
CHAPTER 5

Modelling Income Distributions
with Limited Data

Duangkamon Chotikapanich, William Griffiths,
and Gholamreza Hajargasht

Introduction

It is generally recognized that poverty and excessive inequality are
socially undesirable. Reducing global poverty so that fewer individuals
are deprived of basic needs is a major objective of international agen-
cies. While what constitutes too much inequality is debatable, there is
concern about the negative effects of rising inequality on health, crime
and other aspects of society. Also, in extreme cases, inequality has led to
the overthrow of governments and changes in the international order.
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It is important, therefore, be able to monitor changes in inequality
and poverty using suitable measurement techniques. For this purpose,
modelling and estimation of income distributions and Lorenz curves play
an important role. Data available for modelling and estimation can be
available in many forms. They may come from taxation data or from a
variety of surveys. We focus on modelling and estimation when the data
are limited in the sense that they come in grouped form, typically as
the proportion of total income allocated to each of a number of groups,
ordered according to increasing income, and with a specified proportion
of the population within each group. These so-called income and popu-
lation shares form the basis for estimating inequality through the Lorenz
curve.1 When share data are combined with data on mean incomes,
income distributions can also be estimated, and their relationship with
Lorenz curves can be exploited.

Data in grouped form are often utilized for large scale projects where
inequality and poverty on a regional or global scale are being measured,
and where compilation and dissemination of data in a more disaggregated
form would be overly resource intensive. An example of such a study is
Chotikapanich et al. (2012). Examples of locations where grouped share
data are available for researchers are the World Bank’s PovcalNet website2

and that of the World Institute for Development Economic Research.3

Our objective is to summarize methods for estimating parametric
income distributions using grouped data, to specify the functions needed
for estimation for a number of popular parametric forms, and to provide
formulae that can be used to compute inequality and poverty measures
from the parameters of each of the distributions. In section Concepts,
we introduce notation and concepts to be utilized later in the paper.
The density, distribution and moment distribution functions that play
an important role are introduced, along with poverty and inequality
measures whose values can be calculated from estimates of the param-
eters of income distributions. We also describe the nature of the data
that we assume are available. Section Estimation is devoted to estima-
tion. Choice of estimation technique is influenced by whether or not

1 We will continue to refer to income distributions and income shares, but recognize
that data are often for expenditure that can be treated in the same way.

2 http://iresearch.worldbank.org/PovcalNet/povOnDemand.aspx.
3 https://www.wider.unu.edu/database/wiid.

http://iresearch.worldbank.org/PovcalNet/povOnDemand.aspx
https://www.wider.unu.edu/database/wiid
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group bounds are provided in the available data and on how the data
are grouped: fixed group bounds and random population proportions or
fixed population proportions and random group bounds. Both minimum
distance (MD) and maximum likelihood (ML) estimators are considered,
and results are provided for variants of the MD estimators which depend
on which “distance” is being minimized. In section Specification of
Distributions, Inequality and Poverty Measures, we tabulate the common
parametric distributions that have been used to model income distri-
butions; their density, distribution and moment distribution functions,
and moments, are provided. Expressions that can be used to calculate
inequality measures from the parameters of the different distributions
are also tabulated. Expressions for some poverty measures are given in
section Concepts; those for the Watts poverty index are tabulated in
section Specification of Distributions, Inequality and Poverty Measures.
In large projects, involving many countries and many years, MD and
ML estimation can be daunting tasks. In section Simple Recipes for Two
Distributions, we describe two relatively simple estimators for two specific
distributions: the lognormal and the Pareto-lognormal. Some concluding
remarks follow in section Concluding Remarks.

Concepts

We assume a population of incomes y, with y > 0, can be represented by a
probability density function (pdf) f (y; θ) where θ is a vector of unknown
parameters. Our objective is to review several alternative functional forms
that have been suggested for f (y; θ), to describe methods for estimating
θ from grouped data, and to provide expressions that can be used to
compute estimates of inequality and poverty measures from estimates for
θ .

We further assume y has a finite mean μ =
∞∫

0
y f (y; θ) dy. Its

cumulative distribution function (cdf) will be denoted by

λ = F(y; θ) =
y∫

0

f (t; θ)dt (5.1)
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and its first moment distribution function (fmdf) by

η = F (1)(y; θ) = 1

μ

y∫

0

t f (t; θ) dt (5.2)

We will also utilize the second moment distribution function (smdf)

ψ = F (2) (y; θ) = 1

μ(2)

∞∫

0

t2 f (t; θ)dt (5.3)

where μ(2) is the second moment μ(2) =
∞∫

0
y2 f (y; θ) dy. The Lorenz

curve, relating the cumulative proportion of income to the cumulative
proportion of population, is given by4

η = L(λ; θ) = F (1)
(
F−1 (λ; θ); θ

)
(5.4)

When modelling begins with the specification of a Lorenz curve, the
quantile function y = F−1 (λ; θ) can be found from it via differentiation,

y = F−1 (λ; θ) = μ
dL (λ; θ)

dλ
(5.5)

Inequality Measures

The most commonly cited inequality measure is the Gini coefficient g
which is given by twice the area between the Lorenz curve and the line
of equality where η = λ. That is,

g = 1 − 2

1∫

0

L(λ; θ)dλ

= −1 + 2

μ

∞∫

0

yF(y; θ) f (y; θ)dy (5.6)

4 See Gastwirth (1971).
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Two further inequality measures that we consider are the Theil indices
which are special cases of a generalized entropy class of measures. Unlike
the Gini coefficient, members of this class have the advantage of being
additively decomposable into population subgroups. The general class is
given by

GE(v) = 1

v2 − v

⎡

⎣
∞∫

0

(
y

μ

)v

f (y; θ)dy − 1

⎤

⎦ v �= 0, 1 (5.7)

The parameter v controls the sensitivity of the index to income differences
in different parts of the income distribution; larger positive values imply
greater sensitivity to income differences in the upper part of the distribu-
tion and more negative values imply greater sensitivity to differences in
the lower part of the distribution. The Theil special cases are those for
v → 0 and v → 1. They are given by

T0 = GE(0) =
∞∫

0

ln

(
μ

y

)

f (y; θ) dy (5.8)

T1 = GE(1) =
∞∫

0

(
y

μ

)

ln

(
y

μ

)

f (y; θ)dy (5.9)

The last inequality measure that we consider is the Pietra index which
is equal to the maximum distance between the Lorenz curve and the
equality line η = λ. It can be written as the difference between the cdf
and the fmdf, evaluated at μ.

P = F(μ; θ) − F (1)(μ; θ) (5.10)

Poverty Measures

Modelling and estimating income distributions are also useful for eval-
uating poverty. We consider four poverty measures, the headcount ratio
HC, the poverty gap PG, the FGT index with the inequality aversion
parameter set at 2 and the Watts index, W I. For convenience, we express
HC, PG and FGT in terms of distribution and moment distribution
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functions, and moments, which are tabulated for specific distributions in
section Specification of Distributions, Inequality and Poverty Measures.
The Watts index requires more work, however; we defer specific para-
metric expressions for it until section Specification of Distributions,
Inequality and Poverty Measures. Given a specific poverty line z, we have

H = F(z; θ) (5.11)

PG =
z∫

0

(
z − y

z

)

f (y; θ) dy = F(z; θ) − μ

z
F (1)(z; θ) (5.12)

FGT (2) =
z∫

0

(
z − y

z

)2

f (y; θ) dy

= F(z; θ) − 2
μ

z
F (1)(z; θ) + μ(2)

z2
F (2)(z; θ) (5.13)

WI =
z∫

0

[ln(z) − ln(y)] f (y; θ) dy (5.14)

Data Setup

For estimating the various inequality and poverty measures, we assume
we have a sample y′ = (y1, y2, ...., yT ) randomly drawn from f (y; θ),
and grouped into N income classes (x0, x1), (x1, x2), . . . , (xN−1, xN ) with
x0 = 0 and xN = ∞. We denote the proportion of observations in the i-th
group as ci , mean income in the i-th group as yi , and mean income for
the whole sample as y. The income share for the i-th group is si = ci yi

/
y.

Sometimes observations c′ = (c1, c2, . . . , cN ) and s′ = (s1, s2, . . . sN )

are available from one source and y is available from another source,
in which case group mean incomes can be found from yi = si y

/
ci . In

the next section, we describe various methods for estimating θ, given the
observations (ci , si , y).
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Estimation

The estimation methods that we review can be categorized according
to the way in which the data are generated, and whether the group
bounds x′ = (x0, x1, . . . , xN ) are known in addition to the observations
on (ci , si , y). There are two ways in which the data can be generated.
The group bounds x can be specified a priori, making the proportions of
observations which fall into each group ci , and the group means yi , the
random variables. Alternatively, the ci can be specified a priori, in which
case the group bounds x are random variables, along with the group
means yi . We consider estimation techniques for each of these cases in
turn, noting the implications of known and unknown values for the group
boundaries.

Estimation with Fixed x, Random c, Random yi

One approach for estimating θ when the group bounds x are known
and the ci are random is to maximize the likelihood function for the
multinomial distribution. This approach uses information on x and c, but
does not utilize the information contained in s and y. The log of the
likelihood function is given by

L(θ) ∝ K +
N∑

i=1

ci ln
[
F(xi ; θ) − F(xi−1; θ)

]
(5.15)

where K is a constant.
In a series of papers (Griffiths & Hajargasht, 2015; Hajargasht &

Griffiths, 2020; Hajargasht et al., 2012), three minimum distance (MD)
estimators suitable for random ci and yi were introduced.5 These estima-
tors utilize information on c, s and y, and can be applied with or without
knowledge of x. When x is unknown it can be treated as a set of unknown
parameters and estimated along with θ. The three estimators all have the
same limiting distribution, but do not yield identical estimates. They are
more efficient than the ML estimator from the multinomial likelihood

5 The estimator in the first of these papers was described as a generalized method of
moments estimator. Here, we use the term minimum distance estimator because it includes
not only estimators that minimize the squared distance between sample and population
moments, but also those that minimize the squared distance between sample quantities
and their probability limits.
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function where only information from ci is utilized. To introduce the
three estimators, we begin by noting the following:

plim ci = F(xi ; θ) − F(xi−1; θ) = λi (φ) − λi−1(φ) (5.16)

plim si = F (1)(xi ; θ) − F (1)(xi−1; θ) = ηi (φ) − ηi−1(φ) (5.17)

where we write φ = (x, θ) to accommodate the case where x is unob-
served, making the unknown parameter vector equal to φ. If x is
observed, we can proceed in the same way, utilizing the known x and
treating θ as the unknown parameter vector.

MD Estimator 1
For the first MD estimator, we define

ỹi = si y = ci yi (5.18)

Since
∑N

i=1 ỹi = ∑N
i=1 ci yi = y, we interpret ỹi as that part of mean

income y that comes from the i-th group. Then, from (5.17) and (5.18),

plim ỹi = plim ȳ plim si

= μ
[
F (1)(xi ; θ) − F (1)(xi−1; θ)

]

= μ
[
ηi (φ) − ηi−1(φ)

]
(5.19)

From (5.16) and (5.19), we can set up the MD estimator

φ̂1 = argminφH1(φ)′WH1(φ) (5.20)

where

H1(φ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1 − [λ1(φ) − λ0(φ)]

...

cN−1 − [λN−1(φ) − λN−2(φ)
]

ỹ1 − μ[η1(φ) − η0(φ)]

...

ỹN − μ
[
ηN (φ) − ηN−1(φ)

]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.21)
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and W is a weight matrix. Note that μ will also depend on φ, the exact
function depending on the parametric pdf chosen for the income distri-
bution. Also, cN − [

λN (φ) − λN−1(φ)
]
has been omitted since having

∑N
i=1 ci = 1 makes one of the ci entries redundant.
A possible weight matrix, one suggested by Chotikapanich et al.

(2007), is to set the diagonal elements of W as wi = 1
/
c2i for i =

1, 2, . . . , N − 1 and wN−1+i = 1
/
ỹ2i for i = 1, 2, . . . , N , and the off-

diagonal elements to zero. With this setting φ̂1 minimizes the sum of
squares of percentage errors. This weight matrix, call it WCGR, is a simple
one, and it works well in practice, but it is not optimal; it does not lead
to the most efficient estimator for φ. Hajargasht et al. (2012) show that
the inverse of the optimal weight matrix is given by

W−1
1 (φ) =

⎡

⎣
D1

[
D2 0N−1

]
[

D2

0′
N−1

]

D3

⎤

⎦−
[
A1 A2

A′
2 A3

]

(5.22)

where 0N−1 is an (N − 1)− dimensional vector of zeros, and D1, D2 and
D3 are diagonal matrices. Their elements, and those of A1, A2 and A3, are
as follows.

[D1]i i = λi − λi−1, i = 1, 2, . . . , N − 1

[D2]i i = μ(ηi − ηi−1), i = 1, 2, . . . , N − 1

[D3]i i = μ(2)(ψi − ψi−1), i = 1, 2, . . . , N

[A1]i j = (λi − λi−1)
(
λ j − λ j−1

)
, i, j = 1, 2, . . . , N − 1

[A2]i j = (λi − λi−1)
(
η j − η j−1

)
i = 1, 2, . . . , N − 1; j = 1, 2, . . . , N

[A3]i j = (ηi − ηi−1)
(
η j − η j−1

)
, i, j = 1, 2, . . . , N

All these quantities depend on the unknown parameter vector φ. To ease
the notation, we have not made this dependence explicit. Note also that,
through D3, W will depend on the second moment μ(2) and the second
moment distribution function ψi = F (2)(xi ; θ).
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After inverting W−1
1 to find W1, and simplifying, the objective function

in (5.20) can be shown to be equal to

H1(φ)
′
W1(φ)H1(φ) =

N∑

i=1

w1i
[
ci − (λi − λi−1)

]2

+
N∑

i=1

w2i
[
ỹi − μ(ηi − ηi−1)

]2

− 2
N∑

i=1

w3i
[
ci − (λi − λi−1)

][
ỹi − μ(ηi − ηi−1)

]

(5.23)

where

w1i = μ(2)(ψi − ψi−1)

vi
(5.24)

w2i = (λi − λi−1)

vi
(5.25)

w3i = μ(ηi − ηi−1)

vi
(5.26)

and

vi = μ(2)(λi − λi−1)(ψi − ψi−1) − μ2(ηi − ηi−1)
2

There are three possible ways to approach the problem of finding an
estimate φ̂ that minimizes H1(φ)′W1(φ)H1(φ) :

1. A two-step estimator where first an estimate φ̂CGR is obtained using
the weight matrix WCGR, and then a second estimate φ̂2−ST E P is
obtained by minimizing H1(φ)′W1(φ̂CGR)H1(φ).

2. An iterative estimator obtained by iterating the 2-step estimator
until convergence is achieved.

3. A “continuous updating estimator” where the whole function in
(5.23) is minimized with respect to φ.
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These three estimators all have the same limiting distribution but can
produce different estimates. Their asymptotic covariance matrix is

var
(
φ̂1

)
= 1

T

[(
∂H∗′

1

∂φ

)

W ∗
1

(
∂H∗

1

∂φ
′

)]−1

(5.27)

where H∗
1 is a (2N × 1) vector obtained from H1 by including cN −

(λN − λN−1) in the N -th position, and W ∗
1 is a (2N × 2N ) matrix with 4

(N × N ) diagonal blocks D11, D12, D21 = D12 and D22. The i-th diag-
onal elements of these matrices are w1i for D11, w2i for D22 and −w3i for
D12. See Eqs. (5.24) to (5.26).

MD Estimator 2
The second MD estimator is that considered by Griffiths and Hajargasht
(2015). It follows the same principles as the previous one, but it replaces
ỹi by yi . To accommodate this replacement, we note that, from (5.16)–
(5.18),

plim ȳi = plim ȳ plim si
plim ci

= μ(ηi − ηi−1)

λi − λi−1

In this case, the MD estimator can be written as

φ̂2 = argminφH2(φ)′W2H2(φ) (5.28)

where

H2(φ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1 − [λ1 − λ0]

...

cN−1 − [λN−1 − λN−2
]

y1 − μ[η1 − η0]

λ1 − λ0
...

yN − μ
[
ηN − ηN−1

]

λN − λN−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.29)
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and W2 is a specified weight matrix. The weight matrix that is analogous
to WCGR, suggested for the previous estimator as a simple choice, or as
a starting point for estimators that use an optimal weight matrix, is a
diagonal matrix with elements wi = 1

/
c2i for i = 1, 2, . . . , N − 1, and

wi+N−1 = 1
/
y2i for i = 1, 2, . . . , N . Griffiths and Hajargasht (2015)

show that the optimal weight matrix, for use with a 2-step, iterative or
continuous updating estimator, is given by

W2(φ) =
[
E1 0
0 E2

]

(5.30)

where

[E1]i j = δi j

λi − λi−1
+ 1

λN − λN−1
i, j = 1, 2, . . . , N − 1 (5.31)

[E2]i j = δi j (λi − λi−1)
3

μ(2)(λi − λi−1)(ψi − ψi−1) − μ2(ηi − ηi−1)
2 i, j = 1, 2, . . . , N

(5.32)

and δi j = 1 when i = j and δi j = 0 when i �= j. Using these results, the
objective function can be simplified to

H2(φ)
′
W2(φ)H2(φ) =

N∑

i=1

[
ci − (λi − λi−1)

]2

λi − λi−1

+
N∑

i=1

[E2]i i

(

ȳi − μ(ηi − ηi−1)

λi − λi−1

)2

(5.33)

As before, H2(φ)′W2(φ)H2(φ) can be minimized using a 2-step estimator,
an iterative estimator or a continuous updating estimator. The weights are
1
/

(λi − λi−1) for the first terms in (5.33) and [E2]i i for the second. In
contrast to the earlier formulation in (5.23), there are no cross product
terms, making the minimization problem simpler and convergence easier
to obtain. The large sample covariance matrix of an estimator φ̂2 using an
optimal weight matrix is

var
(
φ̂1

)
= 1

T

[(
∂H∗′

1

∂φ

)

W ∗
1

(
∂H∗

1

∂φ
′

)]−1

(5.34)
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where H∗
2 is a (2N ×1) vector obtained from H2 by including cN − (λN −

λN−1) in the N -th position, and W ∗
2 is a (2N ×2N ) block-diagonal matrix

with elements 1
/

(λi − λi−1) in the first diagonal block and elements
[E2]i i in the second diagonal block.

MD Estimator 3
The third MD estimator that we describe is that considered by Hajargasht
and Griffiths (2020). Its essential difference is that it considers cumulative
population and income shares. To develop it, we begin by defining.

λ̂i =
i∑

j=1

c j and η̂i =
i∑

j=1

s j (5.35)

.
and recognizing that

plim λ̂i = F(xi ; θ) = λi (φ) (5.36)

plim ȳ η̂i = μ F (1)(xi ; θ) = μηi (φ) (5.37)

Using (5.36) and (5.37), we can construct the MD estimator as

φ̂3 = argminφH3(φ)′W3H3(φ) (5.38)

where

H3(φ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ̂1 − λ1

...

λ̂N−1 − λN−1

y η̂1 − μη1

...

y η̂N−1 − μηN−1

y − μ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.39)

and W3 is a pre-specified weight matrix. A simple weight matrix that can
be used to simplify calculations or as a starting point for estimators that
use an optimal weight matrix is a diagonal matrix with elements wi =
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1
/

λ̂2i for i = 1, 2, . . . , N−1 and wN−1+i = 1
/(

y η̂i
)2 for i = 1, 2, . . . , N .

Hajargasht and Griffiths (2020) show that the optimal weight matrix is
given by

W3(φ) =
[
L11 L12

L ′
12 L22

]

(5.40)

where

1. L11 is a [(N − 1) × (N − 1)] tri-diagonal matrix with the following
nonzero elements:

[L11]i i = μ(2)(ψi+1 − ψi )

vi+1
+ μ(2)(ψi − ψi−1)

vi
i = 1, 2, . . . , N − 1

[L11]i j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−μ(2)(ψi − ψi−1)

vi
i = 2, 3, . . . , N − 1; j = i − 1

−μ(2)
(
ψ j − ψ j−1

)

v j
j = 2, 3, . . . , N − 1; i = j − 1

(5.41)

2. L12 is a [(N − 1) × N ] matrix with the following nonzero elements:

[L12]i i = −μ(ηi+1 − ηi )

vi+1
− μ(ηi − ηi−1)

vi
i = 1, 2, . . . , N − 1

[L12]i j =

⎧
⎪⎪⎨

⎪⎪⎩

μ(ηi − ηi−1)

vi
i = 2, 3, . . . , N − 1; j = i − 1

μ
(
η j − η j−1

)

v j
j = 2, 3, . . . , N ; i = j − 1

(5.42)
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3. L22 is a [N × N ] tri-diagonal matrix with the following nonzero
elements

[L22]i i = (λi+1 − λi )

vi+1
+ (λi − λi−1)

vi
i = 1, 2, . . . , N − 1

[L22]i j =

⎧
⎪⎪⎨

⎪⎪⎩

−(λi − λi−1)

vi
i = 2, 3, . . . , N ; j = i − 1

−(λ j − λ j−1
)

v j
j = 2, 3, . . . , N ; i = j − 1

[L22]NN = −(λN − λN−1)

vN
(5.43)

As in the previous two cases, the objective function can be minimized
using a two-step estimator, an iterative estimator or a continuous updating
estimator. The asymptotic covariance matrix for φ̂3, when using an
optimal covariance matrix, is

var(φ̂3) = 1

T

[(
∂H ′

3

∂φ

)

W3

(
∂H3

∂φ′

)]−1

(5.44)

A Quasi ML Estimator
Building on the work of Hilomi et al. (2008), Eckernkemper and Gribisch
(2021), propose a quasi ML estimator. They combine the multinomial
likelihood in Eq. (5.15) with a Gaussian approximation for the group
means yi . Including the extra information means that estimation can
proceed with or without knowledge of the group bounds, with these
bounds being treated as parameters to be estimated when they are
unknown. Let Ti = ci T be the number of observations in groups i.
Each yi is assumed to be N

(
μ̃i , σ̃

2
i

/
Ti
)
where the μ̃i and the σ̃ 2

i are
the means and variances of y from truncations (xi−1 < yi < xi ) of the
originally specified distribution. That is,

μ̃i = E(y|xi−1 < y < xi ) = μ
[
ηi (φ) − ηi−1(φ)

]

λi (φ) − λi−1(φ)
(5.45)
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and

σ̃ 2
i = var(y|xi−1 < y < xi ) = μ(2)

[
ψi (φ) − ψi−1(φ)

]

λi (φ) − λi−1(φ)
− μ̃2

i (5.46)

Using these results, the log of the likelihood function can be written as

L(φ) ∝ K1 +
N∑

i=1

{

ci ln
[
λi (φ) − λi−1(φ)

]− ln σ̃i − ci
2σ̃ 2

i

(y − μ̃i )
2

}

(5.47)

Eckernkemper and Gribisch (2021) show that the estimator for φ that
maximizes L(φ) is consistent and that the covariance matrix of its limiting
distribution is the same as that for MD estimators 1 and 2.

Estimation with Fixed c, Random x, Random yi

In this case, the observations are grouped such that the proportion of
observations in each group is pre-specified. Examples are 10 groups with
10% of the observations in each group or 20 groups with 5% of the
observations in each group. This setup implies the proportion ci are fixed
(non-random) and the sample group boundaries x as well as the average
cumulative incomes yi are random variables. Let y[1], y[2], . . . , y[T ] be
the order statistics obtained by arranging the original observations y in
ascending order. An estimate for a group bound xi is the largest order
statistic in the i-th group, x̂i = y[λ̂i T ]. If the x̂i are observed, estimation
can use both the x̂i and the yi ; if the x̂i are unobserved, then only the
information in yi can be utilized. We consider MD and ML estimation
for both these cases. MD estimation with unobserved x̂i corresponds to
Lorenz curve estimation which has attracted a great deal of attention in
the literature. See, for example, Chotikapanich (2008). A Lorenz curve
implied by a specific income distribution is defined by Eq. (5.4). An alter-
native is to start with a specific parametric Lorenz curve in which case the
corresponding income distribution is defined via the quantile function in
(5.5). A problem with the latter approach is that the income distributions
corresponding to some Lorenz curves are not defined for all values of y.
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MD Estimation
The MD estimators that we consider are those proposed by Hajar-
gasht and Griffiths (2020). Suppose, in the first instance, that the x̂i are
observed. To use this information in an MD estimator, we recognize that6

plim x̂i = F−1
(
λ̂i ; θ

)
(5.48)

To use information on the income shares, we use the cumulative shares
η̂i multiplied by mean income y, in line with MD estimator 3 for the
random c case. One difference, however, is that we express its probability
limit in terms of the non-random c, instead of x, which is now a random
variable. That is,

plim ȳ η̂i = μ F (1)
(
F−1(λ̂; θ); θ

)
(5.49)

To set up the MD estimator, it is convenient to define notation for a
generalized Lorenz curve which can be written as

μη = G(λ; θ) = μ L(λ; θ) = μ F (1)
(
F−1(λ; θ); θ

)
(5.50)

Then, from (5.48)–(5.50), we can set up the following MD estimator,

θ̂4 = argminθ H
′
4(θ)W4H4(θ) (5.51)

6 To avoid introducing more notation to what is already a very substantial amount,
we will continue to use λ̂i to denote the observed cumulative proportion of population,
despite the fact that, in the current context, it is a non-random fixed quantity.
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where

H4(θ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x̂1 − F−1(λ̂1; θ)

x̂2 − F−1(λ̂2; θ)

...

x̂N−1 − F−1(λ̂N−1; θ)

y η̂1 − G(λ̂1; θ)

...

y η̂N−1 − G(λ̂N−1; θ)

y − μ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.52)

and W4 is a suitable chosen weight matrix. It can be shown that the
optimal weight matrix is given by

W4(θ) =
[


11 
12


′
12 
22

]−1

(5.53)

where

[
11]i j
[(N−1)×(N−1)]

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ̂i (1 − λ̂ j )

f (x̂i ) f (x̂ j )
i ≤ j

λ̂ j (1 − λ̂i )

f (x̂i ) f (x̂ j )
j ≤ i

(5.54)

[
22]i j
[N×N ]

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

μ(2)ψi +
[
λ̂i x̂i − G(λ̂i )

] [
x̂ j − λ̂ j x̂ j + G(λ̂ j )

]

− x̂i G(λ̂i ) i ≤ j

μ(2)ψ j +
[
λ̂ j x̂ j − G(λ̂ j )

] [
x̂i − λ̂i x̂i + G(λ̂i )

]

− x̂ j G(λ̂ j ) j ≤ i

(5.55)

[
12]i j
[(N−1)×N ]

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ̂i [G(λ̂ j ) − x̂ j λ̂ j + x̂ j ] − G(λ̂i )

f (x̂i )
i ≤ j

[λ̂i − 1][G(λ̂ j ) − x̂ j λ̂ j ]
f (x̂i )

j ≤ i

(5.56)
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The covariance matrix for the limiting distribution of θ̂4 is

var(θ̂4) = 1

T

(
∂H ′

4

∂ θ
W4

∂H4

∂ θ ′

)−1

(5.57)

When there are a large number of groups, the matrix inversion in (5.53)
can be computationally demanding. Hajargasht and Griffiths (2020) show
how W−1

4 can be derived from W−1
3 which has computationally conve-

nient tri-diagonal blocks. They also demonstrate that, if the groupings
for this set up are equivalent to those for the MD3 setup in the sense
that, a priori, xi = F−1(λi ; θ), then the asymptotic covariance matrices
for θ̂3 and θ̂4 are identical.

Minimizing (5.51) to find an estimate θ̂4 can proceed using one of the
three algorithms described in section Estimation with Fixed x, Random c,
Random yi . However, there are two requirements which will not always
be met: estimates of the bounds x̂i = y[λ̂i T ] must be observed and the cdf
must be invertible, either algebraically or computationally, so that quan-
tiles F−1(λ̂i ; θ) can be found. Note that F−1(λ̂i ; θ) appears not only in
the first (N − 1) elements of H4 but also in the next (N − 1) elements
that involve the generalized Lorenz curve G(λ; θ) = μ F (1)

(
F−1(λ; θ); θ

)
.

One way to overcome non-invertibility of the cdf is to replace the
assumption of a parametric income distribution with an assumption of
a parametric Lorenz curve. Doing so overcomes the problem for the
second set of elements in H4, and relationships between the general-
ized Lorenz curve and the quantile function—see Hajargasht and Griffiths
(2020)—can be exploited to obtain the first set of elements in H4.

When the x̂i are unobserved, estimation can proceed using the last N
elements in H4, with calculations made from an assumed income distribu-
tion if the cdf is invertible, or from an assumed Lorenz curve if the cdf is
not invertible. This last approach is that most closely aligned with sugges-
tions for Lorenz curve estimation which have appeared in the literature.7

Earlier suggestions are sub-optimal in the sense that they do not use the
best weighting matrix. Details can be found in Hajargasht and Griffiths
(2020).

7 See Chotikapanich (2008) for access to this literature.
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ML Estimation
ML estimation of θ for fixed ci , and random xi and yi was considered by
Eckernkemper and Gribisch (2021). Recognizing that the joint density
for the group bounds and group means can be written as

f
(
ȳ1, ȳ2, . . . , ȳN , x̂

) = f
(
ȳ1, ȳ2, . . . , ȳN |x̂) f (x̂1)
f
(
x̂2|x̂1

)
. . . f

(
x̂N−1|x̂N−2

)
(5.58)

they set up a likelihood function that uses distribution theory for order
statistics for f (x̂) and a Gaussian approximation for f

(
yi |x̂i , x̂i−1

)
. Using

results in David and Nagaraji (2003), the conditional means and variances
for the yi can be written as

μi = E
(
yi |x̂i , x̂i−1

) = Ti − 1

Ti
μ̃i + x̂i

Ti
(5.59)

and

σ 2
i = var

(
yi |x̂i , x̂i−1

) = Ti − 1

T 2
i

σ̃ 2
i (5.60)

The log-likelihood is

L(θ) = K2 − 1

2

[

ln σ̃ 2
N + TN

σ̃ 2
N

(
ȳN − μ̃N

)2
]

+ TN ln
[
1 − F

(
x̂N−1; θ

)]

+
N−1∑

i=1

⎧
⎪⎨

⎪⎩

−1

2

[

ln σ 2
i +

(
ȳi − μi

σi

)2
]

+ (Ti − 1) ln
[
F
(
x̂i ; θ

)− F
(
x̂i−1; θ

)]+ ln f
(
x̂i ; θ

)

⎫
⎪⎬

⎪⎭

(5.61)

where K2 is a constant. The estimator θ̂5 that minimizes (5.61) can be
interpreted as a quasi ML estimator. Eckernkemper and Gribisch (2021)
establish its asymptotic covariance matrix as

var(θ̂5) = 1

T

[
N∑

i=1

(
∂μi

∂θ

∂μi

∂θ ′

)(
ci
σ̃ 2
i

)]−1

(5.62)

One difference between the estimator θ̂5 and those estimators considered
in the earlier sections is that it requires knowledge of the sample size T,
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from which the number of observations in each group can be found from
Ti = ci T . All estimators require knowledge of T to compute standard
errors, but knowledge of the proportions ci , without knowledge of T, is
sufficient for the earlier estimators for θ and φ to be employed.

For ML estimation of θ when the x̂i are not observed, Eckernkemper
and Gribisch (2021) integrate out the x̂i from the likelihood in (5.61) to
obtain the following log-likelihood

L(θ) = K3 − 1

2

[
log |�| + T

(
y − µ∗)′�−1( y − µ∗)] (5.63)

where K3 is a constant, y′ = (y1, y2, . . . , yN ), µ∗ is an (N × 1) vector
with i-th element equal to

μ∗
i = 1

ci

[
G
(
λ̂; θ

)
− G

(
λ̂i−1; θ

)]
(5.64)

and � = DB 
∗
22B

′D where D = diag
(
c−1
1 , c−1

2 , . . . , c−1
N

)
, [B]i i =

1, [B]i j = −1 for i = j + 1, j = 1, 2, . . . , N − 1, and zero elsewhere,
and 
∗

22 is equal to 
22 defined in (5.55), but with x̂i and x̂ j replaced

by F−1
(
λ̂i ; θ

)
and F−1

(
λ̂ j ; θ

)
, respectively. The asymptotic covariance

matrix for the estimator θ̂6 obtained by maximizing (5.61) is

var (θ̂6) = 1

T

[

∂μ∗′
�−1 ∂μ∗

∂θ
′

]

(5.65)

Specification of Distributions,

Inequality and Poverty Measures

To implement the estimation methods described in section Estimation,
a specific parametric distribution has to be specified and we need its
moments, its pdf, cdf, fmdf and smdf. This information is provided in
Table 5.1 for several popular income distributions. Once the parameters
of a chosen distribution have been estimated, estimates for inequality and
poverty incidence are frequently of interest. In Table 5.2, we provide
expressions that can be used to compute inequality estimates from the
estimates of the parameters. Expressions for the poverty estimates were



254 D. CHOTIKAPANICH ET AL.

T
ab

le
5.
1

Pr
ob

ab
ili
ty

di
st
ri
bu

tio
ns
,
di
st
ri
bu

tio
n
fu
nc

tio
ns

an
d
m
om

en
ts

D
ist
ri
bu

ti
on

pd
f

cd
f/
fm

df
/s
m
df

a
M
om

en
ts

Pa
re
to

f(
y;

α
,
y 0

)
=

α
yα 0

yα
+1

y
≥

y 0
>

0

F
(k

) (
y;

α
,
y 0

)
=

1
−
(
y 0 y

) α
−k

α
>

k

μ
(k

)
=

α
yk 0

α
−k

α
>

k

L
og

no
rm

al
b

f(
y;

β
,
σ
)
=

1
σ
y√ 2π

ex
p{

−
1

2σ
2
(l
n
y

−
μ

)2
}

F
(k

) (
y;

β
,
σ
)
=

�

(
ln

(y
)−

β
−k

σ
2

σ

)
μ

(k
)
=

ex
p{

kβ
+

k2
σ
2

2

}

Pa
re
to
-

lo
gn

or
m
al

f(
y;

α
,
β
,
σ
)
=

α

yα
+1

ex
p{

α
2
σ
2

2
+

α
β
} �

(
ln

y−
β
−α

σ
2

σ

)
F

(k
) (
y;

α
,
β
,
σ
)
=

�

(
ln

y−
β
−k

σ
2

σ

)

−

yk
−α

ex
p{

σ
2 2
(α

2
−

k2
)
+

β
(α

−
k)
} �

(
ln

y−
β
−α

σ
2

σ

)

α
>

k

μ
(k

)
=

α
α
−k

ex
p{

kβ
+

k2
σ
2

2

}

α
>

k

G
B
2c

f(
y;

a,
b,

p,
q
)
=

a
ya

p−
1

ba
p
B
(
p,
q
)[ 1+

(
y b

) a
]
p+

q

F
(k

) (
y;

a,
b,

p,
q
)
=

B
u

(
p

+
k a
,
q

−
k a

)

u
=

( y
/
b)

a

1+
( y
/
b)

a
k

<
q
a

μ
(k

)
=

bk
B
(
p+

k a
,q

−
k a

)

B
(
p,
q
)

k
<

q
a

Si
ng

h-
M
ad

da
la
d

(
p

=
1)

f(
y;

a,
b,

q
)
=

aq
ya

−1

ba
[ 1+

(
y b

) a
] 1

+q
F

(y
;a

,
b,

q
)
=

1
−
[ 1

+
(
y b

) a
] −

q

F
(k

) (
y;

a,
b,

q
)
=

B
u

( 1
+

k a
,
q

−
k a

)

u
=

( y
/
b)

a

1+
( y
/
b)

a
k

<
aq

μ
(k

)
=

bk
�
( 1+

k a

) �
( q

−
k a

)

�
(q

)

k
<

aq

B
et
a-
2

(a
=

1)
f(
y;

b,
p,

q
)
=

y
p−

1

b
p
B
(
p,
q
)[ 1+

y b

]
p+

q
F

(k
) (
y;

b,
p,

q
)
=

B
u
(
p

+
k,
q

−
k)

u
=

y/
b

1+
y/

b
k

<
q

μ
=

bp q
−1

μ
(2

)
=

bp
(
p+

1)
(q

−1
)(
q
−2

)



5 MODELLING INCOME DISTRIBUTIONS WITH LIMITED DATA 255

D
ist
ri
bu

ti
on

pd
f

cd
f/
fm

df
/s
m
df

a
M
om

en
ts

D
ag
um

(q
=

1)
f(
y;

a,
b,

p)
=

a
py

a
p−

1

ba
p
[ 1+

(
y b

) a
]
p+

1
F

(y
;a

,
b,

p)
=
[ 1

+
(
y b

) −
a
] −

p

F
(k

) (
y;

a,
b,

p)
=

B
u

(
p

+
k a
,
1

−
k a

)

u
=

( y
/
b)

a

1+
( y
/
b)

a
k

<
a

μ
(k

)
=

bk
�
(
p+

k a

) �
( 1−

k a

)

�
(
p)

k
<

a

G
en

er
al
iz
ed

ga
m
m
a(
5)

f(
y;

a,
b,

p)
=

a
ya

p−
1
ex
p{

−(
y b

) a
}

ba
p
�

(
p)

F
(k

) (
y;

a,
b,

p)
=

�
u

(
p

+
k a

)

u
=
(
y b

) a
μ

(k
)
=

bk
�
(
p+

k a

)

�
(
p)

G
am

m
a

(a
=

1)
f(
y;

b,
p)

=
y
p−

1
ex
p{

−
y b

}

b
p
�

(
p)

F
(k

) (
y;

b,
p)

=
�
u
(
p

+
k )

u
=

y b

μ
=

bp

μ
(2

)
=

b2
p(

p
+

1)

N
ot
es

K
le
ib
er

an
d

K
ot
z
(2
00

3)
is

an
ex
ce
lle
nt

so
ur
ce

fo
r
m
an
y
of

th
e
re
su
lts

in
th
is

ta
bl
e

a O
f
in
te
re
st

ar
e
k

=
0
(c
df

=
cu
m
ul
at
iv
e
di
st
ri
bu

tio
n
fu
nc
tio

n)
,
k

=
1
(f
m
df

=
fir
st

m
om

en
t
di
st
ri
bu

tio
n
fu
nc
tio

n)
,
an
d

k
=

2
(s
m
df

=
se
co
nd

m
om

en
t

di
st
ri
bu

tio
n

fu
nc
tio

n
b
�

(x
)
is

th
e
st
an
da
rd

no
rm

al
cd
f
ev
al
ua
te
d

at
x

c G
B
2

is
th
e

ge
ne

ra
liz
ed

be
ta

di
st
ri
bu

tio
n

of
th
e

2n
d

ki
nd

.B
(
p,

q
)
is

th
e

be
ta

fu
nc
tio

n
ev
al
ua
te
d

at
(
p,

q
).

B
u
(
p,

q
)
is

th
e

st
an
da
rd

be
ta

cd
f,

w
ith

pa
ra
m
et
er
s

(
p,

q
),

ev
al
ua
te
d

at
u

d
�

(
p)

is
th
e
ga
m
m
a
fu
nc
tio

n
ev
al
ua
tio

n
at

p
e �

u
(
p)

is
th
e
st
an
da
rd

ga
m
m
a
cd
f,

w
ith

pa
ra
m
et
er

p,
ev
al
ua
te
d

at
u



256 D. CHOTIKAPANICH ET AL.

given in section Poverty Measures, with the exception of the Watts Index
whose expressions we have tabulated in Table 5.3.

Simple Recipes for Two Distributions

In some instances, where large scale projects involving many countries
and many time periods are being undertaken, it may be prudent to use
estimation techniques which are relatively simple. In this section, we
consider two estimation techniques that fall into this category—one for
the lognormal distribution and one for the Pareto-lognormal distribution.

Lognormal Distribution

In the previous section, we indicated that the Gini coefficient for the
lognormal distribution is g = 2�

(
σ
/√

2
)

− 1 and its mean is μ =
exp
{
β + σ 2

/
2
}
. Using grouped data the Gini coefficient can be estimated

from

ĝ =
N−1∑

i=1

η̂i+1λ̂i −
N−1∑

i=1

η̂i λ̂i+1 (5.66)

and the mean can be estimated using y,

μ̂ = y = exp

{

β̂ + σ̂ 2

2

}

(5.67)

Utilizing these two equations and the expression for the Gini coefficient
yields the parameter estimates.

σ̂ = √
2�−1

(
g + 1

2

)

(5.68)

β̂ = ln(y) − σ̂ 2

2
(5.69)

This approach was adopted by Chotikapanich et al. (1997).

Pareto-Lognormal Distribution

For the Pareto-lognormal distribution, we can estimate the Theil
inequality measures from the grouped data, and then use these estimates,
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Table 5.3 Watts poverty indices for selected distributions

Distribution Index

Pareto W I = ln
(

z
y0

)
+
(

α
α−1

)(
1
y0

)[

1 −
(
y0
z

)α+1
]

Lognormal W I = σ [u�(u) + φ(u)] u = ln z−β
σ

Pareto-lognormal W I = − 1
α F(z; α, β, σ ) + σ [u�(u) + φ(u)] u = ln z−β

σ

GB2a W I = ln
( z
b

)
Bu(p, q) −

1
a
{
DpBu(p, q) − Dq Bu(p, q) + Bu(p, q)[�(p) − �(q)]

}

u = (z/ b)a
1+(z/ b)a

Beta-2
(a = 1)

W I = ln
( z
b

)
Bu(p, q) + Dq Bu(p, q) − DpBu(p, q) −

Bu(p, q)[�(p) − �(q)]
u = z/ b

1+z/ b

Singh-Maddala
(p = 1)

W I = ln
( z
b

)
F(z; a, b, q) +

1
a

{[
1 + ( zb

)a]−q
ln
[
1 + ( zb

)a]− F(z; a, b, q)[�(1) − �(q)]
}

Dagum
(q = 1)

W I = ln
( z
b

)
F(z; a, b, p) +

1
a

{[
1 + ( zb

)−a
]−p

ln
[
1 + ( zb

)−a
]

− F(z; a, b, p)[�(p) − �(1)]

}

Generalized Gammab W I = ln
( z
b

)
�u(p) − 1

a
[
Dp�u(p) + �u(p)�(p)

]

u = ( zb
)a

Gamma
(a = 1)

W I = ln(u)�u(p) − Dp�u(p) + �u(p)�(p)

u = z
b

Notes aDpBu (p, q) and Dq Bu (p, q) are the derivatives of the beta cdf Bu (p, q) with respect to p
and q respectively. These derivatives are available in some software such as EViews. A derivation of
the expression can be found in Chotikapanich et al. (2013)
bDp�u (p) is the derivative of the gamma cdf �u (p) with respect to p. It too is available in software
such as EViews. Derivation of the result uses a similar approach to that for the GB2

along with sample mean income to estimate the parameters. Working in
this direction, the grouped-data sample estimates are

T̂1 =
N∑

i=1

ci

(
yi
y

)

ln

(
yi
y

)

(5.70)
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T̂0 =
N∑

i=1

ci ln

(
y

yi

)

(5.71)

μ̂ = y (5.72)

The corresponding quantities in terms of the parameters of the Pareto-
lognormal distribution are

T1 = 1

α − 1
+ σ 2

2
+ ln

(
α − 1

α

)

(5.73)

T0 = − 1

α
+ σ 2

2
− ln

(
α − 1

α

)

(5.74)

μ = α

α − 1
exp

{

β + σ 2

2

}

(5.75)

Assuming the mean exists (α > 1), from (5.70)–(5.75) we can retrieve
parameter estimates using the following three steps:

1. Find α̂ as the Solution to the Equation

2α̂ − 1

α̂(α̂ − 1)
+ 2 ln

(
α̂ − 1

α̂

)

= T̂1 − T̂0 (5.76)

2. Find σ̂ 2 from

σ̂ 2 = T̂1 + T̂0 − 1

α̂(α̂ − 1)
(5.77)

3. Find β̂ from

β̂ = ln(y) + ln

(
α̂ − 1

α̂

)

− σ̂ 2

2
(5.78)

Concluding Remarks

Inequality and poverty, both nationally and globally, continue to be two
of the most pressing issues facing today’s society. Accurate measurement
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of inequality and poverty involves a multitude of non-trivial considera-
tions including reliable data collection, specification of purchasing power
parities and definition of a suitable poverty line. We have focused on a
further consideration, how to model and estimate income distributions,
and how to estimate inequality and poverty from the parameters of those
income distributions, when using grouped data. Single observations are
becoming increasingly available and their use is preferred to the use of
grouped data if resources are adequate for doing so. However, coun-
tries and time periods for which only grouped data are available are still
prevalent, and it can be advantageous to use grouped data for large scale
regional and global projects. Our objective has been to summarize avail-
able techniques in a convenient form for researchers working along these
lines.
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