordinated multi-
agent UAS for agricultural sensing [14]. The two needs are related to the design of
UAS control and data acquisition.

A large body of literature has focused on the design and control of quadcopters, a
representative multirotor, because of the dynamics and diverse military and civilian
applications [3, 11, 20, 23]. The control and mechatronics of multirotors (or other
types of UAS) are continued research topics, but recent interests have shifted towards
multi-agent UAS control [4, 28, 31], operation safety [22], and visualization [22,
34]. The design and control of quadcopters have been gradually formalized in the past
decade, which has led to two main options: (1) commercial products via representa-
tive manufacturers such as DJI Inc. and (2) open-source solutions via large commu-
nity supports such as PX4 Autopilot. Both options provide software development kit
(SDK) and/or predefined interfaces to enable the customization of UAS systems for
various domain applications such as digital agriculture. The key difference between
the two options is the balance between guaranteed performance and modification
flexibility. Development of data acquisition system for UAS (especially multirotors)
has been largely overlooked because of well-integrated commercial products and/or
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the use of single sensors. Most studies on the development of UAS data acquisition
system have reported custom computer programs to control a particular instrument,
which lacked the expandability to new sensors with different hardware/software
interfaces [7, 8]. Several pioneering attempts, however, have reported the design of
new data acquisition system for UAS with either flexible control synchronization
[6, 25] and/or multimodal sensing capabilities [16, 36]. In particular, two of them
reported the use of robot operating system (ROS)-based solutions [6, 36]. A major
limitation of the two studies is the lack of an abstract framework to guide the design
and development of ROS-based data acquisition systems which enable multimodal
and multi-agent UAS sensing in future agricultural applications.

This chapter aims to provide a conceptual framework for the design and develop-
ment of a ROS-based data acquisition system for UAS systems in digital agriculture.
Basic concepts of ROS components and examples of using ROS for both commer-
cial and open-source UAS systems are provided. A case study of using the proposed
framework is presented for an industrial hemp research. Future development and
potential applications are also discussed.

2.2 ROS-Based Data Acquisition System

2.2.1 Basic Concepts and Components in ROS

ROS is an open-source middleware for robots and provides a collection of libraries
of fundamental functions for robot development [26]. Although ROS is not an actual
operating system (OS), it provides OS-level functions such as hardware abstraction,
low-level device control, commonly used functions, message-passing between pro-
cesses, and stable package management. There are three levels of concepts in ROS:
file system, computation graph, and community. While all three are important for
the ROS ecosystem, the computation graph level is the focus in this chapter because
it is directly related to the development of a ROS-based data acquisition system.

In the runtime, ROS builds a computation graph that enables peer-to-peer connec-
tions among individual processes via the ROS communication mechanism (Fig. 2.1).
There are three types of communications in ROS: (1) synchronous remote procedure
call (RPC), (2) asynchronous data streaming, and (3) global data storage and sharing.
The communication approaches are implemented by using various ROS computation
graph components which should be briefly introduced prior to the design and devel-
opment of ROS-based data acquisition. The basic components in a ROS computation
graph include Node, Service, Master, Parameter Server, Topic, Message, and Bag.

Node: Nodes are the basic computational processes in ROS. A ROS program
usually comprises a collection of nodes with each being dedicated for a particular
function to achieve a fine-grained modularity. For instance, a node can be developed
to interface with an encoder for robot control uses. All nodes are typically connected
via the asynchronous data streaming (publisher-subscriber scheme) to form a com-
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Fig. 2.1 Diagram of key ROS components and their potential connections in a ROS computation
graph. It should be noted Node and Service are both processes but use different communication
schemes. ROS Master is a naming and registration service to allow the rest nodes and services
to identify each other and Parameter Server is a part of ROS Master. Rosbag is the default ROS
package to save and retrieve information (e.g., raw data, timestamp, etc.) in the ROS Bag format

putation graph for robot operations such as sensor control and data acquisition. ROS
provides two client libraries for the implementation of nodes in C++ (roscpp) and
Python (rospy).

Services: Services can be considered as nodes but are defined by a node pair
with one for requesting and one for replying. Compared to the publisher-subscriber
scheme for one-way communication, the request-reply scheme used by services
offers two-way interactions between the paired nodes. This is particularly useful for
RPC-style control. It should be noted that one node can advertise multiple services.

Master: The ROSMaster is a special service for name registration and identifica-
tion for the rest nodes and services in a ROS computation graph. Nodes and services
should be registered in ROSMaster prior to use. Otherwise, they can not be correctly
identified and invoked.

Parameter Server: The Parameter Server is a central location in which data are
stored by key for global access. Currently, the Parameter Server is a part of the ROS
Master for use.

Messages: Messages are simply data structures consisting of fields with various
data types. ROS messages support standard primitive types (e.g., integer, floating
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point, boolean, etc.), arrays of primitive types, and arbitrarily nested structures and
arrays. This is very similar to the structs in C programming language.

Topics: Topics are the transportation channels for the publisher-subscriber com-
munication scheme.When they are communicated between nodes, messages are sent
out by a publisher node to a topic and then disseminated to all nodes that subscribe
to that topic. There is no restriction on the number of topics a node can publish to
nor subscribe from. The same topic can also accept multiple publisher nodes con-
currently. Thus, topics can be considered as input/output (I/O) buses to support low-
latency, many-to-many communications and decouple information production and
consumption. This will be particularly useful for data acquisition systems because
data streaming errors in one sensor (or one node) would not affect the entire system.

Bags: Bags are a ROS format for message (or data in a general context) storage
and retrieval. ROS provides the rosbag package with key functionalities including
data recording, bag meta information check, retrieval of (or play back) collected
bags, bag compression/decompression, bag file repairing, and so on. It should be
noted that rosbag package does not provide a caching mechanism which might be
necessary for high-speed, high data volume sensors.

2.2.2 Connecting with Other UAS Components

As a mobile platform, the data acquisition system of a UAS needs communica-
tions with the control system of that UAS to coordinate data collection with flight
operations. Currently, most UAS platforms use either the DJI control system or
Pixhawk-series controllers from PX4 Autopilot. The two control systems have their
own ecosystems with different preferred features and development requirements, but
both support ROS for secondary development.

The DJI development ecosystem provides an option with a well-integrated ROS
environment such as the DJI onboard software development kit (OSDK) (Fig. 2.2).
The DJI OSDK provides high-level ROS nodes to communicate with the drone and
associated payloads such as cameras and gimbals that follow DJI protocols. These
high-level ROS nodes can be used for time synchronization, obtaining drone status,
flight control, motion planning, information management, and so on. Additionally,
the OSDK also provides interfaces with other DJI SDKs such as payload SDK and
mobile SDK for better system integration and development. Since the OSDKROS is
naturally built upon a specific ROS distribution (or version), it supports all packages
for that ROS distribution as well. Therefore, a data acquisition system can be quickly
developed and integrated with DJI drones for custom data collection needs. For
instance, continuous data collection would be configured for imaging sensors (e.g.,
RGB cameras) with a high shutter speed, whereas a ‘stop-acquire-go’ mode would
be set for point-based sensors (e.g., spectrometers) that need a hover for repeated
measurements and/or an extended long exposure.
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Fig. 2.2 Diagram of the DJI Onboard SDK (OSDK) and interfaces to other SDKs and ROS pack-
ages. Functions in the dashed-line rectangle are high-level ROS nodes in the DJI OSDK for drone
information acquisition, flight status check, and flight and payload controls. OtherDJI SDKs include
mobile SDK for embedded systems (e.g., Androids and Apple iOS) and payload SDK for DJI-
certified accessories and sensors (e.g., gimbals and cameras). DJI offers a version of OSDK built
upon ROS and naturally supports all ROS packages for development

The PX4 Autopilot ecosystem offers a full-stack solution consisting of open-
standard hardware controllers (i.e., Pixhawk-series controllers) and open-source con-
trol software (i.e., PX4) and ground station (i.e., QGroundControl) (Fig. 2.3). The
PX4 control library is designed for all types of unmanned vehicles and provides more
functionalities. For drone-related functionalities, PX4 is very similar to the DJI coun-
terpart. Compared with the DJI OSDK, PX4 is not built upon ROS but has robotics
application programming interfaces (APIs) to support the use of common robotics
libraries such as ROS. It is noteworthy that PX4, as an open-source community solu-
tion, tends to be forward-looking and recommends eitherMAVSDK, the library from
the PX4 Autopilot ecosystem, or ROS2, the newly-designed ROS system with new
features such as the support of realtime operations. PX4 still supports ROS for the
compatibility consideration. Therefore, a ROS-based data acquisition system can be
used interchangeably between the two UAS ecosystems. Some minor modifications
might be needed to accommodate differences due to various ROS distributions.
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Fig. 2.3 Diagram of the PX4 Autopilot ecosystem including PX4, Pixhawk-series hardware con-
trollers, and QGroundControl ground station. PX4 is a stack of autopilot control functions (i.e.,
software) for unmanned aerial, ground, and marine vehicles. PX4 provides robotics application
programming interfaces (APIs) to facilitate the development of any PX4-powered robots for domain
applications without considering all design details. Compared with the DJI ecosystem, PX4Autopi-
lot ecosystem supports more robot middlewares such as ROS, ROS2, and MAVSDK

2.2.3 Examples for Representative Sensors

UAS systems can carry a wide range of sensors. Based on the sensing principles,
sensors can be categorized as optical, electrical, mechanical, acoustic, and so on.
Based on the sensing modes, sensors can be grouped as imaging sensors (e.g., RGB,
multi-/hyper-spectral, thermal cameras) and point-based sensors (e.g., spectrometers,
environment sensors, and volatile organic compounds (VOC) sensors). From the data
acquisition perspective, all these sensors can be divided into two categories: sensors
have onboard data acquisition and sensor have no onboard data acquisition. The two
types of sensors need different designs for ROS-based data acquisition.

Sensors without onboard data acquisition:Many commonly used sensors (e.g.,
spectrometers and industrial cameras) do not provide onboard data acquisition sup-
port because of the design complexity and cost requirements. Integrating these sen-
sors need a data acquisition system not only perform sensor control but also data
transfer from a sensor to a UAS-companion computer for storage, process, and visu-
alization. As data streaming is needed and data transfer can be non-synchronized,
ROSNode is themost proper option (Fig. 2.4). One node should be developed to con-
trol one sensor including sensor initialization, data streaming (i.e., topic registration
and publishing), and error handling. A finite state machine (FSM) has been proposed
to streamline important events that a sensor node should consider implementing in
practice (Fig. 2.5). The key of implementing this state machine for a sensor node is to
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Fig. 2.4 Diagram of a ROS-based data acquisition system with sensor nodes. Each sensor node
controls a single sensor for initialization, data streaming, and error handling. Typically, a separate
node needs to be developed to subscribe all sensor nodes to gather information together and use the
rosbag package for data serialization

Fig. 2.5 Concept of the finite state machine (FSM) developed for sensor nodes and services to be
used in a ROS-based data acquisition system. It should be noted that the implementation of a sensor
node and service will be different because of the difference in their communication schemes. A
sensor node needs to automate the entire state machine due to the one-way communication, whereas
a sensor service can be designed to provide interactive responses to maximize human operator’s
involvement, especially for error handling

fully automate the state transition based on sensor responses because no interaction
will occur with human operators.

An advantage of ROS for data collection is the rosbag librarywhich provides func-
tions in data recording, visualization, check, filtering, compression/decompression,
and repairing. However, rosbag does not provide any caching option to accommodate
data volume differences among sensors, I/O buses, computer memory, and external
storage (e.g., hard drives). Thus, special design needs to be accomplished by devel-
opers to avoid potential memory-related issues such as memory leak for sensors with
high sampling frequency and data volume.

Sensorswith onboarddata acquisition:Advanced sensors such as hyperspectral
and multimodal cameras usually provide this option to improve data I/O efficiency
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Fig. 2.6 Diagram of a ROS-based data acquisition systemwith sensor services. Each sensor service
communicates with a single sensor via provided sensor control APIs. A corresponding client sensor
node needs to be developed to invoke the service for RPC-style sensor control and data collection.
Since no data are streamed back to the ROS-based data acquisition system, raw data will be saved
in a format predefined by the sensor manufacturer in the onboard device. Also, data visualization
through the same ROS environment is non-trivial and may require careful considerations in I/O
bandwidth

and overall reliability. Compared with sensors without onboard data acquisition, key
differences are (1) data streaming from a sensor to a UAS-companion computer is
no long needed and (2) an interactive request-reply communication is required to
ensure successful command communications and executions between a sensor and
a computer. Therefore, ROS Service is the most proper option (Fig. 2.6). A replying
node needs to be developed to communicate with a sensor via APIs provided by the
sensor’s manufacturer, and a client sensor node needs to be developed to invoke the
replying node for various functions. The replying node can register multiple services
with each being used for one control function of the sensor, so that the client node can
implement the proposed FSMfor handling various events based on the sensor running
status. No sensor data are transferred from the sensor back to the UAS companion
computer, presenting two challenges in the ROS-based data acquisition system. First,
raw sensor data will be saved in a format predefined by the sensor manufacturer and
may have different meta data information (especially timestamp). A viable solution
is to save the ROS timestamp when the data collection request will be confirmed
by the sensor service, so that data collected on this sensor can be co-registered with
data collected on other sensors and in the UAS companion computer. Second, data
visualization through the ROS system will be challenging. An alternative solution
is to develop a separate visualization interface to directly visualize data from the
sensor’s onboard system.
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2.3 A Case Study for Industrial Hemp Phenotyping

2.3.1 UAS Data Acquisition System

A custom UAS system was developed by integrating a DJI Matrice 100 platform
with a Zenmuse 3 RGB camera (DJI, Shenzhen, China) and a MicaSense RedEdge
five-band multispectral sensor (1280×960 px) (MicaSense Inc., Seattle, WA, USA).
Based on the framework introduced in the previous section, a ROS-based data acqui-
sition system was implemented to control the two cameras for continuous image
collection during a flight. The RGB camera was controlled by using a sensor node
and images were saved in ROS bag files, whereas the multispectral camera was con-
trolled by using a sensor service and imageswithmeta data were saved in the onboard
SD cards.

2.3.2 Plant Materials and Experimental Design

An experiment was conducted to study the plant morphology contribution to biomass
and cannabinoid yield for industrial hemp [5]. Hemp seeds were sown into deep 50-
cell Sureroots trayswith pottingmix (LM111, Lambert, Rivière-Ouelle,QC,Canada)
in the greenhouse with supplemental lighting with a 16:8 h light:dark regimen, 3
weeks before planting in the field at Cornell AgriTech (Geneva, NY, USA). The
common parent, ’TJ’s CBD’, was planted from cuttings, but grown in the same
greenhouse conditions as the seedlings. Cuttings were rooted using Clonex Rooting
Gel (Hydrodynamics Intl., Lansing, MI, USA). At the time of planting (16 June
2020), 15 progeny individuals were randomly selected from each family, and planted
together in single plots at 1.2m spacingwithin a row and 1.8m spacing between rows.
Granular fertilizer (19-19-19, N-P-K) was incorporated at 95 kg/ha before raised
beds with plastic mulch were built. Drip irrigation was installed under plastic mulch.
Landscape fabric was installed in aisles to suppress weed pressure. Soil moisture
sensors (HOBOnet 10HS,Onset Computer Corp, Bourne,MA,USA)were randomly
installed across the field to aid in timing of irrigation. The field was fertigated twice
through a Dosatron (Dosatron Intl., Inc., Clearwater, FL, USA) 4 and 6 weeks after
planting, using Jack’s 12-4-16 Hydro FeED RO (J.R. Peters Inc., Allentown, PA,
USA).

2.3.3 Data Acquisition and Ground-Truth Measurements

The developed UAS system was flown 10 times during the growing season using the
DroneDeploy App version 2.90.0 (DroneDeploy, Sydney, Australia). Flights were
completed at 10 d intervals from 15 days after planting (DAP) to 93 DAP, with an
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altitude of 20 m and 80% front and side overlap. Ground sampling distances for the
Zenmuse 3 andRedEdgewere 0.86 cm/pixel and 1.39 cm/pixel, respectively. Ground
control points were manually surveyed utilizing a real-time kinematic Trimble R8s
GPS (Trimble Inc., Sunnyvale, CA, USA), and used to georectify the reconstructed
data in the universal transverse mercator coordinate system for successive analy-
ses. Field assessment trials were performed to manually collect ground-truth data
related to floral phenology, hemp stem growth and canopy morphology, chlorophyll
concentration, and biomass [5].

2.3.4 Data Processing Pipeline for Extracting Morphological
and Vegetation Traits

A data processing pipeline was developed to analyze collected aerial images for the
extraction of morphological and vegetation index traits (Fig. 2.7). Collected color
and multispectral images were retrieved from bag files and SD cards and then pro-
cessed usingMetashape Pro version 1.6.0 (Agisoft LLC, Russia) to reconstruct color
and multispectral orthoimages and colorized 3-D point clouds. Plant geo-locations
were calculated using color orthoimages. A color orthoimage was converted to an
excessive green index map then binarized using the Otsu method. Connected com-
ponent labeling was used to segment individual plants and calculate their center
locations. Based on plant centers, bounding boxes of 1.83 m (across row) and 1.22
m (within row) were generated for the localization and segmentation of plants in
point clouds and multispectral orthoimages. A significant shift of plant centers was
observed between 23 and 34 DAP, so the plant geo-locations and bounding boxes
were derived from the color orthoimages on the two days, respectively. The locations
and bounding boxes calculated on 23 DAP were used to analyze the data collected
on 23 DAP, and those calculated on 34 DAP were used for the rest of data.

In the colorized point clouds, the point cloud of each plant was cropped using
the calculated bounding boxes. Random sample consensus (RANSAC) was used to
identify the ground plane in the plant point cloud (red points in Fig. 2.7) and separate
canopy points (green points in Fig. 2.7) for the extraction of canopy morpholog-
ical traits: height, projected area, and volume. In the multispectral orthoimages, a
circular region with a radius of 0.28 m was defined at each plant center, and seven
vegetation indices were calculated using pixels within the region for a corresponding
plant. The seven vegetation indices comprise the normalized difference vegetation
index (NDVI), enhanced vegetation index (EVI), green chlorophyll index (GCI),
green normalized difference vegetation index (GNDVI), modified non-linear index
(MNLI), modified soil adjusted vegetation index 2 (MSAVI2), and optimized soil
adjusted vegetation index (OSAVI).
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Fig. 2.7 Data processing pipeline for the extraction of phenotypic traits fromRGBandmultispectral
data. Derived vegetation indices include normalized difference vegetation index (NDVI), enhanced
vegetation index (EVI), green chlorophyll index (GCI), green normalized difference vegetation
index (GNDVI), modified non-linear index (MNLI), modified soil adjusted vegetation index 2
(MSAVI2), and optimized soil adjusted vegetation index (OSAVI)

2.3.5 Measurement Accuracy

Therewere dramatic differences inmorphologicalHTP aerialmeasurements (canopy
height, area, and volume) between flights flown before and after 56 DAP, with good
correlations among measurements within but not among earlier and later flights.
These differences were due to a strong windstorm between 50 DAP and 56 DAP
that resulted in moderate lodging and stem breakage. Even though F1 families
were planted in rows, a family-level analysis did not have a major effect on HTP
to field phenotypic correlations of later flights (Fig. 2.8). Canopy height and volume
obtained from orthomosaic mesh layers were well correlated with corresponding
field-collected phenotype plot height (r=0.83) and kite volume (r=0.67) for early
flights. Family-level correlations were even stronger for height (r=0.95) and volume
(r=0.80). Biomass yieldwasmost associatedwith canopy volume (35DAP) (r=0.56),
yet this correlation was only marginally improved on a family mean basis and, for all
aerial surveys beyond 50 DAP, there were only weak correlations between the two.

Instances of lodging did not affect vigor or productivity but confounded the
accuracy of morphological indices after 56 DAP because of alterations in the pri-
mary axis and projected area of individual plots. Physiological indices were likewise
affected, but not as profoundly as the morphological indices (Fig. 2.9). There were
good phenotypic correlations with nearly all HTP measurements except EVI, which
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Fig. 2.8 Pairwise correlations of field collected traits with aerial morphological indices on a plot-
level (upper triangle) and family-level (lower triangle) basis. The color of coefficients within cells
represent significant (p < 0.01) positive (blue) or inverse (red) correlations. WBM, DIA, KA, HT,
AREA, VOL are for total wet biomass, basal stem diameter, kite branch angle, plant height, plant
canopy area, and plant canopy volume, respectively. UAS prefix indicates traits measured using the
UAS system

was not informative. Notably, we observed that few cannabinoids were associated
with physiological indices (Fig. 2.10). The strongest were in the abundance of the
minor cannabinoids cannabicyclol (cannabicyclol; r = –0.35) and cannabidivarin
(cannabidivarin; r = –0.17) with MNLI, MSAVI2, and OSAVI at 93 DAP, but those
with cannabidivarin may be due to population structure, since only two families had
individuals with >1% cannabidivarin content. It may be possible to predict cannabi-
noid profiles and yield using multispectral or hyperspectral data, similar to what
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(a)

(b)

Fig. 2.9 Pairwise correlations of field collected traits. The color of each square in (a) represents a
significant (p < 0.01) positive (blue) or inverse (red) correlation. The size of each square represents
the strength of the correlation. Non-significant correlations (p < 0.01) were not drawn. Traits were
ordered via hierarchical clustering (method = “complete”). PCA biplot (b) of the same traits (scaled)
using family means

has been attempted with Fourier transform near-infrared spectroscopy (FT-NIR), but
concerted segmentation of inflorescences would be required to develop an effective
strategy to better estimate these profiles from aerial imaging. Further analyses of
denser, direct-seeded plantings would both reduce incidence of lodging and offer
better estimates compared with the larger plot spacing provided in this trial.
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Fig. 2.10 Pairwise correlations of cannabinoid profiles and aerial indices over time. The color of
each square in (A) represents a significant (p < 0.01) positive (blue) or inverse (red) correlation.
The size of each square represents the strength of the correlation. Non-significant correlations (p <
0.01) were not drawn

2.4 Discussion

The developed ROS-based data acquisition system showed the capability to handle
multiple sensors for collecting aerial images in the field. Sensors attached to the UAS
platform were both with and without onboard data acquisition support, showing the
ability of the proposed framework for designing new data acquisition systems for
UAS platforms.

The case study demonstrated the use of this framework for only two sensors in
one system and did not fully attempt all possible needs in the future. Based on a large
body of literature in using ROS for UAS control, especially multi-agent UAS control
[4, 28, 31], however, it is reasonable to envision the smooth integration of ROS-based
data acquisition systems with multimodal sensing modules and/or UAS swarms for
agricultural applications in the future. In particular, previous efforts on ROS-based
UAS control and motion planning could be reused with minimal modifications for
these newly integrated systems. Compared with off-the-shelf solutions and custom
data acquisition systems previously developed, the framework in this chapter offers
a new paradigm enabling rapid system development, deployment, and testing.

On the other hand, ROS has somemajor limitations such as no support of real time
operations,which has led to the revolutionary development ofROS2.AlthoughROS2
uses many different design and implementation choices than ROS, it is fortunate that
the ROS community provides several ways (e.g., ROS bridge package) to enable the
communicationbetweenROSandROS2 tomaximize the code reuse andperformance
stability. In particular, the use of ROS2 is highly recommended by the PX4 Autopilot
community andwould receive a strong community support for technical development
and testing. In contrast, the DJI ecosystem has a slower pace in adopting newly
developed ROS2 and/or other third-party libraries (e.g., MAVSDK) due likely to
the compatibility and stability considerations. This may create additional burdens
for researchers who may want to simultaneously take the advantages of ROS2 and
commercial products with guaranteed performance and reliability.
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2.5 Summary

This chapter provides a conceptual framework based on ROS to guide the design
and development of data acquisition system for UAS in agricultural applications. By
taking the advantage of ROS, the data acquisition system can have desired stability,
customizability, modularity, and expandability without special considerations and
efforts from developers. The conceptual framework provides implementation exam-
ples for sensors with/without onboard data acquisition support, which cover most
possible use cases in practice. This will also be crucial for integrating multimodal
sensing modules in a balanced data I/O to circumvent possible I/O issues in a central
computer. The conceptual framework is expected to be used as a reference guide-
line for the development of multimodal and multi-agent UAS systems for digital
agriculture in the future.
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Chapter 3
Unmanned Aerial Vehicle (UAV)
Applications in Cotton Production

Aijing Feng, Chin Nee Vong, and Jianfeng Zhou

Abstract Cotton (Gossypium hirsutum L.) is an important cash crop and primary
materials for clothing, fine paper, animal feed, and oil industries. Cotton production
is affected by a combination effect of crop varieties, environment, and management.
Precision agriculture technology has shown great potential to improve cotton produc-
tion with sufficient high-resolution spatiotemporal data of soil, environment, and
cotton development from seedling to harvest. The advances in unmanned aerial vehi-
cles (UAVs), computer vision, and remote and proximal sensing technologies make
it possible to scan large-scale field efficiently and quantify crop development. The
big data analytics enabled by artificial intelligence (AI) have significantly increased
the capacity in processing and analyzing complex data to quantify the interactions of
environment andmanagement on crop growth and yield. This chapter aims to summa-
rize UAV applications in cotton production, focusing on field scouting and decision
making, such as stand count, growthmonitoring, and yield prediction, under different
soil, weather conditions, and irrigation management. Meanwhile, the potentials and
challenges of using UAV technologies in cotton production are also discussed.

Keywords UAV imaging · Remote sensing · Field management · Crop
emergence · Growth monitoring · Yield prediction

3.1 Introduction

3.1.1 Precision Agriculture Technology in Agricultural
Production

Cotton (Gossypium hirsutum L.) is an important cash crop that provides approxi-
mately 35% of the total fibers for textile industry, including clothing and fine paper
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[1, 2]. Cotton seeds are also critical sources for feed and oil industries because of
their rich oil (18 - 24%) and protein (20–40%) [1, 2]. Cotton plays an important role
in human daily life and livestock industry, and is grown in 17 states and as a major
crop in 14 states of the United States of America [3]. There is a great need to increase
cotton production due to the increasing global population of more than nine billion
in 2050. However, there are adverse conditions for improving agricultural produc-
tion, such as decreasing arable land due to urbanization, declining soil quality (e.g.,
soil erosion, salinization, and nutrient reduction) due to long-term cultivation, and
insufficient freshwater for crop irrigation [4]. It is time to improve cotton production
using emerging technologies to reduce the inputs of natural resources and impacts
on environments.

Cotton production is determined by the combined effects of genotype, environ-
ment, and management (G × E × M) [5]. To understand the G × E × M interaction,
acquiring high-resolution data of crop, water, and other environments is needed using
emerging remote and proximal sensing technologies. Studies have shown that timely
crop monitoring and accurate yield estimation are important in making optimal deci-
sions for field management, increasing cotton production, and reducing the negative
impacts on environments. For example, the information of cotton plants and the envi-
ronment obtained from different growing stages can be used to quantify the envi-
ronmental impacts and nutrient deficiencies [6] on cotton development and yield.
Precision agriculture (PA) technology has been used as a promising field manage-
ment strategy to improve crop production and management efficiency based on site-
specific information. The key factors for the success of PA include fast and accurate
data acquisition of crops, soil, and environments in a large field. It also needs timely
data processing and analysis pipelines to translate sensor data to executive data for
field management decisions [7–9].

Sensor systems are the key components for the implementation of PA for agricul-
tural production. Various sensors have been used to quantify crop development and
environmental variations [10, 11], which provide necessary information to develop
decision-making tools for fieldmanagement. Some examples include in-fieldweather
stations that continuously record environmental conditions, e.g., air temperature,
humidity, solar radiation, and precipitation. Proximal sensors (e.g., soil apparent
electrical conductivity (ECa) sensor and soil moisture sensor) are used to estimate
soil texture, organicmatter content [12], and soil moisture content at different depths.
Infrared thermometers (IRTs) are used to measure crop canopy temperature to deter-
mine cotton water stress and schedule irrigation [13]. In addition, remote sensing
systems based on satellite, airplane, unmanned aerial vehicles (UAVs), and ground
vehicles are equipped with different sensors (e.g., optical sensors) for crop moni-
toring. The above site-specific information has been used to improve the efficiency
of field management and crop production.
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3.1.2 UAV-Based Remote Sensing (RS) for Crop Monitoring

Unmanned aerial vehicle (UAV)-based RS is currently widely used for crop moni-
toring due to the advantages of flexibility in sensor selection and data collection time
when compared to satellite-based and ground-based sensing platforms. The UAV-
based RS systems are usually equipped with multiple cameras and a global navi-
gation satellite system (GNSS) to collect georeferenced imagery data of crops and
soil in a high-throughput manner [14]. These systems are widely used to scout crops
and collect site-specific information to make accurate decisions of crop manage-
ment [15, 16]. Typical cameras used in UAV-based RS systems include visible
red–green–blue (RGB) cameras, multispectral cameras, hyperspectral cameras, and
infrared (IR) thermal cameras [14, 17]. Imagery data are processed using advanced
machine learning (ML) to quantify crop characteristics in architecture, physiology,
and chemical compositions [18], which are associated with plant health conditions
and responses to the variation of environment and management.

The visible RGB cameras are themost ready-to-use sensors that are less expensive
and in higher resolution comparing to multispectral and thermal cameras. The RGB
cameras consist of three optical sensors with spectral bands of red (typical 550–
650 nm), green (typical 470–600 nm), and blue (typical 420–530 nm) to produce
digital images [19]. They have been used to acquire color information of different
plant organs (e.g., leaf, stem, flower, and cotton boll) that can be used to characterize
plants, quantify their health conditions and responses to biotic and abiotic stresses.
The RGB images are also used to build point cloud data of plants to extract three-
dimensional (3D) information, such as plant height and 3D architecture. As shown
in Table 3.1, RGB images are used to calculate different image features that are used
to quantify cotton development and yield. For example, plant height (PH), canopy
cover (CC), greenness described as a* and triangular greenness index (TGI) are used
for the assessment of cotton stand count [14, 20]. Moreover, the cotton fiber index
(CFI) derived from RGB images has been used as a useful index for cotton yield
estimation [14, 21].

Despite the advantages of using RGB cameras, they are still limited by only
being able to acquire information of plants in the spectral range of 400 to 700 nm
wavelength. Research has found that some spectral bands in near-infrared range
(800–2,500 nm) are more sensitive to the variations of plants due to biotic and abiotic
stresses. Multispectral and hyperspectral cameras have been used in many studies
to acquire high spatial resolution spectral information from the plants. Multispectral
cameras usually consist of optical sensors with less than ten independent spectral
bands, and hyperspectral cameras consist of up to 300 spectral bands. The image
features extracted from these spectral cameras include spectral information of each
band and their combination, which have shown great potential to quantify plant heath
conditions and estimate yield. Some examples (as summarized in Table 3.1) show
that different vegetation indices (VIs) based on the combination of multiple spectral
bands are able to monitor plant health status and estimate cotton yield [14, 33, 40].
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Table 3.1 Useful image features for cotton monitoring with UAV-based RS systems

Image type Image
features

Equations Related traits References

RGB Seedling size Total pixel number of a plant Seedling
stand count

[17, 22]

Canopy
cover (CC)

CC =
number of pi xels o f crop in a RO I
overall number of pi xels in the RO I

Yield,
biomass, crop
density

[23–26]

Plant height The difference in elevation
between crop canopy and soil
surface

Yield [27–29]

Cotton fiber
index (CFI)

CF I =
number of pi xels f or f ibre in a RO I
overall number of pi xels in the RO I

Yield [14, 21]

a∗ a∗ channel in the CIE-LAB color
space; a* represents the green–red
color components

Yield, water
content,
nitrogen,
chlorophyll
content

[10, 30–32]

Triangular
greenness
index (TGI)

TGI = -0.5 × ((R-G) × 0.19-(R-B)
× 0.12), where R, G and B are
pixel values in three channels

Yield, water
content,
nitrogen,
chlorophyll
content

[10, 30–32]

MS/ HS NDVI NDV I = N I R−R
N I R+R

where NIR and R are pixel values
in the near-infrared and red
channels, respectively

Yield,
chlorophyll
content,
biomass

[23, 33–35]

GNDVI GNDV I = N I R−G
N I R+G

where G are pixel values in the
green channel

Yield,
chlorophyll
content,
biomass

[23, 34]

NDRE NDRE = N I R−RE
N I R+RE

where RE are pixel values in the
red edge channel

Crop
senescence,
maturity

[36, 37]

Thermal Crop water
stress index
(CWSI)

CW SI = Tc−Tw
Tb−Tw

where Tc is the crop canopy
temperature, Tb is the temperature
of the black poster board, and Tw
is the temperature of the white
poster board

Yield, water
stress

[38, 39]

$ ROI: region of interest; RGB: red–green–blue; MS: multispectral; HS: hyperspectral; NDVI:
normalized difference vegetation index; GNDVI: green-based normalized difference vegetation
index; and NDRE: normalized difference red edge index
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In addition, thermal cameras have been used to quantify the energy of infrared
(IR) radiation of an object with a temperature above absolute zero (-273 °C). Infrared
thermal cameras capture the long-wave IR radiation (7.5–14µm) emitted from crops
and convert such radiation to electrical signals [41]. Plant temperature measurement
has been primarily used to study plant water relations (e.g., stomatal conductance)
since a major determinant of leaf temperature is the rate of evaporation or tran-
spiration from the leaf [41]. Canopy temperature is highly correlated with canopy
water stress and is used to capture plant responses to biotic and abiotic stresses [38].
Canopy temperature and the calculated crop water stress index (CWSI, Table 3.1)
are found to be related to leaf water content [42–44] and show great potential for
yield prediction [14].

3.1.3 UAV Imagery Data Processing Pipeline

Generally, the UAV imagery data collected are in the format of interval snapshots
(still images) or videos. A large number of images may be collected for a large field.
Figure 3.1 illustrates one of the typical data processing pipelines for UAV images,
including image pre-processing, image processing, and analysis. The pre-processing
steps consist of generating geo-referenced orthomosaic images and digital surface
models (DSMs) [16] from the collected hundreds and thousands of sequential images

Fig. 3.1 General steps for UAV imagery data collection, processing, and analysis
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or videos. The processes are usually conducted using customized or commercial
UAV image stitching software such as Agisoft PhotoScan (Agisoft LLC, St. Peters-
burg, Russia) and Pix4D (Pix4D S.A., Prilly, Switzerland). Geo-referenced ortho-
mosaic images and DSMs are further processed using advanced image processing
techniques to remove background, segment plants, and extract image features. The
image processing can be performed using commercial or open-source software such
as Matlab (The MathWorks, Inc., Natick, MA, USA) and OpenCV (https://opencv.
org/). The final step, image analysis, uses advanced ML models to translate the orig-
inal images or extracted image features to useful information that is important for
cropmanagement. Some example applications include seedling assessment and stand
count,water stress identification, andyield estimation. Somewidely used commercial
and open-source software for this step include Matlab, RStudio (RStudio, Boston,
MA, USA) and PyTorch (https://pytorch.org/).

3.2 UAV Systems in Cotton Production

3.2.1 Field Management for Cotton Production

Cotton production includes several key growth stages, as shown in Fig. 3.2, including
seed emergence, seedling, squaring, blooming (flowering), open boll, and harvest,
that need different management strategies. The life span of cotton is about 150 –
180 days in theUnited States [3]. Germination and emergence usually take 5–15 days
depending on the weather condition, soil temperature andmoisture [45–47]. Some of

Fig. 3.2 Cotton development and related field managements. DAP: days after planting

https://opencv.org/
https://pytorch.org/
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Fig. 3.3 UAV systems for cotton monitoring from emergence, development to harvest. RGB: red–
green–blue; MS: multispectral; HS: hyperspectral; VIs: vegetation indices

themajor factors that influence cotton growth and yield include planting rate, planting
depth, row spacing, and seed placement [48–50]. Early stage field management in
crop emergence and seedling establishment includes emergence and stand count
assessment [50, 51] andweed control [3]. Pests, such as spidermites, aphids, whitefly
and lygus bugs, are the primary targets to bemanaged at the stage after the first square
[50, 52]. In addition, irrigation management is also an important practice in cotton
production during square to bloom growth stages to improve yield [3, 13, 53–55].
Lastly, harvesting at the right time can potentially reduce crop yield loss.

Based on the general field management for cotton production mentioned pervi-
ously, the following sections will discuss the applications of UAV-based RS systems
in making decisions on these field management. The sections are arranged based
on different growth stages: (1) cotton emergence evaluations, (2) full-season cotton
growth and health monitoring, and (3) yield estimation. The contents consist of the
progress and advances of UAV applications in cotton production and the poten-
tials and challenges of adopting UAVs in large-scale cotton production. Figure 3.3
summarizes the general approaches (sensors and image features used) and associated
applications of using UAV-based RS systems in cotton production.

3.2.2 Cotton Emergence Assessment

Crop emergence is an important agronomic factor for field management in early
stages. Cotton emergence is usually assessed based on plant population, stand count,
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uniformity, seedling size, and etc. [50, 51]. Accurate and timely assessment of cotton
stand count and seedling size helps farmers to make important management deci-
sions, such as replanting, to reduce the yield loss due to missing plants [52]. Mean-
while, accurate cotton emergence information can be used to quantify the impact of
soil and environments on crop emergence [56, 57], which may help farmers make
optimal decisions on seed placement and planting. Conventionally, cotton emer-
gence is assessed through visual observation (manual counts) in a small number
of sampling sites [58], which is time-consuming, labor-intensive, and not suited
to cover a large production field. Hence, UAV-based imaging technology has been
used to assess some cotton emergence parameters such as stand count, canopy size,
seedling number, and uniformity based on plant spacing as indicated in Table 3.2.

The primary challenge of assessing the cotton emergence using UAV imaging
systems is the small seedling size at the early stage. For instance, their diameters
were 2.4 and 3.5 cm on 11 and 17 DAP, respectively [61]. Hence, sufficient image
resolution or GSD is needed and high-resolution RGB cameras have been widely
used compared to other cameras (Table 3.1). With a low flight height of 10 to 20 m,
images taken from the RGB cameras can achieve a better GSD ranging from 0.25
to 0.9 cm pixel−1. However, using RGB cameras give another challenge on image
segmentation to remove the background and detect the small seedlings. The large
portion of soil background in the images caused the color distortion of seedlings due
to the strong reflectance of soil [62] and the color contrast between crops and soil was
weak [17]. Previous research indicated that RGB images were potentially affected
by sunlight conditions and suggested that using multispectral images with near-
infrared (NIR) spectral bands could be more efficient for crop seedling segmentation

Table 3.2 Studies related to cotton emergence assessment (stand count, canopy size, and seedling
number) using UAV imagery

Emergence
parameter

Sensor DAP
(days)

Flight
Height
(m)

GSD (cm
pixel−1)

Performance
(Accuracy)

References

Stand
count/plant
density

RGB 6–11 15–20 0.6–0. 9 88.6% [59]

16 10 0.3 R2 = 0.95 [22]

10–20 10 0.25 R2 =
0.82–0.97

[60]

11–17 20 0.3 R2 =
0.48–0.98

[61]

Hyperspectral 15 50 0.8 R2 = 0.61 [17]

Canopy size RGB 16 10 0.3 R2 = 0.95 [22]

Seedling
number

Hyperspectral 15 50 0.8 84.1% [17]

Uniformity:
plant spacing

Hyperspectral 15 50 0.8 R2 =
0.91–1.00

[17]

Abbreviations DAP = days after planting; GSD = ground sample distance; R2 = coefficient of
determination
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[63]. For example, Feng et al. [22] assessed cotton emergence using a UAV-based
hyperspectral imager for quantifying cotton plant density and uniformity. However,
the accuracy for plant density could only achieve 0.61, which was lower than that
of the studies using RGB cameras. The advantage of using hyperspectral imagers is
the higher spectral resolution, which can be useful for other stress studies during the
growing season, but they are limited by their higher cost and a large amount of data
with proper data processing and analysis needed [64] as compared to simple RGB
cameras.

Deep learning (DL) models are widely used to directly locate and detect each
cotton seedlings [60, 61] and extract information such as average stand count and
canopy size [22] from the UAV images. The DL models used included Resnet18,
YOLOv3, MobileNet, and CenterNet and achieved the highest R2 of 0.98 [22, 60,
61]. One example of the DL model used by Feng, Zhou, et al. [14] is illustrated in
Fig. 3.4, where the DL model was able to extract “hidden” information (a subtle
difference) using multiple convolution and pooling layers to distinguish seedlings
and background information.

The commonly used image processing pipeline (Fig. 3.1) requires stitching
collected images using commercial software. The image stitching process may take
a long time when thousands of images are collected from high-resolution cameras
and at low flight height in field-scale studies. This issue may restrict their usage
for PA applications to conduct timely management practices at the right time with
accurate data. To improve the efficiency, Feng, Zhou [22] proposed a novel pipeline,
as illustrated in Fig. 3.5, to process and analyze each UAV image directly to avoid
image stitching procedure. The pipeline can process one image (20 M pixels) in
about 2 s to extract the information of emergence, which provides an alternative
method to assess cotton emergence in near real-time. It is possible to implement the
image processing pipeline to an edge computing system that is integrated with a UAV
system for real-time and on-site data processing and decision making. To conclude,

Fig. 3.4 The Resnet18 deep learning model used for cotton stand count and seedling canopy size
estimation in the study of [22]



48 A. Feng et al.

Fig. 3.5 A framework (pipeline) for processing single frame of UAV images in a near real-time
manner. The pipeline was validated in the study of cotton emergence evaluation [22]

DL and real-time image processing will enhance the UAV-based imaging systems in
the cotton emergence assessment in commercial farms in the future.

3.2.3 Cotton Growth Monitoring Using UAV-Based RS

Crop growth and production are complex and determined by many factors, including
crop genotypes (varieties), environments (e.g., weather, soil, microclimate, and loca-
tion), and agronomic management strategies [65]. During the cotton growing season,
several field management practices, including irrigation and chemicals (fertilization,
pesticides, and herbicides) applications, need to be optimized to achieve optimal
production. High-resolution site-specific crop information is needed to determine
crop stresses for variable rate applications.

Irrigation is one of the most important management practices in cotton production
since cotton’s growth and yield are sensitive to water deficit [66, 67]. The optimal
irrigation schedule can be made according to the cotton water demand to replace the
water loss due to evapotranspiration (ET), determined by cotton varieties, weather
conditions, soil texture, and irrigation treatment [68, 69]. Infrared thermal cameras
mounted on UAV had been widely used to detect cotton water stress by first esti-
mating the canopy temperature and computing stress indices such as CWSI in Table
3.1 [44, 70–72]. Stomatal conductance has been used as one of the ground truth data
to describe crop water stress response. Studies have shown a moderate to high corre-
lation between stomatal conductance and CWSI computed using canopy temperature
from UAV-based thermal cameras with r = -0.48 [71] and R2 = 0.66 to 0.91 [44,
70]. One of the challenges in using thermal imagery from thermal cameras is the
background (i.e., soil and residue) removal since the pixel numbers from the thermal



3 Unmanned Aerial Vehicle (UAV) Applications in Cotton Production 49

images are based on temperature values and not color information. Hence, some
other image segmentation methods have been used, such as edge detection algo-
rithms (Canny, Prewitt, and Roberts methods) [44]. Some thermal cameras have
visible cameras attached, which could be used for the image segmentation based
on visible images and creating a mask and co-registered with the thermal images
to remove background [73]. These procedures are required to ensure that only crop
canopy temperature is used in the crop water stress indices to improve the estimation
accuracy.

Besides thermal cameras, some studies also demonstrated the usage of VIs
computed fromRGB andmultispectral images in determining the cotton water stress
and plant water content [44, 70, 74]. For instance, moderate to high correlations
(significant r = 0.3 to 0.9 regardless of negative or positive correlation; R2 = 0.6 to
0.9) were found between different VIs from multispectral cameras with plant water
contents at different parts (leaves, petioles, buds and bolls, stalks) [74].When relating
the different VIs to stomatal conductance, mixed results were found with low to high
R2 (for example, NDVI ranged from 0.01 to 0.89) and their R2s were mostly lower
as compared to thermal images [44, 70]. However, RGB and multispectral cameras
are frequently used for other purposes such as weed and pest detection and mapping
for UAV-based variable-rate spraying during the growing seasons as delineated in
the following.

Using UAV-based RS systems is a promising way for weed, pest, nutrient and
disease control in commercial cotton fields [3, 50, 52, 75, 76] and harvest aids [77,
78]. The key to efficient UAV-based variable-rate spraying is to identify the right
regions of the cotton field and the right volume and time of spraying [78–81]. Optimal
crop managment decisions are usually made according to cotton plant growth status
that can be quantified by VIs [82, 83], canopy coverage [80], boll opening rate
[77–79, 84], and pressure of weed [17, 85, 86], disease [87–91] and pest [81] of
cotton fields. Advanced image processing methods and ML models (such as support
vector machine, k-means classification, maximum likelihood, and random forest) are
still the key for weed and disease identification and management decision making
[81, 85, 87, 88]. Considering the complexity in field background of the images, DL
methods are also promising image processing tools for cotton leaves disease and
stress identification [91, 92].

Overall, UAV-based imagery from RGB, multispectral, and thermal cameras has
demonstrated their great potential for in-season cotton field management. Some
applicaitons include irrigation scheduling through plant water content and stress
detection, variable rate chemical applications through mapping weeds and pests, and
UAV variable-rate spraying. Most of these studies only used a single factor when
developing the estimation models, such as crop response to irrigation [93, 94] or
fertilizer [95, 96]. Few studies have integrated the interaction effects of environment
and management due to the lack of long-term data and efficient tools for devel-
oping reliable models [97]. With the advance in the UAV-based RS, high-resolution
imagery data can quickly quantify characteristics of crops and soil, which brings
challenges in efficiently processing and analyzing the big data of different variety,
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resolution, and data structures. Hence, future studies will be focused on more inte-
gration of different UAV-based cameras with more advancedML and DLmodellings
to explore the relationships between soil properties, weather conditions, and cotton
growth variation [98].

3.2.4 Cotton Yield Estimation

Accurate cotton yield estimation could help farmers make better decisions on
management, such as harvest, transportation, and storage [99]. Cotton yield esti-
mation can also provide needed information to understand the interaction effect of
environment and management on crop development and yield, which is important in
developing precision management strategies for cotton production [14]. The UAV-
based imagery has been used to predict cotton yield using different image features,
including plant height, canopy cover, canopy temperature, VIs (NDVI and GNDVI),
and open cotton bolls (Table 3.1) [14, 21, 100–103]. The UAV imagery data are
typically collected on the critical stages, such as flowering and/or boll opening [14].
Research showed that the combination of the image features could estimate yield
with R2 > 0.80 [14].

Several studies used high-resolution RGB images to detect and count open cotton
bolls [101, 102]. Yeom et al. (2018) used image processing techniques (e.g. Otsu
automatic thresholding) to extract the cotton bolls from the UAV images collected
in the boll opening stage, achieving an accuracy of R2 close to 0.6. Xu et al. (2020)
used two fully convolutional DL networks to extract the cotton bolls, obtaining a
better accuracy of R2 = 0.8.

Current studies in yield estimation based on UAV imagery usually used data
within a single year, i.e., using data from the same year for both model training
and validation [104–107]. Future studies should focus on developing models for
predicting crop yield of the coming years using historical data, which may have
higher values for farmers to make proper decisions in advance to maximize their
profit. In recent years, ML and DL techniques have been used to predict crop yield of
future years using historical data of environment, management, and crop production
[108–111]. Integration of the soil, weather, and crop data with different spatial and
temporal resolutions utilizing advanced data analytic methods has the potential to
improve the performance in quantifying field-scale crop growth and yield in a future
year. One such example is a study conducted by Feng et al. (2021) that used an
improved recurrent neural network (RNN) [112] model known as Gated Recurrent
Units (GRU) [113] to analyze sets of sequential data, including soil, weather, and
time-series imagery, for predicting cotton yield. As shown in Fig. 3.6, the architecture
of theGRUcomprises a reset gate and anupdate gate to control howmuch information
is needed to be forgotten and memorized through the sequence.

The architecture of the yield prediction model based on the GRU is shown in
Fig. 3.7, which included four layers, i.e., soil features (S_CNN) and weather features
(W_CNN)pre-processed usingCNNfilters,GRU layers forNDVIprediction (‘GRU’
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Fig. 3.6 Illustration of the Gated Recurrent Unit (GRU). a GRU continuously accepts inputs from
a sequence. To easily understand the loop operation in the GRU, the GRU was drawn with the
unfolded way. The ‘t’ represented each time step. b The architecture of the GRU

Fig. 3.7 The architecture of the GRU network. SL is sequence length, which was set to 1 in this
study. BZ is the batch size for the training procedure. FCL means fully connected layer. IF is image
feature (i.e., NDVI). All the GRUs highlighted with yellow color were the same loop processing
unit in the network and had the same parameters. All FCL_1 units highlighted with green color
were using the same parameters

in Fig. 3.7), and the fully connected layers for yield prediction (‘FCL_2’ in Fig. 3.7).
The input parameters of the GRU network included eleven soil features processed
by the S_CNN and weather data from May 1 to October 29, 2019, processed by the
W_CNN. The initial hidden-input vector (‘Init’ in Fig. 3.7) of the GRU was set as
zeros and the corresponding output was assumed to be the NDVI in July (the GRU
output of its first loop). The hidden outputs of the July GRU were passed to the next
loop of the GRU unit (i.e., the GRU in August). The processed weather data from
July 31 to September 3 were also passed to the August GRU, which had an output
assumed to be the NDVI in August. The NDVI in July was used to replace the ‘Init’



52 A. Feng et al.

to input to the August GRU. Similar procedures then defined the GRU processing
units for September NDVI and for yield. The GRU unit was a three-month loop
processing unit that each loop received the weather data from current month and the
NDVI images from the previous month. The GRU was used to predict the NDVI
spatial distribution of the current month based on the weather of the current month
and the NDVI of the previous month.

The study indicates that the yield predictionmodel based onDL is able to integrate
data of soil, weather, imagery, and yield that have different resolutions and data
structures. The yield prediction model shows an improved performance compared to
the models without the full integration of related environmental factors, which could
explain 68–84% of yield measured with the yield monitor (ground truth data), with
the prediction errors ofMAE= 247 kg ha−1 (8.9%) - 345 kg ha−1 (12.3%) at different
years. In summary, the study indicates the potential of predicting the cotton yield of
a future year based on soil texture, weather conditions, and UAV imagery. Future
research could investigate more leading methods in integrating multiple source data
of multiple years to estimate field-scale yield in the following years.

3.3 Summary

This chapter introduced theUAVapplications in cotton production, from stand count,
growth monitoring to yield prediction. UAV-based RS systems, equipped with RGB,
multispectral, hyperspectral and thermal cameras, provide a low-cost and efficient
tool for monitoring cotton growth at different stages. The collected information will
then be used to improve crop management, such as seedling replanting, weed and
disease control, and irrigation. Future research would focus on integrating multiple
source data (i.e., environmental, ground, and UAV data) to develop near real-time
tools using advanced ML and DL modellings for more effective and accurate cotton
emergence, growth, and yield estimation for commercial applications.
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Chapter 4
Time Effect After Initial Wheat Lodging
on Plot Lodging Ratio Detection Using
UAV Imagery and Deep Learning

Zhao Zhang, Cannayen Igathinathane, Paulo Flores, Yiannis Ampatzidis,
Hu Liu, Jithin Mathew, and Anup Kumar Das

Abstract Wheat is an indispensable staple crop worldwide, and lodging is a key
yield-limiting factor. Timely assessment of wheat lodging conditions in an accurate
and objective manner is important for a number of stakeholders. Since the conven-
tional approach based on visual observation during field visits is inefficient, labo-
rious, subjective, and unreliable, there is a need for an automatic methodology to
replace the manual approach. In this study, an excess green based approach devel-
oped for automatic dataset generation of field plots, extracted from the whole exper-
imental field image collected through an unmanned aerial vehicle (UAV), can be
readily applied to similar workflows. For the wheat lodging ratio (three grades
considered) detection, from the comparison of the deep features by ResNet50 and
GoogLeNet coupled with support vector machine (SVM) classifier, it was recom-
mended to adopt the deep features by ResNet50 for its higher detection accuracy.
The selectedResNet50 deep features comparedwith the handcrafted features showed
that the deep features generated higher accuracy, while being simpler to apply and
not requiring domain knowledge resulting in automatic features extraction for wheat
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lodging ratio detection. Time effect after initial lodging occurrence results indicate
that the UAV mission data should be collected soon after lodging occurrence, which
would generate higher detection accuracy due to better color contrast in the earlier
stage and avoid the nature color loss during crop ripening leading to reduced detec-
tion accuracy. Unlike GoogLeNet and handcrafted features, the ResNet50 features
produced a robustmodel, and the prediction accuracy did not reduce in the time frame
of the first and second weeks after the initial lodging. This study has demonstrated
that the application of automatic dataset generation method on UAV images of the
experimental field, collected sooner (1–2 weeks) after the initial lodging, using deep
features extracted by ResNet50 coupled with SVM classifier is an efficient approach
for wheat lodging ratio detection, with an accuracy over 70%.

Keywords Wheat lodging · Support vector machine · ResNet50 · Handcrafted
features · Deep features · Field crop

4.1 Introduction

As one of the most important staple crops worldwide, wheat provides a number of
essential or beneficial nutrients for health, which include, but are not limited to,
protein, vitamins (especially B), iron, and fibers [1]. A relationship between wheat
consumption and reduced risk of cardiovascular disease, diabetes, and colorectal
cancer has been established [2–4]. Although the global wheat production has been
steadily growing since 2018, it hit a historical record high of 7.7 × 1011 kg in 2020
[5]; however, there are several factors limiting the wheat yield, such as crop diseases
[6, 7], drought [8, 9], and lodging [10], among which lodging ranks the top [11].

Wheat lodging is defined as the displacement of plant stems from their upright
position, which could be caused by strongwinds, heavy rain, high planting density, or
improper nutrient management [12]. After lodging occurs, crops underlying would
be sunshine blocked, and this could reduce their photosynthesis rate. It has been
reported that the lowered photosynthesis rate would reduce the yield by up to 80%
[13]. In addition, the occurrence of lodging would cause harvest challenges as the
lowered crops are difficult to be pulled into the combine header [14]. Obtaining
wheat lodging information in a timely, accurately, and objectively manner would be
beneficial for a variety of reasons: helping breeders with the selection of resistant
cultivars, assisting agronomists to identify the proper nutrient management strategies
(e.g., nitrogen rate), and providing a repeatable approach for crop insurance personnel
in processing the insurance coverage [15].

Even though many state-of-the-art automation and sensing technologies have
already been efficiently and successfully employed in several practical agricultural
applications [16–22], the current approach for wheat lodging detection is still based
on visual observation, and the raters (field inspectors) have to visit the fields to
manually judge the lodging conditions [10, 23]. The manual approach is known
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to have a number of shortcomings. First of all, the assessment process is time-
consuming, as raters have to visit and evaluate each plot. Second, it is infeasible
for raters to get access to the field under certain conditions, such as immediately
after a heavy rain. Third, the tough working conditions (e.g., high temperature and
humidity) and laboriousness of the process makes it impossible for workers to be
exposed to the field for a long time. Fourth, the evaluation results are subjective as
different ratersmay provide inconsistent (intra-rater difference) results [15]. To avoid
all these shortcomings associated with manual evaluation, it is desirable to develop
a quick, automatic, objective, and reliable approach for wheat lodging detection.

During the past decades, numerous researchers have explored and tested different
approaches for automatic crop lodging detection [24]. Li et al. [25, 26], Yang et al.
[27], and Zhao et al. [28] have explored the potential of using satellite images for crop
lodging detection. Though the satellite images are able to cover a large field area, their
practical application has been significantly limited by their both low spatial (tens of
centimeter) and temporal (multiple days) resolution [10]. Furthermore, the satellite
images mainly use spectral differences between lodging and non-lodging crops for
the classification. However, due to the large distances between the satellite and crops,
the spectral signal is generally weak, which would lower the classification accuracy
[29]. Very recently, with the rapid technological progress on both hardware and its
associated software program for data processing, unmanned aerial vehicles (UAVs)
are gradually applied by researchers for crop lodging detection [10, 30, 31]. The
UAVs can overcome some of the shortcomings of satellite images. Researchers can
fly the UAV at any desired intervals and lower heights that greatly and significantly
improves the temporal and image resolution; whenever the weather permits (e.g.,
no rain and wind speed ≤ 25 km/h). Moreover, researchers can collect UAV aerial
images at the maximum height of 120 m [32], and the images can be of millimeter-
level resolution, which is finer than that of satellite images. In addition, as the costs
of UAVs and their associated data process software nowadays getting down rapidly
and significantly, making it affordable and profitable for agricultural applications
[10]. Hence, taking advantage of UAV technology for wheat lodging detection is a
new approach that is worthy of exploration.

When testing the performance of different varieties on resistance to lodging,
breeders would usually conduct a comprehensive and thorough study, in which way
they usually grow hundreds or even thousands of plots as experimental trails. Using
UAV aerial images for crop lodging detection starts with the preparation of datasets.
After collecting and pre-processing individual aerial images to obtain orthomosaic
maps, researchers usually use a manual approach for dataset (e.g., individual plot
images) creation, which is time-consuming and inaccurate [22]. Only a few studies
developed or tested an automatic method for dataset generation, and it is probably
because of the challenging nature of the task.When the boundaries between plots are
small (e.g., experimental field plots) and when the lodging occurs, the lodged crops
would cover the small boundary—making it difficult to segment the plot using simple
contour detection. An automatic plot dataset generation method was not developed
and reported so far. In addition, a lot of existing studies treat wheat lodging as a
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binary issue—lodging or non-lodging [10]. However, breeders are more interested
in the lodging ratio (a range of scores) for each plot.

In the analysis, after obtaining the individual plot images, usually the image
features are extracted and then different classifiers for training and testing are applied,
in which proper feature selection is critical for the detection accuracy. If the selected
features can represent the images satisfactorily, the trained model would have a
good performance; otherwise, the model accuracy would be reduced. The selec-
tion of proper features requires domain knowledge, and this is a challenging task
by users. In recently years, with the advent of deep learning, researchers started to
test the performance of deep features extracted by deep learning models (convolu-
tional neural network) on crop lodging detection. Even though a number of popular
deep learning models that can be used for deep features extraction exist, only a few
studies have been conducted to determine the model that gave the highest accuracy.
Furthermore, the performance of handcrafted versus deep features on wheat lodging
detection has not been compared and which choice to be made are not explored yet.

Current studies on crop lodging detection usually take the UAV mission immedi-
ately after the lodging occurs. Crop lodging, however, is a dynamic process, therefore
information on the optimal time window after the initial lodging for the UAVmission
is essential, and this could generate the aerial images leading to the highest detection
accuracy.

Give these research opportunities, the objectives of this study were to: (1) develop
an automatic approach for dataset generation for plot delineation in wheat lodging
study, (2) identify the deep learning models that could extract deep features to
generate the highest detection accuracy, (3) compare the accuracies generated by
deep and handcrafted features coupledwith support vectormachine (SVM) classifier,
and (4) explore the time effect after initial lodging on the model accuracy.

4.2 Materials and Methods

Thevarious procedures followed in this study for developing an automatic plot dataset
generation methodology, identifying the desirable deep learning models that could
extract the deep features for higher detection accuracy, comparing the deep features
versus handcrafted features on lodging ratio detection, and explore the optimal time
after initial lodging for data collection are schematically shown in Fig. 4.1. After
initial lodging, the UAV images were collected approximately on 1, 2, and 4 weeks
after the event. For eachdateUAVmission, the imageswerefirst processed to generate
orthomosaic maps, which was followed by the creation of the individual plot images
as the dataset using a new dataset generation approach. Two deep learning models,
namely ResNet50 and GoogLeNet, were used to extract deep features, and after
applying the SVM classifier on extracted deep features, the model with a higher
lodging detection accuracy was selected. Then, the accuracy comparison between
the selected deep learning models and handcrafted features was conducted to select
the more satisfactory one. The time effect after initial lodging was finally compared
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Fig. 4.1 General procedure
flowchart of wheat lodging
detection on different dates
after it occurred using an
unmanned aerial vehicle
(UAVs) coupled with
handcrafted and deep
features associated with
support vector machine
classifier

on the three dates’ dataset with the best time for UAVmission recommended. Details
of the different processes of the study are described subsequently in the appropriate
sections.

4.2.1 Experimental Field and Data Collection

The experimental trials used in this study were planted during the summer of 2020
in Thompson, ND, U.S. (Fig. 4.2). There are two plot sizes, namely short: 1.5 ×
3.6 m (5 × 12 ft) and long: 1.5 × 14.6 m (5 × 48 ft). There are a total of 428 plots,
consisting of 312 short and 116 long plots, among which 28 plots serving as borders

Fig. 4.2 Layout and location of experimental fields for wheat lodging study—312 short plots (1.5
× 3.6 m; columns 30 to 55) and 116 long plots (1.5 × 14.6 m; columns 1 to 29). The border plots
(indicated by columns 1, 11, 20, 29, and 55) are not used in this study
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(columns 1, 11, 20, 29, and 55 in the right photo of Fig. 4.2; and columns 1 and 55
are on the left and right borders of the experimental field, respectively) that were
excluded from the analysis.

The lodging occurred roughly in the middle of July, 2020, and after the lodging
occurred, three UAV missions were conducted on July 23, July 28, and Aug 11,
2020: approximately 1, 2, and 4 weeks after the initial lodging occurred. Hereafter,
the three dates are indicated as date 1, 2, and 3, corresponding to July 23, July 28, and
Aug 11, 2020, respectively, for nomenclature. A DJI Phantom 4D RTK UAV (DJI-
Innovations, Inc., Shenzhen, China) was used for data collection, which is outfitted
with a 20megapixel (5,472× 3,648 pixel) color camera. Themission speedwas set to
2.5 m/s. Since the weather was sunny during the entire data collection time window,
the balance mode was set as sunny. Both side and forward overlaps for image capture
were set as 80%. For each date, the data collection was obtained between 10:00 AM
and 12:00 PM. When the UAV mission height is low (e.g., 15 m), the collected
images are finer (high resolution) but the data collection time is long; when the
mission height is high (e.g., 91 m), the collected images are coarse (low resolution),
but the data collection time is short. Our preliminary study results showed using
the 91 m mission height would not hurt the detection accuracy on wheat lodging
detection [24]. Therefore, to have a higher data collection efficiency for the purpose
of wheat lodging identification, 91 m height was chosen as the UAV data collection
height in this study.

After each flight, two inspectors visited the field and visually assessed each plot’s
lodging ratio. The inspectorswere trainedby an experienced expert before conducting
the field evaluation. These inspectors worked independently without any communi-
cation between each other during the entire evaluation process to avoid influence on
the other. For individual plot, each inspector provided one grade among the three
categories: non-lodging (grade 1)—lodging does not occur; light lodging (grade
2)—lodging area accounting for < 50% of the total area; and severe lodging (grade
3)—lodging area accounting for > 50% of the total area. The visually evaluated
results were used for model training and testing.

4.2.2 Data Pre-Processing and Auto Dataset Generation

After each UAV mission, all the images taken were pre-processed using Pixel4D
(Pix4D V4.3.33, S.A., Prilly, Switzerland) to generate an orthomosaic map (Fig. 4.2
right image). Thus, for each date, an orthomosaic map was created, after which the
three individual orthomosaic maps were geo-referred using ground control points as
references.

The next step is to prepare the dataset based on the three orthomosaic maps,
consisting of all the individual plots. In the vertical direction, the experiment field
consists of four large blocks, and since the four blocks are similar and the automatic
dataset creation method generated for either block can be used for all other three
plots without modification, the top block in the right image of Fig. 4.2 is used to
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explain the developed automatic dataset generation method. Additionally, since all
the three dates’ orthomosaic maps were geo-referred, indicating they are pixel-to-
pixel matching, the automatic dataset generation method generated for either of the
three orthomosaic maps could be directly used for the other two.

The crucial point is to identify and segment the individual plot, and there are a lot
of algorithms that can be used for edge detection. However, the edge detection would
not function as for the serious lodging plots, the lodged crops cover the boundary
between the plots. Hence, instead of detecting the edges, the methodology developed
in this study utilizes the excess green index (Eq. 4.1) to separate crops from the
background, and then detect the general block boundary, based on which individual
plot’s coordinates would be obtained for automatic plot image generation (Fig. 4.3).

Excess Green = 2 × Green Channel − Red Channel − Blue Channel (4.1)

The automatic dataset generation starts from calculating the excess green index of
each pixel, which has been demonstrated as a satisfactory index to distinguish crop
from soil [33]. With the excess green monochrome image (Fig. 4.3b), a threshold of
0.01 is used to generate a binary image (Fig. 4.3c) with the pixel values as 0 or 1,
after which the noises (holes in the image) indicated by black regions are removed.
From the noise-removed binary image (Fig. 4.3d), the critical operation is to identify
the main boundaries in the horizontal direction (denoted as R1-R6 in Fig. 4.3d) and
vertical direction (denoted as C1 and C2 in Fig. 4.3d). After determining the C1 and
C2 coordinates, coupled with the known information of plot numbers, each plot’s
horizontal coordinates (between C1 and C2) can be calculated. To obtain the R1-R6,
each row’s pixel value is added (black pixel = 0 and white pixel = 1), and row sums

Fig. 4.3 Developed methodology for automatic dataset generation for individual wheat lodging
plot from the experimental field
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were computed. From top to bottom (Fig. 4.3d), when the row sum value changes
suddenly (caused by the pathways black pixels: R2-R3 andR4-R5; Fig. 4.3d), the row
number is determined as the boundary, which is graphically illustrated in Fig. 4.3e.
Applying the same analogy, C1 and C2 values (left and right edge of the field)
in Fig. 4.3d are obtained as well, with detailed column pixel sum process shown
in Fig. 4.3f. Thus, each plot’s coordinates are obtained, based on which individual
plot’s image is generated by cropping operation. Samples of automatically generated
images are shown in Fig. 4.3g.

Bymanually removing the border plots from the total plots’ image, thefinal dataset
consisting of 400 plots (100 long and 300 short) is obtained. For the field evaluation
results, after two inspectors completed the visual inspection and the orthomosaic
map is generated, the two inspectors and a third personal together compared their
inspection results: if the two results are the same, it would remain as the final ground
truth data; if the two results are different, the three persons would use the plot image
from the generated orthomosaic map to vote for the final grade of this plot. The 400
plots images, coupled with their corresponding ground truth data, combine the final
dataset.

4.2.3 Handcrafted Features

The handcrafted features are indices that are extracted from the images to represent
their characteristics based on the domain knowledge related to wheat lodging image
analysis. Color features have been demonstrated to be able to describe the character-
istics of lodged and non-lodged crops [34]. The original plot images are in RGB (red,
green, and blue) format, and then they were converted into HSI (hue, saturation, and
intensity) and Lab (L for the lightness and a and b for the color dimensions) formats,
which lead to a total of 9 channel color features. In addition to the color features,
a variety of vegetation fractions were extracted, including normalized difference
index, excess green, excessive red index, color index of vegetation extraction, modi-
fied excessive index, and normalized excess green index. Moreover, texture features
(e.g., correlation, contrast, dissimilarity, energy, entropy, and homogeneity) were
extracted to improve the comprehensiveness of the features for better representation
of the images. The definition of these common indices and their calculation formulas
can be found elsewhere [16].

4.2.4 Deep Features

Compared to the handcrafted features that require domain knowledge for proper
selection, the extraction of deep features is not involved with any domain knowledge,
which is automatically extracted by a convolutional neural network (CNN). Since a
number of deep learning models consisting of CNN have existed, the existing deep
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Table 4.1 Detailed
information of deep learning
models used in this study for
deep feature extraction

Model parameters ResNet50 GoogLeNet

Pooling layer Avg_pool Pool-drop_7 × 7_s1

Number of features 2048 1024

learning models for deep feature extraction can be utilized. In this study, ResNet50
and GoogLeNet models were selected for deep feature extraction based on their
satisfactory performance in previous studies [6, 35]. Detailed information, including
the feature pooling layers and number of features, is shown in Table 4.1.

4.2.5 Classifier

A proper classifier for training and testing that uses all these features is essential.
A large number of classifiers have been demonstrated to have a satisfactory perfor-
mance, such as neural network, random forest, and support vector machine (SVM),
among which SVM was selected for its demonstrated better performance [35].

The full dataset was divided into two parts as training and testing, with randomly
selected 80% for training and the other 20% for testing. Since each time the 80%
training dataset is randomly assigned, to have an objective comparison, in this study,
10 replications were run, with the average accuracy used to represent the model’s
performance. The above procedures for imaging processing, dataset generation,
feature extraction, andmodeling were performed inMATLAB®R2020a (TheMath-
works, Inc., Natick, Mass., USA). A desktop computer was used for data processing,
which had a configuration of Windows 10 OS, Intel(R) Core(TM) i7-8700 CPU,
32 GB RAM, Intel(R) UHD Graphics 630, and 16 G GPU memory.

4.3 Results and Discussion

4.3.1 Deep Learning Model Selection for Deep Feature
Extraction

The accuracy comparison of deep features extracted by ResNet50 and GoogLeNet
on three dates is presented in Fig. 4.4. For all the three dates, the deep features
extracted by ResNet50 are consistently higher than that by GoogLeNet, and the
accuracy differences are 7, 11, and 6%, for date 1, 2, and 3, respectively. A potential
reason is that the RestNet50 has more deep layers than GoogLeNet, and more (deep)
CNN layers would help extract finer features over shallow (less) layers. The fine
features have a better representation of the image characteristics. Hence, it is better
to choose ResNet50, not GoogLeNet for deep feature extraction for better detection
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(a) (b)

Fig. 4.4 Model accuracy comparison for deep features with support vector machine classifier in
terms of dates (a) and different models (b). Date 1, 2, and 3 denotes July 23, July 28, and Aug 11,
2020, respectively

accuracy. When comparing the performance of deep features extracted from two
models in terms of three dates (Fig. 4.4b), the last date would consistently generate
the lowest accuracy, which would be probably caused by the ripening of the crop
and associated natural color change. When the crops are not ripe, the stems (lodged
part) represent different characteristics from the leave (non-lodged part). However,
when crops are ripe, the feature difference caused by chlorophyll would be smaller
due to the reduced chlorophyll content caused by ripening.

4.3.2 Comparison of Handcrafted and Deep Features

Themodel accuracy based onhandcrafted features evaluated using theSVMclassifier
is presented in Fig. 4.5. With the progress of time, the detection accuracy goes down.
Thehighest accuracy is generated by thefirst date’s dataset (65%), and this is probably
due to better contrast between the greener standing crop exposing the leaves and the
lodged crop exposing the stems that are less green. Furthermore, with time the crops
mature and the chlorophyll content goes down, thereby the difference in the contrast

Fig. 4.5 Detection accuracy
based on handcrafted
features for three dates. Date
1, 2, and 3 denote July 23,
July 28, and Aug 11, 2020,
respectively
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Fig. 4.6 Accuracy
comparison between deep
and handcrafted features
using support vector machine
classifier. Date 1, 2, and 3
denotes July 23, July 28, and
Aug 11, 2020, respectively

of the regular and lodged crops also reduces. This result agreeswith the deep features’
results that the last date’s dataset generated the lowest accuracy (58%). Thus it is
desirable to take the aerial image one or twoweeks (sooner) after the initial lodging of
the crop, instead of 4 weeks after the event. In addition, this suggestion also provides
early assessment and allows time for possible crop management or insurance-related
processing.

The accuracy comparison between the deep features extracted by ResNet50 (best
among deep learning models tested) and handcrafted features are compared for
the three study dates (Fig. 4.6). For all the three dates’ datasets, deep features by
ResNest50 have better performance (higher accuracy) than the handcrafted features.
A potential reason is that the deep features can extract finer features over the hand-
crafted features. This indicates that using deep features by ResNet50 would be a
better choice than using handcrafted features. In addition to higher accuracy, appli-
cation of the deep features would require minimal or no domain knowledge, making
it an easy-to-use and reliable approach. Furthermore, the initial window of assessing
the wheat lodging using ResNet50 is broader with no loss of accuracy (Dates 1 and 2)
unlike handcrafted features with reducing accuracy with dates after initial lodging.

Regarding the time for data collection to result into higher accuracy, it is recom-
mended to collect the aerial images sooner after the lodging occurs. In the early data
collection, the crops are still green, and the extracted features would better represent
the crop characteristics. With the time elapsed, crops are gradually maturing, and the
crops are turning from green to yellow, making it difficult to distinguish the lodged
from non-lodged crops. However, it is interesting to observe the ResNet50 predic-
tion accuracy did not reduce in the time frame of the first and second weeks after
the initial lodging (Fig. 4.6) unlike GoogLeNet (Fig. 4.4) and handcrafted features
(Fig. 4.6), which may be due to the robustness of the ResNet50 and the inclusion of
several additional features than the other methods.

4.4 Conclusion

To avoid a number of shortcomings of the widely adopted manual/visual method
(e.g., inefficient, laborious, subjective, unreliable) in wheat lodging ratio detection,
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a methodology of using aerial images by unmanned aerial vehicles (UAVs) coupled
with the machine learning support vector machine (SVM) method was developed.
A new approach for automatic dataset (plot images) generation was developed and
tested in this study gave a satisfactory performance, and it can be extended/applied by
others on similar workflows. Deep features extracted by ResNet50 performed more
satisfactorily with higher accuracy than those by GoogLeNet. Between the selected
deep features (ResNet50) and handcrafted features (color + texture + vegetation
fraction), it is concluded to select the deep features due to theirmodel higher accuracy
and simplicity (free of domain knowledge). Regarding the data collection time after
initial lodging, it is recommended to collect the UAV data sooner after the lodging
occurrence for higher detection accuracies. The ResNet50 prediction accuracy did
not reduce in the time frame of the first and second weeks after the initial lodging
because of robustness unlike GoogLeNet and handcrafted features. This study has
demonstrated that using deep features extracted by ResNet50 coupled with SVM
classifier on UAV aerial images collected sooner (1–2 week) after the lodging occurs
is an efficient approach for wheat lodging ratio detection, with an accuracy over 70%.
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Chapter 5
UAV Mission Height Effects on Wheat
Lodging Ratio Detection

Zhao Zhang, Cannayen Igathinathane, Paulo Flores, Jithin Mathew,
Joel Ransom, Yiannis Ampatzidis, and Anup Kumar Das

Abstract Wheat is an important staple crop worldwide, and lodging is a nega-
tive factor contributing to yield reduction. Obtaining timely and accurate wheat
lodging information is critical. Using unmanned aerial vehicle (UAV) images for
wheat lodging detection is a relatively new approach, in which researchers usually
apply the manual method for field plot dataset generation. Considering the manual
method being inefficient, inaccurate, and subjective, the study developed an image
processing-based new approach for automatic field plot dataset generation and
tested. Since only a few studies explored the effects of different UAV mission
heights on wheat lodging ratio detection, we conducted experiments at three mission
heights (15, 45, and 91 m) and analyzed images using machine learning (support
vector machine—SVM) and deep learning (Resnet50) algorithms for wheat lodging
ratios (3 grades) detection. The results indicated that the collected images on 91 m
(2.5 cm/pixel) mission height could generate a similar or even a little higher detection
accuracy over the images collection at 45 m (1.2 cm/pixel) and 15 m (0.4 cm/pixel)
height. Comparison of SVM and Resnet50 model results showed that SVM resulted
in more satisfactory performance (67.6% accuracy) with slightly higher accuracy
over Resnet50 (67.2% accuracy) at 2.5 cm/pixel resolution. This study recommends
that UAV images collected at the height of about 91 m (2.5 cm/pixel resolution),
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coupled with color and textural features and SVM classifier, is a useful approach for
wheat lodging ratio detection. This study demonstrates the application of automatic
plot extraction with low-resolution images produced by higher UAV mission height
for plot scale (1.5 m × 3.6 to 14.6 m) studies such as wheat lodging forms a critical
piece of information that could be adopted by users related to UAV applications and
image analyses.

Keywords Wheat lodging ratio ·Machine leaning · Deep learning ·Mission
height · UAV

5.1 Introduction

Wheat (Triticum aestivum L.) is an essential staple crop worldwide, which serves
as a major source of starch, energy, protein, vitamins, dietary fiber, and phytochem-
icals [1]. There are a lot of factors limiting the yield of wheat, and lodging ranks
among the top. Setter et al. [2] reported that lodging would lower the photosynthesis
rate by 60–80% relative to non-lodged crops, which would significantly reduce the
yield. In addition to deterioration in grain quality, yield losses exacerbate because
the combine harvester could not or have difficulties to pull the lodged crops into the
combine header, due to which much of the crops are left in the field [3, 4]. Accurate
and timely information onwheat lodging plays an important role for breeders in culti-
vating/selecting resistant varieties, agronomists and plant physiologists in studying
the reasons for lodging (e.g., too much nitrogen), and farmers and crop insurance
personal in processing the insurance coverage [5, 6].

Though there is significant application progress of sensing and automation tech-
nologies in agriculture [6–11] inspection of crop lodging is still pursued by conven-
tional field- and vision-based manual methods [5, 6, 12, 13], which are time-
consuming, error-prone and unreliable [14]. Furthermore, under unfavorable weather
conditions (e.g., heavy rain) or when the crops are tall (e.g., maize), it is infeasible
for raters to get into the field for timely assessment [15]. Moreover, raters may
generate different results (intra-rater inconsistency), and this has been reported to
cause compensation disputes between insurance companies and wheat growers [16].
Therefore, there is a need for a new objective, quick, unbiased, and reliable approach
for wheat lodging detection.

Researchers started to explore remote sensing techniques on wheat lodging detec-
tion in the past and tested satellite images on wheat and canola lodging detection
[15, 17–20]. Though the satellite images can cover large areas, there are a number of
limitations, including, but not limited to, low resolution images (tens of centimeters
or meters) and coarse temporal resolution (several days for revisiting the same loca-
tion). Very recently, with the rapid progress of unmanned aerial vehicles (UAVs) and
new machine learning (ML) and deep learning (DL) algorithms, researchers started
to take advantage of UAV images coupled with new algorithms for crop lodging
detection [21, 22]. Compared to the satellite images, UAV images have much higher
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pixel resolution (millimeter or centimeter level), and the images can be collected as
long as the weather cooperates (not windy or rainy). Thus, the temporal resolution
is finer than that of the images from satellites. The application of UAV images on
wheat lodging detection is at a nascent stage, but recent results have already shown
some promising results. Li et al. [23] took advantage of UAV visible image for sugar-
beet lodging detection, with an accuracy of over 90%, and [24] achieved accuracies
of 93% and 96% for canola and wheat lodging monitoring, respectively. Almost all
these studies treated the lodging as a binary issue—lodging or non-lodging. However,
some researchers are more interested in lodging ratio (percentage of the lodged area
of the plot) of a certain plot, especially for breeders and growers. Few studies have
been traced to specifically focus on the plot lodging ratio detection.

While modeling lodging detection using images, the first step is to create a dataset
for lodging and non-lodging plots or areas. For a majority of the current studies, the
mainstream approach is to manually crop the images for the dataset creation [5, 25].
The manual cropping approach is inefficient, inaccurate, and prone-to-error. The
inefficiency comes from the need to crop one plot and then save the region of interest
(ROI) as a new image. Considering breeders may cultivate hundreds to thousands
of crop plots, it would be time-consuming. The inaccuracy is because some parts of
the plots may be missed due to fatigue/carelessness, and the error may be caused
by cropped images including noises (e.g., soil). Hence, it is desirable to develop a
semi-automatic or even an automatic approach for image dataset creation.

Since crop lodging detection is a categorical classification problem, researchers
usually extract features from the collected images, which would further be fed into
ML algorithms. The proper selection of features that could represent the crop char-
acteristics play a critical role in obtaining higher detection accuracy, and the feature
selection or determination requires domain knowledge. Different researchers have
demonstrated that color and textural features performed satisfactorily on crop lodging
detection [25].With the advent of DL, the manual feature selection could be replaced
by deep conventional neural networks, which is free of domain knowledge and
completed automatically. A number of DL models combine the automatic feature
extraction and neural network tomake thewhole process (feature extraction and clas-
sification) fully automatic. However, only a few studies have compared the wheat
lodging detection accuracies between DL and ML.

For a majority of current studies on wheat lodging detection, the mission height
is empirically determined. For a high mission altitude (e.g., 100 m above ground
level), the data collection takes less time, and the resolution of collected images is
coarser; and for a low mission altitude (e.g., 15 m above ground level), the data
collection requires more time, and the image had a finer resolution and also required
more storage space. The empirical approach may have a good performance, but it is
more desirable to conduct specific studies to explore and quantify the height effects
on wheat lodging ratio detection.

To address the issues mentioned above, the objectives of this study were to: (1)
develop an automatic approach for wheat plot dataset generation; (2) explore mission
height effects on wheat lodging ratio detection; and (3) compare the performance of
ML and DL models on wheat lodging ratio detection.
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5.2 Materials and Methods

Different procedures in this study of developing amethodology for automatic dataset
generation, comparingDL andMLmodels onwheat lodging detection, and exploring
the mission height effects are outlined in Fig. 5.1. After lodging occurred, field
missions of three different heights were completed, followed by immediate field
visual evaluation of lodging conditions in terms of non-, light, and severe lodging. The
collected images were first preliminarily processed to generate orthomosaic maps,
followed by an automatic approach in generating individual plots as the dataset. Then,
different ML and DL models were tested on plot images of different heights, with
performance compared. All the detailed research process is described subsequently
in appropriate sections.

5.2.1 Experimental Field and Data Collection

Theexperimental fieldused in this studywas cultivatedonMay, 2020nearThompson,
ND, U.S., as shown in Fig. 2. The experimental area is about 64 × 100 m (210 ×
330 ft.), with two sizes of plots—short: 1.5 × 3.6 m (5 × 12 ft) and long: 1.5 ×
14.6 m (5 × 48 ft.). Among the total experimental 428 plots (short 312 and long
116), there are 28 plots that served as borders (columns 1, 11, 20, 29, and 55 in the
right photo of Fig. 5.2) are eliminated to avoid the border effect, while the other 400
are considered for analysis in this study.

Approximately a week after the lodging occurred, drone flights at three heights
were conducted on July 23, 2020: 15 m (50 ft), 45 m (150 ft), and 91 m (300 ft). A
DJI Phantom 4D RTK UAV (DJI-Innovations, Inc., ShenZhen, China) was used for
data collection, which is outfitted with a 20 megapixel (5472 × 3648 pixel) color

Fig. 5.1 Overall procedure flowchart of wheat lodging ratio detection on different unmanned aerial
vehicle (UAV) mission heights based on machine learning (ML) and deep learning (DL) models
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Fig. 5.2 Plot location and layouts. There are two sized plots—short (312): 1.5× 3.6 m (5× 12 ft.)
and long (116): 1.5 × 14.6 m (5 × 48 ft.). On the right photo, starting from left to right, columns
1, 11, 20, 29, and 55 are border plots, which are not used in this study

camera. The mission speed was set to 2.5 m/s, and since the weather was sunny
during the entire data collection time window, the balance mode was set as sunny.
Additionally, both side and forward overlaps for image capture were set as 80%.

Immediately after all the three flights, two raters visited the field for manual
evaluation. The two raters were trained by experts before the field experiments, and
they graded each plot in terms of lodging ratio (percentage of the lodged area of
the plot) evaluated as three grades as non-, light, and severe lodging. The lodging
ratio grades are represented as non-lodging—lodging does not occur, light lodging
–<45% area is lodged, and severe lodging –>45% is lodged. The two raters inspected
independently and separately to avoid the rating results affected by each other. These
manual evaluation results were used as labels while training and testing models.

5.2.2 Data Pre-Processing and Dataset Generation

For each mission height, the collected images were pre-processed using Pixel4D
(Pix4D V4.3.33, S.A., Prilly, Switzerland) to generate an orthomosaic map (right
photo in Fig. 5.2). Then, for each height, an orthomosaic map was generated. The
three individual maps were geo-referred with ground control points, which were
installed in the field before the experiment.

After obtaining the three individual and geo-referred orthomosaic maps, the next
step was to generate the individual plot images automatically. To segment the indi-
vidual plots from the background, it requires to determine individual plot’s coordi-
nates. A huge number of parameters have been used to segment crops from noisy
infield backgrounds [26], and excess green (E × G, Eq. 5.1) have been selected in
this study for its satisfactory performance in preliminary tests. After calculating the
E × G for the individual pixel of the original image (Fig. 5.3i), the monochrome E
×G image is obtained and shown in Fig. 5.3ii. After applying a threshold (0.01 used
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Fig. 5.3 Flowchart for dataset generation. (i) Original image; (ii) monochrome of excess green;
(iii) binary image after thresholding (0.01) excess green image (ii); (iv) relationship between x
coordinates (horizontal direction) and sum of each column; (v) relationship between y coordinates
(vertical direction) and the sum of each row; and (vi) samples of automatically generated extracted
images of the individual plots
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in this study), a binary image is generated (Fig. 5.3iii), with white and black pixels
representing 1 and 0, respectively.

Excess Green = 2× Green (G)− Red(R)− Blue(B) (5.1)

The experimental field consists of 4 sub-plots (Fig. 5.3i) in the vertical direction.
Since the four plots are very similar and the methodology used for any of the 4
sub-plots can be used/duplicated for others, we use the top sub-plot to explain the
new methodology for automatic individual plot image dataset generation. For each
subplot, the key information in the vertical direction is the top and bottom coordinates
for both large the small plots. For the large plots, the top coordinates are denoted
as R1 and the bottom as R6 (Fig. 5.3iii); for the small plots, the top and bottom
coordinates are R1 and R2 (or R3 and R4 or R5 and R6), respectively. Compared to
the vertical direction coordinates, the horizontal direction coordinates are relatively
easy to obtain since all the plots are of the same width and the plots number in the
horizontal direction is pre-known. Then, the problem of obtaining the horizontal
coordinates is converted to a problem of finding the left edge (C1 in Fig. 5.3iii) and
right edge (C2 in Fig. 5.3iii).

Based on the binary image (Fig. 5.3iii), for each column, the sum of pixel values
is calculated, which is actually the number of white pixels (white pixel is equal to 1;
black pixel is equal to 0). The relation between the image x coordinates (horizontal
direction) and their corresponding sumof the individual column is shown inFig. 5.3iv.
Due to a sudden change from 0 to a very high value, the C1 value could be obtained,
and the C2 value is actually the right edge of the image. Similarly, the relationship
between the row coordinate (vertical direction) and each row’s sum is presented in
Fig. 5.3 v, with R1-6 values calculated automatically. After detecting each plot’s
coordinates, these coordinates were used to crop the original images automatically
to generate the individual plot dataset. Sample images automatically generated are
shown in Fig. 5.3vi.

Among the total 428 cropped plots, the 28 border plots were manually removed
and the remaining 400 cropped plot image were considered as the dataset for further
processing.

5.2.3 Machine Learning Algorithm

Traditional ML algorithms need to feed features into the model for training. Features
are the properties that can represent the characteristics of a plot. Based on literature
review and accumulated research experience, color (Table 5.1 #1–12) and texture
(Table 5.1 #13) features are chosen. The color features are chosen as lodged crop
plots would have soil and stems shown in the images, which may be less green from
the normal crop growing area. For the texture features, the lodged crops may be not
as uniform as non-lodged crops.
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Table 5.1 Features selected
based on domain knowledge
for wheat lodging ratio
detection

Feature number Feature Description

1 R Red channel

2 G Green channel

3 B Blue Channel

4 H Hue Channel

5 S Saturation channel

6 I Intensity channel

7 L Luminosity channel

8 a a channel

9 b b channel

10 NDI Normalized difference index

11 E × G Excess green index

12 E × R Excess red index

13 GLCM Texture feature

Features 1–9 are all normalized; detailed information of these
features can be referred to [26]

After these features are extracted, the next step is to choose a suitable classifier.
There are a number of classifiers that have been used to address classification issues
in agriculture, such as support vector machine (SVM), neural network, random forest
[26–28]. In this study, based on our preliminary test and literature review [29–31],
the SVM classifier was selected.

5.2.4 Deep Learning

Compared to the manual feature selection of the ML, DL would extract features
automatically. During the past decades, DL hasmade the feature extraction automatic
by using convolutional neural networks.Anumber of studies have validatedResnet50
to be a good performing model in addressing classification problems in agriculture
[27], and this model was selected.

In this study, data processing was completed using Matlab® 2020b (The Math-
works, Inc., Natick, Mass., USA), including feature extraction and selection, and
running ML and DL models. The desktop used for this study was configured with
Windows 10 OS, Intel(R) Core(TM) i7-8700 CPU, 32 GB RAM, Intel(R) UHD
Graphics 630, and 16 G GPU memory. For all the modeling processes, randomly
selected 70% of the dataset was used for data training, and the other 30% for testing.
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5.3 Results and Discussion

5.3.1 Machine Learning Classification Results

For the ML approach, the SVM classifier model was used (randomly selected data
70% training and the other 30% testing). Since the training dataset (70%) was
randomly assigned for each run, the SVM model was run for 10 times, with the
averaged detection accuracy shown in Fig. 5.4. The detection accuracy is not signif-
icantly different (Tukey; p > 0.05) from each other at different heights. Actually,
the accuracy of 15 m altitude is 66.8%, which is a little lower than that of 46 m for
67.8% and 91 m for 67.7%. The image pixel resolutions of the 15 m, 46 m, and 91 m
are 0.4, 1.2, and 2.5 cm/pixel, respectively, indicating that images with 2.5 cm/pixel
resolution performing similarly to images with 0.4 cm/pixel. The reason for this
observation is perhaps the analysis ROI is large and is about the plot scale (1.5 ×
3.6 m and 1.5 × 14.6 m), and high-resolution image images are generally required
at plant scale analysis. To collect high-resolution images, it requires more time for
data collection, larger data size (increase storage) than the low-resolution ones, and
requires higher computational resources and cost. Thus, in the future, researchers can
use 2.5 cm/pixel image resolution (low-resolution), instead of 0.4 cm/pixel resolution
(high-resolution) images for wheat lodging detection.

5.3.2 Deep Learning Results

Wheat lodging detection accuracy based on Resnet50 DLmodel is shown in Fig. 5.5.
Since the DL model ran many iterations, and in each iteration using randomly
selected data (70% training and the other 30% testing, there is no need to run the
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Fig. 5.4 Detection accuracy based on color and textural features coupled with support vector
machine classifier on images of different height. Bars with the same letters are non-significantly
different by Tukey’s test at 0.05 significance level
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Fig. 5.5 Detection accuracy
based on Resnet50 deep
learning model on different
mission heights
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models multiple times. The detection accuracy of 64.5% on 15 m (image resolu-
tion 0.4 cm/pixel) above ground level is a little lower than that of 67.5% on 46 m
(1.2 cm/pixel) and 67.2% on 91 m (2.5 cm/pixel). Generally, the detection accuracy
pattern using Resnet50 is similar to using SVM—the higher mission height would
actually increase the detection accuracy slightly.

5.3.3 Comparison of ML and DL

The detection accuracy comparison betweenML (SVM) andDL (Resnet50) is shown
in Table 5.2. It is obvious that SVM and Resnet50 results are of similar accuracies
for the mission heights of 46 m and 91 m; while for the 15 m mission height, the
SVM results a little higher accuracy over Resnet50. Since using high altitudemission
would generate high detection accuracy, and simultaneously reduce the computation
cost, it is recommended to use SVM with 91 m mission height for wheat lodging
detection.

5.4 Conclusion

This study has tested the performance of the machine learning model (support vector
machine - SVM) and deep learning model (Resnet50) on wheat lodging ratio detec-
tion at three different heights. A majority of studies followed the manual approach

Table 5.2 Detection
accuracy comparison between
support vector machine and
Resnet50

15 m (50 ft.) 46 m (150 ft.) 91 m (300 ft.)

Support vector
machine

66.8% 67.8% 67.6%

Resnet50 64.5% 67.5% 67.2%
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to generate the field plot dataset (individual plot images) from experimental field,
and this method is time-consuming, inefficient, and inaccurate. This study devel-
oped a new approach for automatic field plot dataset generation, which is based on
image pre-processing using excess green. This new and automatic dataset generation
approach has been applied and validated in this study, and can be applied to a similar
workflow. For both support vector machine and Resnet50models, the detection accu-
racies (64.5–67.8%) are not significantly different for three different mission heights
(15, 46, and 91 m) that had the corresponding 0.4, 1.2, and 2.5 cm/pixel image reso-
lutions. Therefore, it is recommended to use 2.5 cm/pixel resolution, instead of the
0.4 and 1.2 cm/pixel resolutions, for wheat lodging ratio detection, which can collect
and process data more efficiently while not lowering detection accuracies. Regarding
the support vector machine and Resnet50, the SVM is recommended (coupled with
color and texture features) to be used for wheat lodging detection for its high accu-
racy. This study has demonstrated that using low-resolution images (2.5 cm/pixel)
coupled with SVM is an efficient approach for wheat lodging ratio detection, with
an accuracy of 67%.
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Chapter 6
Wheat-Net: An Automatic Dense Wheat
Spike Segmentation Method Based
on an Optimized Hybrid Task Cascade
Model

JiaJing Zhang, An Min, Brian J. Steffenson, Wenhao Su, Cory D. Hirsch,
James Anderson, Ce Yang, and Jian Wei

Abstract Precise segmentation of wheat spikes from a complex background is
necessary for obtaining image-based phenotypic information of wheat traits such as
yield estimation and disease evaluation. A new instance segmentation method based
on a Hybrid Task Cascade model was trained and validated to improve previous
attempts of wheat spike detection. In this study, wheat images were collected from
fields where the environment varied both spatially and temporally. Res2Net50 was
adopted as a backbone network, combined with multi-scale training, deformable
convolutional networks, and Generic ROI Extractor for rich feature learning. The
proposed methods were trained and validated, and the average precision (AP)
obtained for the bounding box and mask was 0.904 and 0.907, respectively, and
the accuracy for wheat spike counting was 99.29%. Comprehensive empirical anal-
yses revealed that our method (Wheat-Net) performed well on challenging field-
based datasets with mixed qualities, particularly those with various backgrounds and
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wheat spike adjacence/occlusion. These results provide evidence for dense wheat
spike detection capabilities using the latest date deep learning algorithms, which can
be useful for improving wheat breeding and disease screening efforts.

Keywords Hybrid task cascade model · Challenging dataset · Non-structural
field · Wheat spike detection · Instance segmentation

6.1 Introduction

Wheat is the most widely cultivated cereal crop and also one of the most important
food sources for humans in the world. The spike is the most important compo-
nent of the wheat plant because it contains the seeds that are harvested and ulti-
mately consumed. Thus, the spike is an essential component for studies focusing on
yield estimation,morphology assessments, and disease detection (e.g. Fusariumhead
blight).With respect to FHB assessment in wheat, conventional scoringmethods rely
on visual estimations, which are costly, laborious, error-prone, and time-consuming.
Therefore, developing an automated method to increase detection of spikes and the
percentage of florets infected within each spike is important to reduce labor costs
and increase efficiency and accuracy. In-field automated wheat spike detection based
on remote sensing is an important step toward the detection of diseases infecting this
part of the wheat plant.

Deep learning (DL) with strong feature learning abilities has spawned a multitude
of applications in computer vision. It encodes the composition of lower-level features
into more discriminative higher-level features [1]. DL can solve more complex prob-
lems with higher precision and has been successfully used in disease and pest detec-
tion [2–4], plant classification [5–7], yield prediction [8–10], and growth monitoring
[11, 12]. Thus, DL, with its advantages of high precision and intelligence, is an
attractive alternative to conventional wheat spike detection methods.

Recently, DL has been shown to perform well in a wide variety of wheat
spike detection studies. Some previous works involving wheat detection have been
conducted under laboratory conditions and controlled environments [13–16]. Labo-
ratory based experiments have good lighting conditions and a clean background,
which is not the case for field-based research, which is more complicated and yields
images where the background usually contains a lot of disturbances (including soil
andweeds). The complicated background greatly increases the difficulty of resolving
individual wheat spikes, but represents the actual growing environment of wheat.
Thus models developed from the field are more realistic of real-world conditions for
wheat cultivation. Several in-field spike detection and counting studies have been
conducted [17–21]. However, the detection results from these studies were based
on bounding boxes, which are insufficient for discriminating diseased florets on the
spikes, where precise pixel areas are required for segmentation. Some researchers
have used semantic segmentation algorithms to segmentwheat spikes in the fieldwith
a simpler environment by controlling some factors in the experiment. For example,
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in implementing a Fully Convolutional Network (FCN) segmentation model of indi-
vidual wheat spikes, [22] positioned spikes to avoid occlusion–an intervention which
does not simulate the actual growing conditions of wheat in the field. Alkhudaydi
et al. [23] employed FCN to segment multiple wheat spikes, which achieved a Mean
Accuracy (MA) of classification of >76%. However, their model performed poorly
under challenging conditions caused by variable lighting and weather. Tan et al.
[24] performed simple linear iterative clustering (SLIC) for superpixel segmentation
of digital wheat images, which resulted in a high accuracy (94.01%) under high
nitrogen fertilizer level and a lower accuracy (80.8%) under no nitrogen fertilizer
application. Ma et al. [25] developed EarSegNet to segment multiple wheat spikes
from canopy images captured under field conditions and realized a precision of
79.41%. However, semantic segmentation algorithms cannot segment wheat spikes
out individually when they are obstructed by other spikes, leaves or stems, which is
a common situation o under field conditions.

Instance segmentation can effectively segment partially obstructed wheat spikes.
Thismethod localizes objects of interest in an image at the pixel-level,which achieves
both object detection and semantic segmentation [26, 27]. With instance segmenta-
tion, the segmented objects are generally represented by masks and a bounding box
(bbox); however, few studies have been advanced using instance segmentation for
detecting individual plant organs under field settings. Qiu et al. [28] used a Mask
RCNN model to reliably detect wheat spikes (mean average precision is 0.9201)
with different shapes and features in the field. However, to achieve these results, they
used a background plate to block complex backgrounds and also a shade shed to
provide even lighting, which reduced the complexities of image capture and subse-
quent annotation. They also divided the original image into many smaller images,
which resulted in image distortion. This, in turn, resulted in images with only partial
objects or no objects at all, which would destroy the integrity of the wheat spikes.

In summary, most of the current methods of wheat spike detection focus on spike
detection or semantic segmentation in the laboratory, which may not be suitable
for phenotyping diseased spikes under complex field environment. Therefore, it is
necessary to explore a more applicable and efficient approach for segmenting wheat
spikes under field conditions. In this study, a new instance segmentationmodel (called
Wheat-Net) based on a multi-task Hybrid Task Cascade (HTC) model [26] was used
to segment individual wheat spikes in high densities in the field. The HTCmodel has
a powerful cascade structure that enhanced performance on various tasks. It solved
the problem of insufficient information flow between mask branches at different
stages in Cascade Mask R-CNN, which is a direct combination of Cascade R-CNN
[29] and Mask R-CNN [30]. The HTC model effectively integrated cascade into
instance segmentation by interweaving detection and segmentation for joint multi-
stage processing, achieving outstanding performance on COCO (Common Objects
in COntext) test-dev and test-challenge [31]. In this paper, the HTC model achieved
excellent performance on a challenging dataset with various complex backgrounds
and a high level of obstruction. In a complex, unstructured environment, our method
not only accurately detected thewheat spikes with bounding boxes, but also extracted
spike regions from the background at the pixel level.
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The subsequent parts of this paper are organized as follows: Sect. 6.2 describes
the dataset and presents the adopted approach, Sect. 6.3 indicates the experimental
results, Sect. 6.4 discusses the performance of our method, and Sect. 6.5 gives
conclusions and suggestions for future research.

6.2 Materials and Methods

6.2.1 Data Collection

Wheat genotypes were sown in field plots on the St. Paul campus of the University of
Minnesota (UMN) in 2019. These genotypes includedmostly breeding lines from the
UMN hard red spring wheat breeding program, which can vary for different spike
morphology traits such as color, shape types as well as spike density. Images of
spikes frommany wheat genotypes were collected from 11 July 2019 (late flowering
stage) to 2 August 2019 (milk stage). In the complex field environment, we used an
autofocus single-lens reflex (SLR) camera (Canon EOS Rebel T7i) to collect image
data under ambient weather conditions. During image collection, the weather was
mostly clear with few clouds and the winds very light; therefore, image distortion
due to weather conditions was kept at a minimum. The wheat images (effective
pixels: 6000 × 4000) collected had complex backgrounds, including weeds, soil,
blurred wheat, blue sky, and white clouds. To increase the diversity of the image
set, we used different shooting angles, focal lengths, and camera to object distances.
Wheat is typically a dense crop and the images collected contained as many as 124
spikes per image. In addition, it was common that portions of images had insufficient
illumination (blue boxwith zoom-in shown in Fig. 6.1b).Moreover, the above factors
also resulted inmanyproblems such as spike adjacence (Red boxwith zoom-in shown
in Fig. 6.1c), occlusion, variation in spike size, and partial spikes on the image edge
(Yellow box with zoom-in shown in Fig. 6.1d). The spike occlusion problem was
the most serious problem and included various scenarios such as spikes over spikes
(Fig. 6.2a), leaves over spikes (Fig. 6.2b), stems over spikes (Fig. 6.2c), and awns
over spikes (Fig. 6.2d). Although the above factors greatly increase the segmentation
difficulty in spikedetection, they encompass the truefield environment and are helpful
to improve the robustness of the spike segmentation model.

The artificial image annotation software, Labelme [32], was used to label the
ground truth for wheat spikes using polygons (Fig. 6.3). To obtain high-quality
annotated datasets, dense points along the outside edge of every spike were selected
to form an accurate spike region. These annotated images were used to calculate
the loss and optimized the model parameters during model training. The training set
(524 images including 12,591 spikes) and the testing set (166 images including 4,749
spikes) were divided according to commonly used ratios in deep learning modeling.
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(a) 

(d)(c) 

(b)

Fig. 6.1 a An example of an original image of a wheat plot indicating sections (blue, red and
yellow boxes) enlarged to show b an area with incomplete illumination, c adjacent spikes in close
proximity, and d partial spikes on the edge of the images

(a)    (b)       (c)      (d)

Fig. 6.2 Examples of various spike occlusion scenarios: a spike over spike, b leaf over spike, c
stem over spike, and d awns over spike

cba 

Fig. 6.3 Annotation of wheat spikes: a the original image of a wheat plot, b the image with
annotated wheat spikes, and c details of a single annotated spike
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6.2.2 Methods of Wheat Instance Segmentation

6.2.2.1 Architecture of Wheat-Net

In this study, instance segmentation was the key protocol implemented to reliably
detect and segment wheat spikes in a complex non-structural environment. We built
the wheat spike instance segmentation model, Wheat-Net, for our high-complexity
dataset based on the HTC model [26], which is a novel cascade architecture for
instance segmentation. We cascaded three Mask R-CNN networks to build the HTC
architectures (Fig. 6.4). The advantages of this model can be ascribed to three key
aspects. (1) It interleaved the box and mask branches (the green lines in Fig. 6.4)
based on Cascade Mask R-CNN. This improvement allowed the mask branch to
take advantage of the updated bbox. (2) It made full use of the mask feature of the
preceding stage by adding a direct information flow betweenmask branches (the blue
lines in Fig. 6.4). This design further improved the accuracy of mask detection. (3) It
exploredmore contextual information by adding a semantic segmentation branch (the
red lines in Fig. 6.4). The above optimizations are combined for better predictions,
which effectively improved the utilization of information and enhanced performance.

rt = Bt
(
xboxt

)
, (6.1)

xboxt = p(x, rt−1) + p(S(x), rt−1), (6.2)

xmask
t = p(x, rt ) + p(S(x), rt , ) (6.3)

mt = Mt (F
(
xmask
t ,m−

t−1

)
, ) (6.4)

F(
xmask
t ,m−

t−1

) = xmask
t + gt (m

−
t−1) (6.5)

Fig. 6.4 The architectures of Wheat-Net. “POOL” region-wise feature extraction, “B” bounding
box, and “M” mask. ‘S’ is semantic segmentation branch
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where x is the feature of backbone network, xboxt and xmask
t denote box and mask

features of x and the input Region of Interest (RoI). S indicates the semantic segmen-
tation head. The box and mask heads of each stage take the RoI features extracted
from the backbone as input. p(·) is a pooling operator, Bt and Mt indicate the box
and mask head at the t-th stage.rt and mt represent predictions of box and mask,
respectively. m−

t−1 indicates the intermediate feature of Mt−1. F is a function that
combines the features of the current stage and the preceding one. gt denotes a 1 × 1
convolutional layer.

6.2.2.2 Optimization of Wheat-Net

Different backbones have an important effect on the performance of the model
because of their differences in feature extraction ability. Res2Net50 (Fig. 6.5b) [33]
represents multi-scale features at a granular level and increases the range of receptive
fields for each network layer, which is different from the concurrent bottleneck struc-
ture shown in Fig. 6.5a, such as ResNet [34]. Specifically, it replaces the 3× 3 filters
of n channels with a set of smaller filter groups, which are connected in a hierar-
chical residual-like style to increase the number of scales that the output features can
represent. It can capture more details and global features without increasing calcula-
tions. ResNeXt is an improved model of ResNet, (Fig. 6.5c) [35] and is constructed
by repeating a building block and the transformations to be aggregated, all of the
same topology. It is a simple, homogeneous and multi-branch architecture, which
can extend to any large number of transformations without specialized designs. In
the experimental part of this paper, we compare the performance of above-mentioned
backbones in our dataset.

(c) A block of ResNeXt(a) A block of ResNet (b) A block of Res2Net

Fig. 6.5 Comparison between different backbones for Wheat-Net
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(d) (c) (b) (a) 

Fig. 6.6 Different calculation positions under: a standard convolution (blue points); b deformable
convolution (with green points). c and d are special cases of (b), showing that the deformable
convolution generalizes scale and rotation transformations

Deformable convolutional networks (DCN) [36] were integrated into our model
because they provide a solution to model dense spatial transformations and are effec-
tive for sophisticated vision tasks. DCN allowed free deformation of the sampling
grid as shown in Fig. 6.6, which added offsets learned from target tasks to the regular
sampling grid of standard convolution without additional supervision.

In our model, feature pyramid networks (FPN) [30] extracted RoI features from
different levels of the feature pyramid by using a top-down architecture. These
different features, generated and fused by FPN, comprised the inputs of the Region
Proposal Network (RPN) [37]. RPN predicted object bounds and objectness scores
to efficiently generate region proposals with a wide range of scales and aspect ratios.
Generic RoI Extractor (GRoIE) [38] was used to extract the RoI. Since all layers of
FPN retain useful information, they introduce non-local building blocks and atten-
tion mechanisms to overcome the limitations of existing RoI extractors, which select
only one (the best) layer from FPN. They also can be integrated seamlessly with
the two-stage architectures for instance segmentation tasks for superior performance
compared to traditional RoI extractors [39]. In addition, we used multi-task learning
[40] to achieve both target detection and semantic segmentation of wheat spikes.
Multi-task learning combined all tasks into a single model: that is, what is learned
for each task can help other tasks be learned better. Hence, Multi-task learning can
improve learning efficiency and prediction accuracy by learning multiple objectives
from a shared representation.

As an important part of the object detection pipeline, non-maximum suppression
(NMS) could sort the detection bbox based on their scores [41], select the detection
bbox with the highest score and suppress all other bbox that had significant overlap
(using a pre-defined threshold) with it. However, NMS might lose the objects that
are within the predefined overlap threshold. Bodla et al. [42] proposed a Soft-NMS
algorithm to prevent objects from being eliminated. It decayed the detection scores
of all other objects as a continuous function of their overlap. In the experimental part
of this paper, we conducted a comparative experiment between NMS and Soft-NMS.

The size of the input image had a significant impact on model performance.
Moreover, the feature map generated by the network was much smaller than the
original image, which caused the loss of small object features. Because we collected
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images with various shooting distances and angles, the dataset contained many small
spikes. Theywere difficult to detect and affected the performance of themodel.Multi-
scale training [43], which defines several fixed scales in advance and randomly
selects a scale for training in each epoch, can effectively improve this limitation.
Therefore, we used images of multiple scales for training to improve the robustness
and accuracy of the model. Due to memory constraints, the short-side of the input
images was randomly selected from 416 to 1184, and the another side’s size was
calculated according to the aspect ratio of the original image’s size.

Learning rate (LR) was one of the most important hyperparameters in training. If
the LR is large at the beginning of training, the model may become unstable, making
it difficult to reach the optimal solution. To address this, we used warm-up LR [34]
to improve the training situation. Warm-up LR allows the LR to gradually increase
from a small value in the first few epochs until the initial LR is reached. In this way,
the model can gradually stabilize, and the convergence speed becomes faster after
stabilization.

As an important hyperparameter in deep learning, LR could determine whether
and when the model can converge. A large LR will make the model fluctuate greatly,
and it is difficult to reach the optimal solution. In addition, as the number of iterations
increases, the LR will continue to decay to reduce fluctuations of model. We chose
two popular LR decay methods and compared them in the experimental chapter: one
was MultiStepLR, which used the dynamic step to update the LR, and the other was
CosineAnnealingLR, which decayed the LR periodically based on the cosine func-
tion. Hyperparameters of the model were adjusted and optimized based on multiple
experiments. Finally, the initial LR was set to 0.0025 and adjusted every 20 epochs
with a decay factor of 0.5. The other hyperparameters of the model are shown in
Table 6.1.

Eventually, a new wheat spike segmentation method based on the HTC model
combined with the backbone of Res2Net50, deformable convolutional networks, and
Generic RoI Extractor was constructed (Fig. 6.4). During the model training, each
image was flipped horizontally to augment the data and the Res2Net-50 backbone
was pre-trained based on the ImageNet dataset [44] using transfer learning, which
was suitable for solving the problem of a small training dataset.

Table 6.1 Hyperparameter
values which optimized
through training

Parameter Value

Optimization algorithm SGD

Momentum 0.9

Initial learning rate 0.0025

Warmup_iterations 500

Warmup_ratio 0.001

Warmup_ratio 0.001

Optimal Epoch 38

Batch size 1
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The overall loss function takes the form of multi-task learning and was defined
as function (6).

L =
T∑

t=1

at
(
Lt
bbox + Lt

mask

) + βLseg (6.6)

where Lt
bbox is the loss of the bounding box predictions at stage t. Lt

mask is the loss
of mask prediction at stage t. Lseg is the semantic segmentation loss in the form
of cross-entropy. Because we cascade 3 Mask R-CNN networks to build the HTC
architectures, T was set to 3. In addition, to balance the contributions of different
stages and tasks, we set α = [1, 0.5, 0.25] and β = 1 by default [26].

6.2.3 Evaluation Metric

The performance of Wheat-Net was evaluated by average precision (AP), which is
the area under the curve of precision-recall (PR). A high AP value indicates that a
model has both high precision and high recall. AP stood out as the most-used metric
due to its representativeness and simplicity. AP was calculated by using the method
of the COCO dataset, which interpolated through all points. The evaluation metrics
are defined as follows:

Precision = T P

T P + FP
(6.7)

Recall = T P

T P + FN
(6.8)

pinterp(rn+1) = max
r̃ :r̃≥rn+1

p(r̃) (6.9)

AP =
∑

n=0

(rn+1 − rn)pinterp(rn+1) (6.10)

I oU (A, B) =
∣
∣∣∣
A

⋂
B

A
⋃

B

∣
∣∣∣ (6.11)

where TP indicates the correct detection, FP is the wrong detection, and FN repre-

sents the ground truth not detected. p(r̃) is the measured precision at recall
∼
r. IOU

is the intersection over union between two bboxes. A represents the bbox labeled
manually and B represents the bbox generated based onWheat-Net. In this research,
we evaluated the performance of Wheat-Net based on the IOU threshold of 0.5,
which is commonly used for instance segmentation model.
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6.3 Results

The data analysis was performed with the deep learning development framework
of PyTorch. An Intel (R) Core (TM) i7-6700 processor, a 16 GB random-access
memory card and a graphic card (NVIDIA GeForce GTX1080Ti 11GB) were used
for the modeling process.

In order to determine the appropriateness of the model, a test set of 166 images
was used to assess the model. The AP of bbox and mask reached 0.904 and 0.907,
respectively. In the case of dense wheat spike detection from complex backgrounds,
false positives tended to happen more often than false negatives. Therefore, we
used the PR curve (Fig. 6.7), which emphasized the evaluation of the prediction
model on positive examples to evaluate the performance of the model. This step
confirmed the effectiveness of Wheat-Net for detecting wheat spikes in the complex
field environment.

In addition, we visualized the detection results of the complex image shown
in Fig. 6.8a. As shown in Fig. 6.8, in the non-structural field, the model showed
outstanding performance for complex backgrounds, dense spikes, adjacence and
occlusion (Fig. 6.8b), insufficient illumination (Fig. 6.8d), and incomplete spikes on
the edge of images (Fig. 6.8c).

Themodel can effectively solve the problemof various occlusion scenarios, which
is one of the most challenging areas in the field of object detection. Figure 6.9
demonstrated the detection results of various occlusion scenarios including: when a
spike is obstructed by another spike; when a spike is occluded by a leaf; when a spike

Fig. 6.7 The curve of precision and recall



98 J. Zhang et al.

(a)

(d) 

(b)  (c)

Fig. 6.8 Annotation images versus detection results. a Overall detection results, b detail 1—area
of adjacence and occlusion, c detail 2—area of incomplete spikes in image, d detail 3—area of
insufficient illumination of spikes

is occluded by a stem; and when a spike is occluded by awns from another spike.
Comparing the total number of spikes (4,933) detected by the model with the actual
number of spikes manually labeled (4,899), the accuracy of the wheat spike counting
was 99.29%. This demonstrates that Wheat-Net was effective for automatic wheat
spike counting under complex field conditions.

6.3.1 Comparative Evaluation

In order to evaluate the performance of the HTCmodel, we conducted a comparative
experiment with other CNNs. The test results (Table 6.2) show that the box AP and
mask AP of the HTC model are better than Mask RCNN and Cascade Mask RCNN.
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Fig. 6.9 Detection results of
various occlusions. a one
spike (under purple mask) is
occluded by another spike, b
one spike (under red mask) is
occluded by a wheat leaf, c
one spike is occluded by a
wheat stem, d One spike
(under orange mask) is
occluded by awns from
another spike

(d)  (a) (c) (b) 

Table 6.2 Comparison of the performances of HTC model versus other models

Model AP (IOU =
0.5)

AP (IOU =
0.75)

Epoch Train time (h) Test time (s)

Bbox Mask Bbox Mask

HTC 0.904 0.907 0.790 0.747 38 16 2560

Mask RCNN 0.884 0.884 0.755 0.690 60 10 3186

Cascade Mask RCNN 0.899 0.900 0.785 0.754 40 14 2673

In addition, although the train time of the HTC model was slightly longer than the
other two models, the HTC model was more satisfactory in terms of test time and
converged in the lowest number of epochs, which also proved the effectiveness of
the HTC structure. Therefore, considering accuracy and speed, we decided to use
the HTC model to detect wheat spikes.

To make full use of the advantages of the HTC model to achieve better perfor-
mance, we conducted experiments to select the backbone to build the HTC model.
As shown in Table 6.3, we selected ResNet, ResNeXt, and Res2Net for comparative

Table 6.3 Comparison of the performance of different Res2Net backbones

Backbone AP (IOU = 0.5) AP (IOU = 0.75) Epoch Train time/h Test time/s

Bbox Mask Bbox Mask

ResNet50 0.894 0.897 0.761 0.693 60 17 2393

ResNet101 0.871 0.876 0.696 0.632 20 7 3302

ResNeXt50 0.893 0.897 0.788 0.733 66 18 2299

ResNeXt101 0.872 0.875 0.706 0.624 40 14 2251

Res2Net50 0.904 0.907 0.790 0.747 38 16 2560



100 J. Zhang et al.

Table 6.4 The segmentation results using the HTC model based on suppression algorithms: NMS
and Soft-NMS

Type AP (IOU = 0.5) AP (IOU = 0.75) epoch Train
time/h

Test
time/sBbox Mask Bbox Mask

NMS 0.904 0.907 0.790 0.747 38 16 2560

Soft-NMS 0.903 0.906 0.795 0.750 38 16 3385

Table 6.5 The results based on MultiStepLR and CosineAnnealingLR

Type AP (IOU = 0.5) AP (IOU =
0.75)

epoch Train
time/h

Test
time/s

Bbox Mask Bbox Mask

CosineAnnealingLR 0.891 0.895 0.786 0.753 70 18 3134

MultiStepLR 0.904 0.907 0.790 0.747 38 16 2560

experiments. By comparing the results of ResNet50 and ResNet101 (or ResNeXt50
and ResNeXt101), we found that increasing the depth of the backbone could not
improve the performance of wheat detection. The test results (Table 6.3) showed that
Res2Net50 andResNeXt50 havemore outstanding performance than other backbone
networks. Furthermore, ResNeXt50 required a shorter test time, while Res2Net50
had higher AP values. Both of the two networks can be used as the backbone of the
model based on different criteria.

We also conducted a comparative experiment between NMS and Soft-NMS. As
shown in Table 6.4, the HTCmodel with NMS achieved a higher AP with IOU= 0.5
within a much shorter test time compared to Soft-NMS. Therefore, although Soft-
NMS could help the HTC model to achieve slightly higher AP with IOU = 0.75, we
chose to use NMS based on the best balance between precision and speed.

The decay of LR is extremely important tomake themodelmore stable. Therefore,
we conducted a comparative experiment between MultiStepLR and CosineAnneal-
ingLR to select the suitable LR decaymethod forWheat-Net. FromTable 6.5, we can
see that theMultiStepLRwas superior toCosineAnnealingLR in terms ofAP. In addi-
tion, MultiStepLR required a shorter test time than CosineAnnealingLR. Therefore,
MultiStepLR was better than CosineAnnealingLR for our model, and we therefore
chose MultiStepLR to decay the learning rate.

6.3.2 Ablation Study

Ablation study is an effective way to see how a method affects performance of the
entire model by removing that specific method from the model. To perform this
analysis, we used multi-scale training, DCN, and GRoIE methods to improve the
performance of the model. Tomore accurately evaluate the effect of eachmethod, we
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Table 6.6 The results of ablation study regarding the combination ofMulti-scale, DCN andGRoIE

Multi-
scale

DCN GRoIE AP(IOU =
0.5)

AP(IOU =
0.75)

Epoch Train time/h Test time/s

Bbox Mask Bbox Mask

– – – 0.868 0.872 0.722 0.677 20 7.5 2988√
– – 0.891 0.899 0.772 0.745 40 14 4775√ √

– 0.897 0.904 0.794 0.768 40 14 4791√ √ √
0.904 0.907 0.790 0.747 38 16 2560 s

conducted the ablation study experiments with the HTC model based on Res2net50
(LR = 0.0025, batch size = 1, image scale = 2100*1184) and compared the
performances on the test set.

The experimental results (Table 6.6) showed that multi-scale training, DCN, and
GRoIE had various effects on the performance of Wheat-Net. Specifically, the AP
(both IOU = 0.5 and IOU = 0.75) were significantly improved by multi-scale
training, although it increased some test times. The improvement of DCN for IOU
= 0.75 was greater than that for IOU = 0.5, which showed that DCN had a more
significant effect on a large IOU threshold. In addition, GRoIE increased AP with
IOU = 0.5 and decreased AP with IOU = 0.75. The experimental results showed
that GRoIE did not work for our dataset when using a larger threshold of IOU.

6.4 Discussion

6.4.1 Analysis of Experimental Error

Although Wheat-Net showed excellent performance for wheat segmentation in the
complex environment, there were still errors, which we subsequently analyzed. As
shown in Fig. 6.10a, the model had some segmentation errors at the bottom of the
wheat spikes. The sparse florets at the bottom of the spike led to some differences
between the texture characteristics of the bottom and other parts. This in turn caused
inaccurate segmentation for the bottom of the spikes.

Due to the complexity of our dataset, the problem of adjacence and occlusion
of wheat was very common in most images. Segmentation of adjacent objects was
one of the most challenging tasks in the field of crop phenotyping. From Fig. 6.10b,
we can see that the two spikes were adhesive and the lower one was occluded by
a wheat stem. Our method achieved a good segmentation result in such a complex
situation, but there were still errors at the junction. The color, texture, and shape of
the adherent spikes were very similar, which made the dividing line unclear. As a
result, this made the positive objects at the junction annotated as negative, which
increased the number of False Negatives (FN) and reduced Recall. When only multi-
scale training was used (DCN and GROIE are not used), the AP value with IOU of
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IOU=0.75

IOU=0.5

IOU=0.75
(b)(a)

IOU=0.5

Fig. 6.10 The Demonstration of experimental error. a The error of spike bottom. b The error at the
junction of different spikes

0.75 was the highest (Table 6.6). We chose this model for visual testing (shown in
Fig. 6.10) and found that it could greatly reduce the above-mentioned experimental
errors (including the bottom and junction errors) compared to when IOU = 0.5.
Regardless of the ability to detect wheat spikes, it achieved a better performance for
accurately segmenting the wheat spike.

6.4.2 Evaluation of Wheat-Net on Barley Spike Detection

The phenotypic characteristics of wheat and barley are quite different in both the
shape and size of the kernel and the length of awn. In order to verify the generalized
applicability of the model, we constructed a test set containing 29 barley images
to test the detection ability of the model to barley spikes. The experimental results
showed that the AP of bbox and mask for barley detection achieved 0.799 and 0.812,
respectively. From Fig. 6.11, we can see that the model achieved acceptable visual-
ization results for barley, especially for the detection of adjacence and occlusion (red
boxes in Fig. 6.11). Thus, ourmodel has the potential to segment barley spikes aswell
demonstrating strong robustness to a variety of spike shapes and colors. However,
due to the similar phenotypic characteristics of adhesive spikes, there were still errors
at the junction of spikes. In addition, similar to the errors encountered with wheat
spike detection, there were also some errors at the top and bottom of barley spikes.
It is expected that the performance of segmenting barley spikes will be improved by
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Fig. 6.11 The visualization results of barley detection

retraining our model using a barley training dataset. This study also established the
protocol of a pre-training model for the detection of other inflorescences of small
grain cereal crops such as the panicles of oat and rice.

6.5 Conclusion

Development of an automatic and accurate wheat spike segmentation protocol can
improve wheat yield estimation, disease evaluation (especially to Fusarium head
blight). A wheat spike image set was collected from unstructured fields where the
environment varied spatially and temporally, and accurate labels were created for
use in the training and testing of a wheat spike detection and segmentation model. To
realize wheat spike detection and segmentation in dense and complex, non-structural
field environments, an effective HTC-based method was evaluated, which overcame
the difficulties of complex backgrounds, serious occlusion, and incomplete spikes on
the edge in dense wheat instance segmentation. The proposed method used the HTC
model with a hybrid cascade structure to make full use of rich mask and box infor-
mation. With Res2Net50 as the backbone network, multi-scale training was used to
learn features of different scales, and deformable convolutional networks (DCN) and
Generic RoI Extractor (GRoIE) were trained to improve model accuracy. Eventually,
high-accuracy automatic wheat spike detection and segmentation were achieved. An
AP of 0.904 and 0.907 was found for bbox and mask, respectively, based on the
optimized HTC model. Our method was particularly effective for the detection of
wheat spikes with frequent adjacence, overlapping, occlusion, and other complex
growth states. The accuracy rate for wheat spike counting was 99.29%. Comprehen-
sive empirical analyses revealed that the proposed method achieved excellent perfor-
mance and outperformed in a non-structural environment. Therefore, our method
has important reference significance and value for improving the efficiency of wheat
breeding for improved yield and also disease resistance, particularly to Fusarium
head blight [45]. For future research, we intend to further improve the segmentation
ability for the junctions between spikes. Additionally, the improvement of modeling
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speed will also be considered. We expect that our proposed method will be expanded
to the broader agricultural research area, including detection of the seed-bearing
inflorescences of other crops.
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Chapter 7
UAV Multispectral Remote Sensing
for Yellow Rust Mapping: Opportunities
and Challenges

Jinya Su, Cunjia Liu, and Wen-Hua Chen

Abstract Wheat is threatened by various crop stresses in its life-cycle, where yellow
rust is a severe disease significantly impacting wheat yield. This work aims to inves-
tigate the use of Unmanned Aerial Vehicle based multispectral remote sensing for
winter wheat stress mapping caused by yellow rust disease. A simple unsupervised
wheat yellow rust mapping framework is initially proposed by integrating Spectral
Vegetation Indices generation, mutual information analysis and Otsu’s thresholding.
A field experiment is carefully designed by infecting winter wheat with different
levels of yellow rust inoculum, where UAV multispectral images are collected at the
diseased stage with visible symptoms. Experimental results on the labelled dataset
initially show the effectiveness of the proposed unsupervised framework for yel-
low rust disease mapping. Limitations of the proposed algorithm and challenges of
yellow rust detection for real-life applications are also discussed.

Keywords Precision agriculture · Remote sensing · Unsupervised learning ·
Unmanned Aerial Vehicle (UAV)
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7.1 Introduction

Crops are threatened by various stresses (e.g., pests, diseases, drought, nutrient defi-
ciencies) in their life-cycle. Wheat, the most widely grown cereal crop in the world,
is able to provide 20% of protein and food calories for 4.5 billion people worldwide,
but is also facing severe challenges from abiotic stresses, pathogens and pests due to
climate changes and inappropriate management strategies, posing serious threats on
food security. Among various crop diseases, wheat yellow (or stripe) rust is a devas-
tating global wheat disease, particularly in the regions with temperate climates [1].
This disease is able to develop and spread very quickly under favourable conditions
such as a suitable temperature of 5–24 ◦C, a moderate precipitation in spring (for
winter wheat) and suitable wind conditions (for spore spread) [2].

Generally speaking, there are two available approaches to control yellow rust
disease including chemical control and genetic resistance (please refer to [3] and
the references therein). Conventional chemical control methods for yellow rust dis-
ease rely on calendar-based (timing) and uniform (blanket) application of pesticides
regardless of the current disease status (e.g. stress level and its spatial distribution),
which not only results in a higher cost (more pesticide) but also inevitably increases
the likelihood of ground water contamination and pesticide residues in agricultural
products, generating significantly economical, environmental and social burdens. It
is highly desirable to develop an automated and non-destructive wheat disease map-
ping system so that a decision-based precision (site-specific) management strategy
can be implemented [4] at the right time/location while with the right amount of
pesticides.

Wheat yellow rust disease generally results in certain physical and chemical
changes on wheat leaves such as ChlorophyII content reduction, water loss, and even
visible rust symptoms at later stages (i.e. yellow-orange to reddish-brown spores)
[5]. It is noted that when visible rust symptoms appear onwheat canopy, the chemical
treatment is to stop its spread to surrounding areas. These changes can be observed
by human eyes and can also be captured by optical sensors such as RGB [3, 6], multi-
spectral [4] and hyperspectral cameras [1, 7]. Human inspection is time-consuming,
labour-intensive, prone to error, and so not suitable for real-life applications at large
scales. Different cameras also have pros and cons in terms of price, weight, flexibil-
ity and performance. In this study, multispectral camera is adopted since compared
against RGB camera, it possesses spectral bands beyond the three visible bands (e.g.
NIR band), and in comparison to hyperspectral camera [8], it is much easier to oper-
ate (e.g. imaging, calibration and orthomosaic) and is usually with a much lower
price.

In addition, different sensing platforms are also available for crop stress moni-
toring, which range from ground proximity sensing [3] to aircraft (or even satellite)
remote sensing [4]. It is shown in the existing studies that UAV based remote sensing
is able to provide a user-defined spatial-temporal image resolution (e.g., imaging
period, flight height), a low cost and a high flexibility, and therefore is drawing ever-
increasing popularity for field-scale applications since 2010 in different application



7 UAV Multispectral Remote Sensing for Yellow Rust … 109

domains such as disease monitoring [1], weed mapping [9], stress detection [10],
crop parameter extraction [11] among many others. Therefore, this work aims to
adopt UAV based multispectral remote sensing for the automated wheat yellow rust
disease mapping for the purpose of target treatment.

There are also studies on using UAV basedmultispectral remote sensing for wheat
yellow rust disease mapping [2, 4, 12]. For example, yellow rust disease mapping
is formulated as a supervised classification problem, and both conventional machine
learning (i.e. random forest) and state-of-the-art deep learning algorithm (e.g. U-net)
[13] are adopted to address the semantic segmentation problem in [2, 4], respectively.
It is also shown that deep Convolutional Neural Network (CNN) outperforms the
random forest approach due to its capability in learning both spectral and spatial
information concurrently in an end-to-end manner. Although this method is able to
obtain a good result in small local areas, its generalization performance (location-
wise, season-wise, variety-wise) is unclear as themodel is trained by using the dataset
from one variety and a small area in a supervised manner.

Thiswork aims to initially develop a simple unsupervised yellow rust diseasemap-
ping framework by integrating UAV based remote sensing, multispectral imaging,
Spectral Vegetation Indices (SVIs) generation, spectral analysis and Otsu’s thresh-
olding. The proposed framework is initially validated by field experiments, where
multispectral images and ground data are recently collected on yellow rust infected
wheat field using a small UAV at about 20m above groundwith a spatial resolution of
1.3cm in 2019. To the best of the authors’ knowledge, this work is the first attempt to
develop a unsupervised learning framework to address the problem of wheat yellow
rust disease mapping. To be more precise, the main contributions are summarized as
below.

(1) A unsupervised learning framework is proposed for wheat yellow rust disease
mapping based on SVI analysis and thresholding, and is initially validated by
field experiments;

(2) The best SVIs for wheat segmentation from background pixels, and yellow rust
disease segmentation from healthy wheat pixels are obtained based on SVI gen-
eration and mutual information analysis;

(3) The challenges of wheat yellow rust disease mapping in real-life applications
are also discussed in terms of early detection, image resolution, disease identi-
fication, model generalization, time window for disease management.

7.2 UAV Remote Sensing

7.2.1 Wheat Yellow Rust Experiment

The field experiments are carried out at Caoxinzhuang experimental station of North-
west Agriculture and Forestry (A&F) University, Yangling, China in 2019 (please
refer to Fig. 7.1 for the geographic location). Background information about the
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Fig. 7.1 Geographic location of the experimental wheat field

region is referred to the previous studies [4]. In this study, wheat variety Xiaoyan
22 is chosen since it is easily susceptible to yellow rust disease. The yellow rust
inoculation is done at wheat seedlings stage in March/2019, where more detailed
information such as inoculation method is available in [2]. In term of experiment
layout, as displayed in Fig. 7.2, letters A, B, and C represent the three replicates to
reduce random errors; numbers 0–5 denote the different levels of yellow rust inocu-
lum with 0 being empty (no inoculum) and 5 being the highest level of inoculum;
each plot with a size of 2m × 2m in each replicate is randomly inoculated with one
of the six levels of yellow rust inoculum: 0 g (health wheat plots for blank com-
parison), 0.15 g, 0.30 g, 0.45 g, 0.6 g and 0.75 g corresponding to the level of 0–5,
respectively. Disease cross-infection was maximally avoided by separating all 18
wheat plots from each other via healthy wheat gaps.

7.2.2 UAV Remote Sensing

7.2.2.1 UAV Imaging Platform

Different commercial UAVs (e.g. fixed-wing UAV [14] for large-scale operation,
multi-rotor UAV for small areas with flexible/low flight heights) and multispectral
cameras (e.g. Parrot Sequoia, RedEdge and Altum from MicaSense, P4 Multispec-
tral from DJI) can be integrated to be the UAV imaging platform. In this study, a
commercial off-the-shelf aircraft named DJI Matrice 100 (M100) Quad-copter (DJI
Company, Shenzhen, China) and a 5-band multispectral camera (RedEdge, MicaS-
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Fig. 7.2 Wheat yellow rust
inoculum experiment: three
replicates (column-wise)
with various levels of yellow
rust inoculum in the range of
0–5, where the false-color
RGB image from [2] is at
diseased stage on
02/May/2019
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ense Inc., Seattle, USA) are integrated to be the low-altitude UAV remote sensing
platform (please refer to [2] for the graphic illustration) for yellow rust disease map-
ping.

7.2.2.2 Data Collection

In this study, data collection is done on 02/May/2019, when yellow rust is in diseased
stage with visible symptoms (e.g., yellow color by spores). The UAV flight height is
set to be about 20m above ground, where the ground spatial resolution of the image
is about 1.3cm/pixel after image stitching. Commercial free-of-charge software,
Pix4DCapture, is used to plan, monitor and control the UAV for data collection. In
particular, the mode of Polygon for 2D maps in Pix4DCapture is chosen with an
image overlap and sidelap up to 75%, the UAV forward speed is set at 1m/s and
the camera triggering period is also 1 sec. In addition, before the flight, reflectance
calibration panel is also imaged at 1meter height so that an accurate reflectance
data can be obtained for the follow-up image calibration even under environmental
(including lighting) variations. The UAV flight track along with camera triggering
points, the overlapping images under the defined flight track and the calibrated NIR
orthomosaic are shown in Fig. 7.3, respectively.

RedEdge camera is equipped with GPS module and is able to capture five raw
narrow bands simultaneously including Blue, Green, Red, RedEdge and NIR bands
(please refer to Fig. 7.4 for one sample image of the RedEdge camera). All necessary
information for the follow-up image stitching is embedded in each image such as
GPS information and camera information (e.g. camera model, exposure time, focal
length).
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Fig. 7.3 UAV flight track and camera triggering points (left); the number of overlapping images at
each points (middle); and the raw calibrated NIR orthomosaic (right)

Blue                                               Green                                              Red

RedEdge NIR

Fig. 7.4 Sample RedEdge image including five raw spectral bands

7.2.3 Image Pre-processing and Data Labelling

After all images are collected, a number of image preprocessing steps are then
conducted offline to generate the calibrated (using CRP panel) and georeferenced
reflectance data for each spectral band and different SVIs. This can be achieved in
commercial (e.g. Pix4DMapper, Agisoft Metashape, DroneDeploy) or open-source
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Fig. 7.5 ROI for different
spectral bands, false-color
RGB image and the final
Label image from [2]

Blue               Green            Red         RedEdge

NIR             RGB               Label

software (e.g. WebODM). In this study, Pix4DMapper is adopted, where the detailed
steps are referred to [2, 4] such as initial processing, orthomosaic generation and
reflectance calibration for each band. The outputs include five GeoTIFF images and
the defined SVIs of the covered area, where the NIR orthomosaic is displayed in
Fig. 7.3 as an example. All orthomosaic images of the five spectral bands and SVIs
can be then input into MATLAB environment, where image rotation (by using the
function “imrotate”) and region of interest (ROI) can be performed and defined for
the follow-up analysis. The ROI for five spectral bands, the false-color RGB image
and data labelling process are shown in Fig. 7.5.

To achieve yellow rust disease mapping (e.g., spectral analysis and SVI selection
in this study) for wheat field, image labelling is required. In this study, three classes
are defined for the field of interest, which include plants with visible yellow rust
lesions pixels (Rust class), healthy wheat pixels (Healthy class) and background pix-
els (Backg class, i.e. non-vegetation soil background). The details for image labelling
is referred to [2], whichmainly relies on low-altitude high-resolution RGB image and
manual visual labelling. The main steps for this labelling method are summarized
for the purpose of completeness : (1) false-color RGB image (see Fig. 7.5) is first
generated by using the calibrated Red, Green and Blue bands inMatlab with function
“imadjust” for brightness adjustment, on this basis, the yellow rust regions can be
manually and visually defined; (2) the classical spectral index Optimized Soil Adjust
Vegetation Index (OSAVI) [15] generated from the five spectral bands is first used to
segment wheat pixels from the background pixels; surely other vegetation segmen-
tation methods can also be adopted including machine learning based methods [11];
(3) the yellow rust infected wheat pixels, healthy wheat pixels and the background
pixels can be then defined (see the final Label image in Fig. 7.5).
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7.3 Yellow Rust Disease Mapping

This section considers the problem of yellow rust disease mapping, where the overall
framework is displayed in Fig. 7.6 such as feature definition, spectral and mutual
information (MI) analysis, wheat segmentation and rust segmentation. Different
elements in the proposed framework are introduced in the following subsections,
respectively.

7.3.1 Spectral Analysis

Spectral analysis of the three selected classes is first performed to see the differences
for three classes. It has been shown in many previous studies that some SVIs calcu-
lated from the five raw spectral bands may be able to provide an even better ability in
mapping yellow rust disease [4, 12] against the healthywheat and background pixels.
Therefore, in addition to the five raw spectral bands, 18 widely used SVIs are also
calculated to see whether they are able to provide better yellow rust disease mapping
performance (please refer to [4] for the definitions of the 18 widely used SVIs). The
mean reflectance values of the original five bands and 18 SVIs for the three classes
are calculated respectively in MATLAB2020b and displayed in Figs. 7.7 and 7.8.

It can be visually seen from Figs. 7.7 and 7.8 that different classes have different
reflectance values at the five bands and SVIs. For example, Healthy wheat pixels
have the highest NIR values but the lowest red values, which is mainly due to the
high ChlorophyII content in healthy plants over diseased wheat or background. It is,
however, noted that the mean value is NOT sufficient for quantitatively evaluating
the capabilities of different bands/SVIs in wheat yellow rust disease mapping as the
uncertain information (e.g. variance) is missing. And so feature ranking method will
be introduced in the next subsection.

Fig. 7.6 Overall framework
for the proposed wheat
yellow rust disease mapping
system including feature
definition, spectral and MI
analysis, wheat and rust
segmentation

Spectral 
bands SVIs

Spectral 
analysis

MI 
analysis

OSAVI 
thresholding

NDREI 
thresholding

Features:

Analysis:

Wheat segmentation:

Rust segmentation:
Yellow rust 

mapping
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Fig. 7.7 Spectral reflectance of the five bands for the three classes including rust infected wheat
(Rust), healthy wheat (Healthy) and background (Backg) pixels
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Fig. 7.8 Spectral reflectance of the 18 SVIs for three classes including Rust, Healthy and Backg
classes

7.3.2 Mutual Information Ranking

In order to test the different discriminating capabilities of the five spectral bands and
18 SVIs in yellow rust disease mapping, MI based feature ranking is adopted (please
refer to [16] and the references therein for different feature selection methods). The
class label is defined into three categories, where Category 1 contains three classes
including Rust, Healthy and Backg, Category 2 contains two classes including Rust
and Healthy with Backg being removed, Category 3 contain two classes including
Wheat (the Rust and Healthy classes are integrated into Wheat) and Backg. The MI
values between each band/SVI and the class label (Category 1 with three classes)
are calculated and displayed in Fig. 7.9, while the MI values between each band/SVI
and the class label (Category 2 and Category 3) are displayed in Fig. 7.10
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Fig. 7.9 MI values between bands/SVIs and Category 1 class label
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Fig. 7.10 MI values between bands/SVIs and Category 2/3 class labels

It follows from Figs. 7.9 and 7.10 that

(1) Different spectral bands/SVIs have differentMI values with different class labels
and therefore with different discrimination capabilities;

(2) OSAVI has the best discrimination capability for the three classes (Fig. 7.9),
this is mainly due to its strongest capability in discriminating wheat pixels from
background pixels (red line of Fig. 7.10).

(3) Red band is the best one among the five spectral bands for both wheat pixel
segmentation from the background pixels, and yellow rust disease pixel seg-
mentation from the healthy wheat pixels.

(4) SVIs may have a better discrimination capability (i.e. with a higher MI value)
than the raw spectral bands, although the capabilities of different SVIs differ a
lot. And NDREI has the strongest discrimination capability for separating Rust
class from Healthy class.
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7.3.3 Unsupervised Classification

Based on the ranking results via mutual information in Sect. 7.3.2, this section devel-
ops a simple unsupervised classification approach based on SVI thresholding. Con-
sidering the fact that the best discrimination SVIs for Rust vs Healthy, and Wheat vs
Backg are different, wheat segmentation and rust segmentation are done one by one
based on their best SVIs.

7.3.3.1 Wheat Segmentation

The first step is wheat segmentation. It follows from Fig. 7.10 that OSAVI has the
strongest discrimination capability in separating Wheat class from Backg class,
where its histogram for Wheat and Backg class is shown in Fig. 7.11. Then the
well-known Otsu’s method can be adopted to automatically choose the optimal
thresholding for wheat segmentation where the wheat pixels have higher OSAVI
values.

7.3.3.2 Yellow Rust Segmentation

After the Wheat class is separated from the Backg class, the yellow rust separation
from wheat class is then considered. It follows from Fig. 7.10 that NIR and NDREI
have the weakest and strongest discrimination capability in separating Rust class
from Healthy class, where their histograms for Rust and Healthy class are shown
in Fig. 7.12. Therefore, the NDREI index is chosen for Rust segmentation, where
the well-known Otsu’s method is adopted again to automatically choose the optimal
thresholding, where the healthy wheat pixels have higher NDREI values.

Following these two supervised segmentation steps, the final classification result
is shown in Fig. 7.13. The quantitative classification results are not provided in this
initial study.

Fig. 7.11 Histogram of
OSAVI for Wheat and Backg
class
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Fig. 7.12 Histogram of NIR and NDREI for Rust and Healthy class

Fig. 7.13 NDREI (left), NDREI with Backg (middle) and the classification results based on the
simple unsupervised approach (right)
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7.4 Discussion

In this section, the pros and cons of the proposed method are discussed against the
state-of-the-art methods. On this basis, the challenges of UAV remote sensing for
yellow rust diseasemapping are discussed in the context of real-life field applications.

7.4.1 Pros and Cons

7.4.1.1 Supervised Versus Unsupervised Learning

In this study, data labelling is to assess the reflectance differences of various classes
and evaluate the different discriminating capabilities of various spectral bands and
SVIs. Then unsupervised method is proposed in Sect. 7.3.3 for wheat yellow rust
disease mapping based on automated thresholding of different SVIs. It is noted
that most existing methods for wheat yellow rust disease mapping are based on
supervised learning by using conventional machine learning ([4]) or state-of-the-art
deep learning ([2]).

(i) Unsupervised approach is simple to implement, and does not require labelled
dataset for model training. This is attractive for crop disease mapping, since
obtaining a large amount of high-quality (and representative) labelled dataset is
costly, labour-intensive and time-consuming and so not practically feasible for
yellow rust disease mapping. However, the disease mapping performance of the
unsupervised approach (particularly the one in this study) is relatively limited
(mainly due to the limited information used in the approach). In this regards,
more advanced supervised approaches should be further developed to embed
more useful information.

(ii) Supervised approach, particularly the state-of-the-art deep Convolutional Neural
Network, is able to provide better performance than unsupervised ones.However,
this approach generally requires a large volume of high-quality labelled dataset
for its model training. Obtaining raw UAV remote sensing images is not hard,
however, obtaining a representative and high-quality labelled dataset under
different crop varieties, crop growth and disease development stages, and under
various environmental condition is a challenge. In this regards, developing semi-
automatic labelling approach to generate labelled dataset may be a feasible and
promising solution.

7.4.1.2 Spectral Information Versus Spatial Information

For (yellow rust) disease mapping in wheat field, different types of information can
be adopted which may include spectral information (different spectral bands), spa-
tial information (disease usually appears from small regions and spreads to the sur-
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rounding areas), or even temporal information (combining different measurements
together).

(i) Disease mapping based on purely spectral information may result in a high
proportion of false positives (pepper and salt noises as shown in Fig. 7.13) due
to the absent of spatial information in the algorithm.

(ii) Different methods for embedding spatial information are available in the liter-
ature including at feature stage or post-processing stage. Fusing spectral and
spatial information by using deep CNNs (e.g. FCN [17], SegNet, U-Net [2, 18]
would be the trend. However, deep learning approach generally requires more
labelled data (a representative pixel-wise labelled dataset is even harder than
image level labelled dataset) than conventional machine learning approaches,
which is a challenge as highlighted in Sect. 7.4.1.1 for supervised methods.

7.4.2 Challenges for Real-Life Applications

The challenges of wheat yellow rust disease mapping system in real-life applications
are summarized as below.

(1) Early disease detection of wheat (yellow rust) is paramount so that early inter-
vention can be conducted to stop its spread to the surrounding areas. However,
early disease detection is generally not easy. UAV remote sensing, as a top view-
ing method, can only see the crop canopy information. Diseases start from the
bottom leaf layers can not be detected until the changes appear on the top leaf
layers, which may be too late for its treatment although still useful for stopping
its spread. In this regards, hyperspectral imaging which does not rely on visual
symptoms may be a proposing solution, however, this method is still costly, not
easy to operate, and poses challenges for follow up image processing.

(2) Image resolution is important for (early) wheat disease mapping. However,
image resolutionhighly relies onUAVflight altitude and therefore there is a trade-
off between image resolution and working efficiency. As flying higher is more
efficient but with a lower image resolution, while flying lower obtains a higher
image resolution but is generally inefficient. The required image resolution for
yellow rust disease mapping (at different disease development stages) should be
investigated.

(2) Disease identification is also challenging. This is because different crop stresses
(e.g., diseases/pests) may result in very similar (top viewing) symptoms on the
crop (wheat) such as the ChlorophyII content reduction, water loss, and visual
symptoms at later stages. Therefore, disease/pest habitat (environmental) infor-
mation (e.g. temperature, humidity, season) may be useful to reduce the scope
of crop stresses for the purpose of disease identification.

(3) Model generalization is important but at the same time challenging for wheat
(yellow rust) disease mapping. This is because the developed algorithms (par-
ticularly supervised learning algorithms) are actually facing very complex oper-
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ating environments. How to guarantee the algorithm performance under dif-
ferent wheat varieties, wheat growth stages, disease development stages, light-
ing/environmental conditions is generally challenging. As a result, it is yet to be
tested whether an algorithm trained from one wheat variety can work in other
varieties (variety-wise), an algorithm trained from history dataset can work in
future seasons (season-wise), or an algorithm trained in one location can work
in other locations (location-wise). This validation method should be considered
in future publications in addition to conventional random splitting of the lumped
dataset.

(4) Time window for wheat (yellow rust) disease control is generally short, as a
result, the issue that covering a large area of interest within a short time period
should also be considered in real-life applications. Multiple UAVs and paral-
lel processing may provide the solution in terms of data collection and data
processing.

7.5 Conclusions

This work considers the problem of wheat yellow rust disease mapping by using
UAV based multispectral remote sensing. A simple unsupervised yellow rust disease
mapping framework is developed based on spectral analysis, mutual information
analysis and Otsu’s thresholding. Field study is conducted to generate a dataset to
initially validate the developed framework. It is shown that (i) OSAVI is the best
SVI for segmenting wheat from background pixels; (ii) NDREI is the best SVI for
segmenting yellow rust infected wheat from healthy wheat pixels. The pros and cons
of the simple unsupervised algorithm is discussed by comparing against supervised
algorithms and the ones with both spectral and spatial information. Moreover, the
challenges of yellow rust diseasemapping in real-life applications are also discussed.
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Chapter 8
Corn Goss’s Wilt Disease Assessment
Based on UAV Imagery

Anup Kumar Das, Jithin Mathew, Zhao Zhang, Andrew Friskop,
Yuxiang Huang, Paulo Flores, and Xiongzhe Han

Abstract GossWilt is a common and serious disease during corn production.With a
goal of automatic diseasemonitoring, this study assessedGoss’sWilt disease severity
using machine (ML) and deep learning (DL) algorithms. A dataset containing 200
corn plot images was generated from an unmanned aerial vehicle (UAV) flying at five
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different mission heights (15, 30, 45, 60, and 75 m) above the ground level (AGL).
Three different datasets including non-augmentation, segmentation and augmen-
tation were prepared. The augmentation dataset consisting of 6200 images was
prepared using geometric augmentation techniques, such as rotation, and flip. Eight
different ML algorithms (i.e., Logistic Regression, Ada Boost, Gradient Boosting,
Support Vector Machine, Multilayer Perceptron, Random Forest, Naive Bayes, K-
NearestNeighbors) and twodifferentDLalgorithms (i.e., GoogLeNet andResNet18)
were implanted to classify Goss Wilt severity as a binary issue (i.e., high and low).
Two different types of features, including textural (contrast, dissimilarity, homo-
geneity, angular second moment) and color (hue, saturation, value, lightness, chro-
matic components: a* and b*, red, green, blue) features were extracted from indi-
vidual plot image. For ML, the Random Forest yielded 0.99 precision, 0.99 recall
and 0.99 F-score in augmented dataset and outperformed all other classifiers. For
DL, Resnet18 achieved slightly better results: 0.81 precision, 0.78 recall and 0.79
F-score than GoogleNet, which has 0.75 precision, 0.70 recall, and 0.73 F-score. The
ML model (Random Forest) performed satisfactorily by resulting in higher preci-
sion, recall and F-score in augmented dataset. However, MLmodels underperformed
on segmentation dataset. Therefore, Random Forest coupled with UAV imagery is a
potential valuable tool for automatic assessment of Goss Wilt disease.

Keywords Corn · Goss’s Wilt · Machine learning · Deep learning

8.1 Introduction

Corn (Zea mays L.) accounts for more than 95% of the feed grain produced in the
United States [27]. Goss’sWilt, a corn leaf disease, has been recognized as one of the
most yield-limiting diseases, causing up to 50% production losses in North Dakota
[5]. Field visits coupled with visual observation are used to assess Goss Wilt, which
is time consuming (inefficiency), subjective, and leading to incorrect assessments
due to evaluator’s fatigue. As a result, developing an automated, quick, and reliable
approach for Goss Wilt disease monitoring has been a top priority.

Unmanned aerial vehicles (UAVs) appear in a number of agricultural applications
due to rapid and high-quality collected data, and ability to replace human labor for
data collection [17]. TheUAV imagery is now extensively used in agriculture for crop
disease detection, such as citrus canker [1], vine disease [9, 10], yield monitoring
for rice grain [12], glyphosate-resistant and glyphosate-susceptible weed and pest
management [26], crop health monitoring of winter corn and barley [21]. Kerkech
et al. [9] also used UAV imagery to develop automatic grape vine detection using a
convolutional neural network (CNN) and achieved 96% detection accuracy.

Kerkech et al. [10] proposed UAV based automated vine disease detection system
using deep learning (DL) techniques and achievedmore than 92%detection accuracy.
A majority of the existing studies focus on the identification of diseases. However,
very few researchers extended the detection problem to the disease severity levels.
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Liu et al. [14] developed a relationship between image parameters andwheat powdery
mildew severity and achieved positive correlations. They extracted several features
from the UAV images and found color features had a positive correlation with
powdery mildew severity. Salgadoe et al. [23] used two different types of images
(RGB and eight bands satellite image) for quantifying the severity of root rot disease
of avocado and found promising results generated from the satellite images.However,
limited study has been conducted using RGB color images for determining the
severity of Goss’s Wilt diseases.

Progress and applications of sensing and automation technology in agriculture
have benefitted the agricultural production [7, 8, 15, 29, 30, 33–35]. The current
advances in drone technology provide new ways in collecting crop information and
assisting growers in decision making [3, 4, 31]. Researchers used machine learning
(ML) techniques to detect corn leaf disease. Supervised ML pipeline involves data
preparation, feature extractions, feature selection, training, testing, and validation.
For ML algorithms, features (e.g., color, textural, and shape) are usually extracted
manually, after which they are generally selected using selection algorithms and used
for training. Ren et al. [22] extracted 129 features, including 30 color features, 9 shape
features, and 90 textural features and observed shape features highly contributing
to classify spot diseases in corn leaves. Panigrahi et al. [18] used ML techniques,
including random forest (RF), decision tree (DT), and naive bayes (NB), to accurately
identify corn leaf diseases. Support vector machine (SVM) classifier was used for
corn leaf disease classification, which generated a high success rate of 87% byMeng
et al. [16], 96% by Liu et al. [14] and 89% by Ren et al. [22]. Kusumo et al. [11] used
SVM,DT,RF, andNB to distinguish healthy leaves fromcorn gray leaf spot, common
rust, and leaf blight and achieved good performance from SVM with color features
and RF with local features (Speeded Up Robust Features). Many studies utilized ML
systems to predict the severity of plant leaf diseases [2, 13, 19, 24]. However, few
studies on the severity of Goss Wilt disease in corn have been conducted.

In recent years, the use of DL in agriculture has grown considerably. Deep
neural networks consisting of layers can learn high-level features from data. For
feature extraction, ML needs domain knowledge, while DL can extract features
automatically, and eliminate the need for human feature extraction and selection.
Wang et al. [28] presented an automated plant disease severity assessment system
based on VGG16, VGG19, Inception-v3, and ResNet50. They categorized apple leaf
images into four groups: healthy, early, middle, and end stage of apple leaf black
rot. They reported that the VGG16 model outperformed the VGG19, Inception-v3,
and ResNet50 models, yielding a 90% accuracy. For categorizing and evaluating the
severity of coffee leaf biotic into four categories (i.e., healthy, low, and very low),
Esgario et al. utilized AlexNet, GoogLeNet, VGG16, ResNet50, and MobileNetV2
and effectively evaluated severity with 87% accuracy. DL methods, on the other
hand, are data hungry and computationally expensive. With small dataset, training
DLalgorithmsmay easily result inmodel overfitting. Several studies trainedDLalgo-
rithms using augmentation datasets to cope with small datasets and reduce the risk
of model overfitting. Data augmentation is an artificial data enlargement technique
that optimizes parameters and reduces model overfitting.
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Researchers utilized data augmentation techniques including random rotation,
shearing, zooming, and flipping, horizontal and verticalmirroring, rotation, and color
brightness, contrast, and saturation (Esgario et al. 2020) [28] and observed uses of
the techniques improved system accuracy. Zhang et al. [32] also observed 5% of
accuracy improvement using data augmentation techniques. Thus, for small dataset,
it is desirable to conduct data augmentation before training models.

With a final goal of realizing automatic corn Goss’s Wilt disease detection, this
study focuses on testing different ML and DL algorithms and then recommend the
desirable one. Specific research objectives are to: (1) collect UAV images and then
prepare the dataset, (2) train, test and compare different ML and DL algorithms, (3)
Recommend a model for assessing Goss’s Wilt disease.

8.2 Material and Methodology

8.2.1 Data Collection and Data Preprocessing

A field, located in Horace, North Dakota, U.S., was rented from a local farmer
(Fig. 8.1). A DJI Phantom 4D RTK (DJI-Innovations, Inc., ShenZhen, China) drone
equipped with a 20-megapixel 2.54 cm CMOS camera with 4864 × 3648 resolution
and a high-precision (±10 cm) RTK GNSS system was utilized to capture image
data on August 11, 2020, at 1:00 PM (local time; sunny). A total of five missions
were carried out at five different flying heights, including 15, 30, 45, 60, and 75 m
above ground level (AGL). The flights were set 80% of the side and front overlap
and at a speed of 2.5 m/s. Following data collection, a plant pathologist visited each
plot to manually and visually inspect the Goss’sWilt severity, which was categorized
into two grades (high and low severity). The experimental plots (40 in total) were
divided into two categories: high severity (23 in total) and low severity (17 in total).

The individual images obtained from the UAV for the five flight altitudes were
automatically stitched using Pix4D software (Pix4D SA, Lausanne, Switzerland)

Fig. 8.1 Location of the
field in Google Maps™
(Adapted from Google LLC.,
2021)
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and then cropped in ImageJ (ImageJ version 1.50e, USA; http://rsbweb.nih.gov/ij).
Plots from the cropped images were generated using a plot splitting tool developed
in this study (Fig. 8.2). A total of 200 plot images (40 plots/height × 5 heights) were
generated. The developed tool took an image as input and divided it into a grid (4
× 10) for given input (column: 4 and row: 10) automatically where each cell repre-
sented a plot. The plot image dimensions (i.e., length and width) were calculated
using Eqs. (8.1) and (8.2). A region of interest (ROI) was calculated by Eqs. (8.3)
and (8.4) and placed in each cell using the function setRoi (xx, yy, roiw, roih)method.
The function creates a rectangular selection on the image for cropping and saving
plots.

ROI wi tdh = Imagewidth

T otal number of column
(8.1)

ROI height = Image height

T otal number of row
(8.2)

ROI posi tion (xx) = i ∗ ROI wi tdh where i < Total number of column
(8.3)

ROI posi tion (yy) = i ∗ ROI height where i < Total number of row
(8.4)

Excess Green = 2 × Green (G) − Red(R) − Blue(B) (8.5)

After obtaining the plot image, the next work is to segment plants from the noisy
background. Soil and shadows in the plot images were eliminated using excess green
(E × G) thresholding (Eq. 8.5). The pixel with an E × G value less than the cutoff
(25) was replaced with black (255, black). The cutoff value was chosen empirically
and through visual observation of segmented images. Then the three middle rows
of each plot were manually cropped for further investigation since they had been
chemically treated differently by plant pathologists (Fig. 8.3).

(a)                          (b)                                                  (c)

Fig. 8.2 Dataset generation process a stitched image of corn filed for feeding to a plot splitting
tool developed in ImageJ; b the plot spitting tool for generating plots from stitched image; c output
of the plot splitting tool: samples plot images

http://rsbweb.nih.gov/ij
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Fig. 8.3 Segmentation of plot images using excess green with threshold of 25

8.2.2 Preparation of Datasets

Three different datasets were prepared using the original plot images including non-
augmentation, segmentation, augmentation. Non-augmentation dataset was prepared
using 200 original plot images. Segmentation dataset also contained 200 plot images
inwhich plantswere segmented frombackgrounds usingE×G then croppingmiddle
three rows of plants. Another dataset augmentation was prepared using original plot
images in which geometric transformation techniques were used such as rotation,
and flip (i.e., right, top, and random) (Table 8.1). The image rotation probability was
set to 100%, implying that every image produced through augmentation was rotated
slightly with a random chance. The parameters for rotation to the left were set to a
maximum of 5 degrees and 10 degrees to the right (random rotation). With a proba-
bility of 50%, images were flipped to the left and right at random. Similarly, random
flips from the top and bottom of the images were done with a 0.5 likelihood. Finally,
images were zoomed randomly with a frequency of 30%, at a minimum scaling
factor of 1.1, and a maximum scaling factor of 1.6. Augmentation dataset containing
6200 images, consisting of 3015 for high severity and 3185 for low severity. The
parameters and techniques used for data augmentation is shown in Table 8.2. Photo-
metric transformations were not used with the consideration that it might generate
unreliable data with changed color values on individual pixels.

Table 8.1 Dataset description

Dataset Description Total Training Testing

Non augmentation Original images 200 160 40

Segmentation Original segmented images 200 160 40

Augmentation Using augmentation techniques 6200 4960 1240
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Table 8.2 Techniques used
for preparing augmentation
dataset

Augmentation
techniques

Parameters Values

Rotation Probability, Angle 100%, 5°

Flipping (vertical,
horizontal)

Probability 50%

Zooming Probability, Scaling
factors

30%, 1.1–1.6

8.2.2.1 Dataset for Training and Testing ML Algorithms

Features were extracted from all three datasets. A total of five textural features
(i.e., contrast, dissimilarity, homogeneity, angular second moment, energy), nine
color-based features (hue, saturation, value, red, green blue, lightness, and chro-
matic components *a and *b) were extracted. Gray-Level Co-occurrence Matrices
(GLCMs) [6] based textural features were extracted. The code for textural were run
in python (v3.8) using skimage python library. A function greycomatrix (image,
distances, angles, levels, symmetric = False, normed = False) from the texture
module was implemented. At first RGB images were converted into gray images
using OpenCV. Images were fed to the function with 1-pixel distance offset, angle
value of 90 and maximum 255 level to obtain GLCM matrices. Then the textural
properties of theGLCM, such as contrast, dissimilarity, homogeneity, angular second
moment was calculated using Eqs. (8.6), (8.7), (8.8), (8.9) and (8.10) respectively.
Where i and j indicated the row and column number of the image window respec-
tively; Pi j is the probability value in the cell i, j. Levels indicates number of rows or
columns.

Contrast =
∑levels−1

i, j=0
Pi j (i − j)2 (8.6)

Dissimilari t y =
∑levels−1

i, j=0
Pi j | i − j | (8.7)

Homogeneity =
∑levels−1

i, j=0

Pi, j
1 + (i − j)2

(8.8)

Angular SecondMoment (ASM) =
∑levels−1

i, j=0
P2
i, j (8.9)

Energy = √
ASM (8.10)

Color features such red (R), green (G), and blue (B) pixel values were extracted
from the datasets. Similarly, hue (H), saturation (S) value (V) features and lightness
(L), chromatic components (*a and *b) were extracted images after converting RGB
to HSV and L*a*b respectively. A total of 80% a dataset was used for training and
remaining 20% were used for testing ML algorithms.
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8.2.2.2 Dataset for Training and Testing DL Algorithms

The DL can extract features from the images automatically and it doesn’t require
handcrafted feature during training. Thus, features were not extracted from the
datasets. All three datasets were used for modelingML algorithms, but only augmen-
tation dataset was used for modeling DL algorithms. The reason for excluding non-
augmentation, and segmentation dataset for training DL was the insufficient number
of training images. To avoid overfitting problem, only augmentation dataset were
used for training DL algorithms.

8.2.3 Training and Validation of ML and DL Algorithms

ML algorithms were trained and validated on a computer configured with Intel®
core™ i5-4300U CPU @ 1.90 GHz. Eight different machine learning classifiers
were used to classify disease severity levels: Logistic Regression (LR), Ada Boost
(AB), Gradient Boosting (GB), Support Vector Machine (SVM), Multilayer Percep-
tron (MLP), Random Forest (Rnaïveaive Bayes (NB), K-Nearest Neighbors (KNN).
Machine learning algorithms were implemented using Scikit-learn [20] in python
(v3.8). Parameters of ML algorithms were set default however the solver type and
kernel for the LR and SVM was set to ‘liblinear’ and ‘linear’ respectively.

Two popular used DL algorithms (e.g., GoogLeNet and ResNet) were used for
Goss’s Wilt disease severity classifications. The DL algorithms were trained and
validated on a computer configured with Intel® Core™ i7-4770 CPU @ 3.40 GHz.
For consistency, bothmodels’ training epochswere set to 100. Cross entropy losswas
used as the loss function, and stochastic gradient descent was used as the optimizer.
The learning rate was set to 0.001, the momentum was set to 0.9, the step size was
set to 7 and the gamma value was set to 0.1.

The performance ofML and DL algorithms were evaluated using precision, recall
and F-score based on Eqs. 8.12, 8.13, and 8.14. True positive (TP) refers to correct
predictions of high severity plots when plots are actually high severity. True negative
(TN) indicates correct prediction of low severity plot when plots are actually low
severity. False positive (FP) means incorrect predictions of high severity plots when
plots are actually low severity. False negative (FN) indicates incorrect predictions of
low severity plots when plots are actually high severity (Table 8.3).

Table 8.3 Confusion matrix
for high severity and low
severity class

Predicted class

High severity Low severity

Actual class High severity TP FN

Low severity FP TN
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Precision = T P

T P + FP
(8.12)

Recall = T P

T P + FN
(8.13)

F − score = 2 ∗ Recall ∗ Precision

Recall + Precision
(8.14)

8.2.4 Results

Regarding non-augmentation, GB achieved comparatively higher precision (0.85),
recall (0.81) F-score (0.82) than other classifiers in this study (Table 8.4). In terms of
precision (0.62) recall (0.61), and F-score (0.61), KNN had the lowest performance
(Table 8.4). KNN achieved higher number of FN (10) than the other classifiers
(Fig. 8.4). RF achieved comparatively similar precision (0.83), recall (0.78) and
F-score (0.79) than the GB (Table 8.4).

On Segmentation dataset, RF achieved comparatively higher F-score (0.56) than
other classifiers. LR and GB achieved similar precisions of 0.58 and 0.57, respec-
tively and recalls of 0.56 and 0.57, respectively (Table 8.4). However, MLP achieved
lowest precision (0.41) and F-score (0.40) comparatively to the other classifiers.MLP
yielded highest FN (16) and lowest TP (3) than other classifiers (Fig. 8.4). Moreover,
all the classifiers also yielded poor classification results (Table 8.4) (Fig. 8.5).

On augmentation dataset, RF classifiers outperformed other ML classifiers and
achieved highest precision (0.99), recall (0.99) and F-score (0.99) (Table 8.4). It
achieved higher TP (589) and TN (640) however, lower FN (5) and FP (6) among
other classifiers (Fig. 8.6). The NB and MLP yielded lower precisions of 0.61 and
0.62 respectively, lower recall of 0.61 and 0.56 respectively and F-score of 0.60 and
0.51 respectively. The MLP and SVM yielded higher number of FN (465) higher
number of FP (290) respectively (Fig. 8.6).

In this study, GoogLeNet and ResNet18 both performed good in classifying the
disease severity. Though GoogleNet achieved 0.75 of precision, 0.70 of recall and
0.73 of F-score, Resnet18 yielded comparatively better precision (0.81), recall (0.78)
and F-score (0.79). GoogleNet and ResNet both performed lower than ML classifier
(RF) in terms of precision, recall and F-score on augmentation dataset (Table 8.5).

Figures 8.7 and 8.8 showed accuracy and loss curve of GoogLeNet and ResNet18
respectively. The lower gaps between training and validation loss indicated that the
ResNet18 is good fitted with the dataset and free from overfitting problems (Fig. 8.8).
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Table 8.4 Performance comparison of different machine learning (ML) algorithms in classifying
Goss’s Wilt disease severity on different types of dataset

Datasets Machine learning classifiers Precision Recall F-score

No augmentation Logistic regression 0.79 0.76 0.76

Ada boost 0.72 0.72 0.72

Gradient boosting 0.85 0.81 0.82

Support vector machine 0.80 0.73 0.73

Multilayer perceptron 0.74 0.71 0.71

Random forest 0.83 0.78 0.79

Naive Bayes 0.82 0.76 0.76

K-nearest neighbors 0.62 0.61 0.61

Segmentation Logistic regression 0.58 0.56 0.54

Ada boost 0.55 0.54 0.53

Gradient boosting 0.57 0.57 0.57

Support vector machine 0.55 0.54 0.52

Multilayer perceptron 0.41 0.44 0.40

Random forest 0.57 0.57 0.56

Naive Bayes 0.43 0.42 0.42

K-nearest neighbors 0.46 0.47 0.45

Augmentation Logistic regression 0.68 0.67 0.67

Ada boost 0.80 0.80 0.79

Gradient boosting 0.89 0.89 0.89

Support vector machine 0.73 0.71 0.70

Multilayer perceptron 0.62 0.56 0.51

Random forest 0.99 0.99 0.99

Naive Bayes 0.61 0.61 0.60

K-nearest neighbors 0.94 0.94 0.94

Fig. 8.4 Confusion matrix of classifications on non-augmentation dataset
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Fig. 8.5 Confusion matrix of classifications on segmentation dataset

Fig. 8.6 Confusion matrix of classifications on augmentation dataset

Table 8.5 Evaluation
matrices of Deep learning
algorithms obtained during
validation

Deep Learning Classifiers Precision Recall F-score

GoogleNet 0.75 0.70 0.73

ResNet18 0.81 0.78 0.79

)b()a(

Fig. 8.7 Accuracy and loss curve of GoogLeNet. a Training accuracy of 90% with 1–1.5% of
training loss; b validation accuracy of 50 to 60% and 2.5% validation loss



134 A. K. Das et al.

(a) (b) 

Fig. 8.8 Accuracy and loss curve of ResNet18. a ResNet18 yielded around 90% of training accu-
racy and validation accuracy around 60–70%. b Training loss decreased gradually and reached 0%
and validation loss reached between 0.5 and 1.5%

8.2.5 Discussion

The ML based algorithms constantly performed poor in terms of Precision, Recall
and F-score on segmentation dataset. The probable reason for underperforming ML
models on segmentation dataset was loss of information during segmentation. Plots
were segmented using the threshold a value (25) which were determined empiri-
cally or manually. Dataset contained plot images from five different heights. The
images from higher height might lose information higher than shorter heights which
requires further investigations. RF algorithm outperformed other ML and DL based
algorithms in this study and achieved F-score of 0.99. Conversely DL algorithms
can extract features automatically and avoid manual feature extraction and selection
process. Data augmentation enhanced the number of instances in training dataset
helps ML and DL algorithms learn from adequate dataset.

8.2.6 Conclusion

This study concluded thatML algorithm (RandomForest) performed better in Goss’s
Wilt disease severity assessment in augmentationdataset,which canbe recommended
for severity assessment in future practical application. Random Forest yielded higher
precision (0.99), recall (0.99) and F-score (0.99) among all ML algorithms. Random
Forest can be incorporated to unmanned aerial imagery to build an automatic Goss’s
Wilt disease assessment system. ML models performed poor on the segmentation
dataset. The effect of flight height on classification accuracy has not been investigated
due to data limitations of individual heights (Total 40 images; training set: 32 images;
testing set: 8 images). This could lead tomodel overfitting inML.The effect of heights
on accuracies will be investigated in future.
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