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FOREWORD

Economic Measurement, the theme for the set of papers published in
this Volume, is of critical importance in a world where policymakers,
businesses and individuals are increasingly reliant on evidence-based
decision-making. Economic statistics such as the consumer price index
(CPI), gross domestic product (GDP), per capita income and growth
rates are used by the general public, as well as analysts and policymakers
at the central banks setting and evaluating monetary policy. Theoret-
ical and applied econometric techniques developed over the last century
underscore the role of modern economic measurement for policymaking
in complex settings, and in evaluating the effectiveness of policy inter-
ventions for improving health and educational outcomes in developing
countries.

Determining the scope and identifying strands of economic measure-
ment to be covered by this edited Volume is a challenging task. The
editors have shown considerable wisdom and finesse in selecting three
strands of economic measurement which are intricately connected to
measurement of economic welfare. The size of the economy and its distri-
bution are the core determinants of economic welfare, and the long-run
sustainability of economic growth is inevitably determined by produc-
tivity growth performance of the economy. Measurement of efficiency and
productivity and recent advances in this important direction form the first
theme of this volume. It has long been acknowledged that the size of the
economy has a strong bearing on the economic welfare as it reflects the
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command over goods and services, but it is not an adequate measure of
national welfare. Consequently, the second theme for this volume focuses
on inequality in the distribution of income, health as well as the more
fundamental problem of inequality of opportunity. The third focuses on
measures of the size of an economy, including the gross domestic product,
and comparisons over time and space. Through the selection of these
three welfare-related topics in economic measurement, the editors have
also managed to align the contributions included in this volume with the
strands of research that have kept me occupied through my long academic
career spanning nearly fifty years.

The authors of the chapters in this Volume are leading researchers
in their respective fields of inquiry. These chapters provide an overview
of the literature and the world’s best practice as well as the considered
wisdom of the contributors. I sincerely hope that the readers find these
chapters just as fascinating, informative and useful as I have.

“The Journey, Not the destination matters...” (T.S. Eliot). How true!
It is certainly the case with my own academic journey which started
at the Indian Statistical Institute, Calcutta and ended at the Univer-
sity of Queensland, Brisbane, Australia with a long stopover at the
University of New England, Armidale, Australia. I am indeed fortunate
for having had the opportunity to meet and work with outstanding
researchers and to supervise some brilliant young scholars. Along the way,
I was able to establish fruitful research collaborations but more impor-
tantly make lasting friendships all over the world. I am indeed grateful
to Duangkamon Chotikapanich and Nicholas Rohde who are among
the best of my Ph.D. students and a long-time colleague and friend
Alicia Rambaldi for undertaking this arduous and labour-intensive task
of bringing this Volume together. I am deeply indebted to the contrib-
utors of this volume for the time and effort they have put into crafting
these masterful chapters. I wish to conclude by assuring all my friends that
I am officially retired, but not quite retired from the academic pursuits I
so dearly love!

D. S. Prasada Rao

Emeritus Professor

The University of Queensland
St Lucia, QLD, Australia



PREFACE

The purpose of this book is to honour D.S. Prasada Rao and his many
outstanding contributions to economic measurement, including: index
number methods for international comparisons of prices, real incomes,
output and productivity; stochastic approaches to index numbers;
purchasing power parities for the measurement of regional and global
inequality and poverty; and the measurement of income and economic
insecurity.

Prasada obtained his B.A. in 1964 and M.A. in 1966 from Andhra
University, and his Ph.D. in 1973 from the Indian Statistical Institute.
His first position was as Lecturer in 1974 at the Department of Econo-
metrics at the University of New England in Australia, where he rose
to Professor in 1997, and was founding Director of the Centre for Effi-
ciency and Productivity Analysis (CEPA) in the year 2000. From there, he
went to the Department (now School) of Economics at the University of
Queensland as Professor of Econometrics and Director of CEPA (2003-
2008). He was ARC Professorial Fellow between 2009 and 2013, and
continued as Professor of Econometrics at the School of Economics until
2018. He has been Emeritus Professor since 2018. Prasada has also held
visiting positions at various universities around the world. He is Fellow of
the Academy of Social Sciences in Australia, and Fellow of the Society for
Economic Measurement.

vii
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During his long and distinguished career, Prasada has published over
95 research papers, 26 book chapters and 12 books. His lasting contri-
butions have influenced how the world measures and tracks inequality,
poverty and productivity. He has undertaken several global-scale empir-
ical studies involving a large number of countries for the FAO, ILO
and the World Bank. His work on inter-country comparisons of agri-
cultural output and productivity for the FAO has been influential in the
compilation of the FAO Production Index Numbers, and it has provided
the basis for considerable research on global agricultural output and
productivity. He played a very active role in the 2005, 2011 and 2017
International Comparison Programs (ICP) at the World Bank, as well as
at the Asian Development Bank, the regional coordinating agency for ICP
in Asia and the Pacific. In addition, he has overseen a major research
project on the Measurement of Purchasing Power Parities (PPPs) for
Global Poverty Measurement for the Asia-Pacific Region. He has been
appointed as Member of the Technical Advisory Group for the ICP at
the World Bank since 2003. Through collaborations with Chotikapanich,
Griffiths and Hajargasht, he developed rigorous methodological tech-
niques for modelling and estimating national income distributions from
limited data, tools that can be used for assessing poverty and inequality
at national, regional and global levels. His collaboration with Rambaldi,
Doran, Hajargasht and Balk have led to the development of methodolo-
gies to compute standard errors for the ICP PPPs, time-space consistent
panels of PPPs with standard errors, real incomes at current and constant
prices, and global and regional measures of growth and inflation. Over
his long career, he supervised to completion 19 Ph.D. students, among
them Chotikapanich and Rohde.

This book is a collection of papers written by well-known and influ-
ential researchers in the fields to which Prasada has made significant
contributions. His standing in these fields has enabled us to attract world-
leading frontier researchers to contribute to the volume. The papers are
grouped into three parts, each of which relates to an area in which
Prasada has made major contributions. Papers in Part I are concerned
with various aspects of efficiency and productivity measurement. Part II
contains papers on income distribution, welfare inequality and insecurity.
The papers in Part III cover index numbers and international compar-
isons of prices and real expenditures. The contributed papers review the
existing methods and applications as well as some recent developments.
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We would like to thank Palgrave Macmillan and Springer Nature for
giving us the opportunity to honour Prasada in this way. To those who
used their valuable time refereeing the papers, we also say thank you.

Melbourne, Australia Duangkamon Chotikapanich
St Lucia, Australia Alicia N. Rambaldi
Southport, Australia Nicholas Rohde
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Productivity Measurement
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CHAPTER 1

Productivity Measurement: Past, Present,
and Future

C. A. K. Lovell

When it is obvious the goals cannot be reached, don’t adjust the goals,
adjust the action steps.
Confucius (551BC-479BC)

All things will be produced in superior quantity and quality, and with
greater ease, when each man works at a single occupation, in accordance
with his natural gifts, and at the right moment, without meddling with
anything else.

Plato (428BC-348BC)

What we measure affects what we do...if we don’t measure something, it
becomes neglected.
Stiglitz et al. (2018)

C. A. K. Lovell ()

Centre for Efficiency and Productivity Analysis, School of Economics,
University of Queensland, St Lucia, QLD, Australia

e-mail: k.lovell@uq.edu.au

© The Author(s), under exclusive license to Springer Nature 3
Singapore Pte Ltd. 2022
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4 C. A K LOVELL

INTRODUCTION

Contfucius, Plato, and Stiglitz and colleagues all made very different, and
equally astute, observations about productivity, and long before Stiglitz
and colleagues, the distinguished management gurus W. Edwards Deming
and Peter Drucker were both alleged to have claimed along similar lines
that that we can’t manage what we don’t measure. In this survey, I
pursue these observations, and more. The survey considers the goals
or objectives of economic agents, the action steps and methods they
follow, the measured and unmeasured outcomes of their production activ-
ities, and how to measure the former and incorporate the latter, each
as it pertains to the productivity of economic agents ranging from busi-
nesses to national economies. The middle of the year 2021 is a good
time to think about productivity, its drivers and its impacts, in light of
the unprecedented simultaneous challenges presented by the pandemic
depression and climate change.

This chapter is structured as follows. In section “From the Past to the
Present”, I provide an overview of productivity in the past, in some cases
of economic features closely related to productivity, from the distant past
to the recent past, covering the first era in the title of this chapter. In
section “The Distant Past: Observation from Antiquity to Adam Smith,
Alfred Marshall and A. C. Pigou”, I conduct a quick trip through the
distant past, beginning with Antiquity and focused primarily on observa-
tion, including those of Smith, Marshall, and Pigou. In section “A Mere
Century Ago: Accumulating Methods and Evidence Amidst Emerging
Social Concerns”, I examine four significant achievements that began a
mere century ago. The first involves progress from ancient observation
to the development of index numbers suitable for productivity measure-
ment. The second surveys applications of index numbers to productivity
measurement, beginning with labour productivity and continuing with
total productivity (I prefer Kendrick’s qualifier “total” to the more
popular “total factor” or “multifactor”). The third involves a movement,
born between World Wars I and II and maturing in the aftermath of the
Great Depression, that proposed an expansion of the focus of measure-
ment, from narrow economic productivity to holistic social economic
performance, beginning with the ostensibly adverse social impacts of
the introduction of new labour-saving technology. The final achievement
belongs to the short-lived European Productivity Agency and its house
journal Productivity Measurement Review, which for a decade published
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a stream of articles documenting productivity trends and productivity
dispersion, primarily among plants or firms.

In section “Converging to the Present: Analytical Foundations and
Drivers”, I examine four significant achievements in productivity measure-
ment that have occurred in the present, in which I include the recent past
that began in the middle of the last century and continues to the present
day. In section “Analytical Foundations of Productivity Measurement”, I
recount the development of a suite of theory-based analytical foundations
of productivity measurement. These analytical foundations support alter-
natives to index numbers to measure productivity. In section “Drivers of
Productivity Change”, I survey a development that goes beyond measure-
ment to a search for the drivers of, and impediments to, productivity
growth. I assign drivers and impediments to five categories: quality, tech-
nology, organisation, institutions, and geography. In section “Productivity
Dispersion, Productivity Gaps, Distance to Frontier and Zombies”, 1
explore a rich literature devoted to an analysis of productivity dispersion,
from two occasionally intersecting perspectives, one focusing on resource
misallocation and reallocation, the other focusing on productivity gaps,
distance to a best practice productivity frontier, and the identification of
zombie firms and their zombie jobs. Both perspectives occur primarily
though not necessarily among firms, with adverse impacts on aggregate
productivity. In section “Expanding the Scope of Productivity Analysis
Redux: Inclusive Green Growth”, I explore a revival of the call for
expanding the scope of productivity measurement to incorporate social
impacts, the revival going by a variety of names including inclusive green
growth.

I introduce section “The Future: Confronting Two Challenges of
Transcendent Significance” by observing that at this point we have
amassed data, we have analytical foundations and empirical techniques,
and we have experience gained from applying techniques to data in a
rich variety of environments and circumstances. I then speculate on how
well the developments accumulated to date have prepared us to confront
the future, by reporting the latest information and conjecture on two
challenges of transcendental significance. Much of the relevant literature
is new, and this section is replete with references to working papers.
In section “Productivity and the Pandemic Depression”, I discuss the
COVID-19 pandemic, the deep depression it has spawned, and its relation
to productivity. In section “Productivity and Climate Change”, I discuss
the growing awareness of climate change and its relation to productivity.
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In section “Linkages Between the Two Challenges”, I discuss the linkages
between the two challenges, and the policy options for a green recovery.
The literature on these two challenges and their intersection has accumu-
lated rapidly and is accelerating, and so I arbitrarily conclude this subject
in the middle of 2021. It will be educational to revisit section “The
Future: Confronting Two Challenges of Transcendent Significance””
when the sun finally has set on the pandemic depression. Lovell (2021)
provides an expanded version of section “The Future: Confronting Two
Challenges of Transcendent Significance”.

Finally, in section “Conclusions”, I summarise the survey, take stock of
some important omissions, and hazard a look ahead.

A central message of this unconventional survey is that the purview
of productivity analysis and measurement has widened greatly through its
development, and continues to widen, from its original mainstream focus
on some aggregate measure of national income per capita or per worker.
Productivity analysis has developed in four general directions, each with a
variety of interesting offshoots. First, it has sought, with limited empirical
success to date, to incorporate a more holistic sense of what an economy
generates with its limited resources, and what these resources include.
At the aggregate level, national income has been augmented to include
various indicators of economic well-being, or social economic progress,
or inclusive green growth, or even Gross National Happiness. Some of
these developments appear in sections “Social Concerns” and “Expanding
the Scope of Productivity Analysis Redux: Inclusive Green Growth”.
At the individual business level, it is not what is being produced, but
rather the distribution of the income generated, that has been broad-
ened. An expansion of the distribution of the fruits of productivity growth
from shareholders to myriad stakeholders has been proposed, as busi-
nesses have been endowed with new holistic objectives of corporate social
responsibility (CSR) or environment, social, and governance (ESG). I
regret not covering these micro developments in this survey, because they
have both financial and productivity implications, but the literature is
huge, growing rapidly in the wake of recent initiatives of the US Busi-
ness Roundtable (https://www.businessroundtable.org/policy-perspecti
ves/corporate-governance) and the British Academy (https://www.the
britishacademy.ac.uk /programmes/future-of-the-corporation /), and easy
to find. Second, and perhaps more feasibly from an empirical perspective,
productivity analysis has harnessed economic theory to develop an analyt-
ical approach to productivity measurement that more accurately reflects
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the variety of objectives and constraints actually faced by producers.
Objectives range far afield from the textbook profit maximisation goal,
and many constraints are imposed externally, by the institutional envi-
ronment in which business operates. Constraints vary across jurisdictions,
and they influence aggregate productivity in two ways, by reducing the
productivity of individual producers, and by creating productivity disper-
sion among producers. Some of these analytical developments appear
in section “Analytical Foundations of Productivity Measurement”, and
empirical applications appear throughout the survey, most extensively in
sections “Drivers of Productivity Change” and “Productivity Dispersion,
Productivity Gaps, Distance to Frontier and Zombies”. Third, analyt-
ical techniques have been applied to increasingly detailed databases to
measure productivity, the shape and moments of its distribution, and its
convergence or divergence through time, at both individual firm and
aggregate levels. Empirical findings of large and often growing disper-
sion have spurred interest in the role of public policies that might
reduce dispersion and increase aggregate productivity. These develop-
ments also appear in sections “Drivers of Productivity Change” and
“Productivity Dispersion, Productivity Gaps, Distance to Frontier and
Zombies”. Fourth, productivity analysis has been applied to an investiga-
tion into the causes and consequences of economic depressions, especially
those brought on by pandemics, and to an analysis of the drivers and
impacts of climate change. There exists no more relevant example than
the situation we find ourselves in at the beginning of the third decade
of the twenty-first century, which I examine in section “The Future:
Confronting Two Challenges of Transcendent Significance”.

I conclude this Introduction with some guidance for the reader.
What follows is not a conventional survey of productivity measurement,
assuming such a thing exists, but rather an overview of where the liter-
ature has been and where it is likely to be headed, both guided and
constrained by my own research interests. I intend it to provide a read-
ers’ guide to a somewhat idiosyncratic literature in which productivity
has played, or should have played, or may yet play, a key role, and even
in some situations when productivity has played little or no role. The
idiosyncrasy of the survey is apparent, for example, where I pay more
than passing attention to the role of business management and societal
institutions in influencing productivity, and where I consider seriously
the advantages and drawbacks of expanding the scope of productivity
analysis beyond the market economy. It is also reflected in my reliance
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on unconventional sources in addition to academic books and journal
articles for insights and information. Conventional, although dated to
varying degrees, surveys appear in Hulten (2001), Syverson (2011), and
Grifell-Tatjé et al. (2018a).

FrROM THE PAST TO THE PRESENT

In this section. I cover a lot of chronological ground, from antiq-
uity through the Middle Ages to the dawn of the twentieth century
in section “The Distant Past: Observation from Antiquity to Adam
Smith, Alfred Marshall and A. C. Pigou”. In section “A Mere Century
Ago: Accumulating Methods and Evidence Amidst Emerging Social
Concerns”, I discuss four significant twentieth-century developments,
the construction of index numbers with which to measure productivity
change, the use of index numbers to gather evidence, the birth of a move-
ment to broaden the scope of productivity measurement, and the brief
but influential life of the European Productivity Agency.

The Distant Past: Observation from Antiquity to Adam Smith,
Alfred Mavshall and A. C. Pigon

There was little or no concept of measurement, of resources, produc-
tion, or productivity, in the distant past, but there did exist a practice of
observation that guided subsequent research and, at least in the case of
Alfred Marshall, produced testable hypotheses. I briefly consider modern
research into Antiquity and Maddison’s Merchant Capitalist and Capitalist
epochs in the first three subsections, with an objective not of oftfering a
complete account, but of providing a sense of what has been possible with
such limited resources. I summarise some relevant writings of three giants
from the late eighteenth century through the early twentieth century in
the final subsection.

As a preview of coming attractions, Maddison (2006) reported a 13-
fold increase in per capita income over the past millennium. He attributed
the growth in this indicator of economic performance to three interactive
processes: conquest or settlement of relatively empty areas, international
trade and capital movements, and technological and institutional innova-
tion. These three processes appear frequently in this brief survey of the
distant past.
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Observation in Antiquity

The absence of measurement at the time created a paucity of data that
has severely limited the ability of modern writers to analyse the perfor-
mance of ancient economies. To cite just one example, White (1956),
referring to antiquity in general and Roman agriculture in particular,
lamented the absence of detailed statistical information on which to base
an accurate assessment of economic performance, including such essen-
tial information as quantities of crops, labour input to each, and average
yields per acre of each. The paucity of data is one of four themes perme-
ating modern research into antiquity; consequently, the second theme is
the nearly complete absence of the word “productivity”. The third theme
is the recurrence of culture, institutions, and technology as drivers of
and impediments to ancient economic activity. The fourth theme, one
that does not require detailed information, is the role played by location;
inland agriculture and manufacturing were hampered by inadequate facil-
ities for land transport, while transport by river and sea was neither costly
nor inefficient. The third and fourth themes reappear in section “Drivers
of Productivity Change”.

The data constraint notwithstanding, keen observers have learned
much and written widely about ancient economies. Adam Smith (1776;
Book II, Chapter V) was an early observer of antiquity, writing of the
opulence and industriousness of the ancient Greek, Egyptian, Chinese,
and Indostan empires, “...the wealthiest, according to all accounts, that
ever were in the world...”, attributing the wealth of the latter three to
their superiority in agriculture and manufacturing, although not in foreign
trade. He cited Montesquieu, who wrote that the Egyptians had a super-
stitious antipathy to the sea. In a recent study of ancient Greece, Tridimas
(2019) attributed its growth and prosperity to its institutions, primarily
citizenship and the enforcement of property rights, its culture, including a
positive approach to work, competition, and the accumulation of wealth,
and its location, which gave it access to external trade. He attributed
its eventual decline to its many small city-states, an organisational struc-
ture that prevented the exploitation of scale economies that would have
fostered continued growth. These city-states were often at war, requiring
a reallocation of resources that sapped their growth potential. In his study
of the ancient world, Greene (2000) recounted steady economic growth
in the Greek states and the Roman empire over an extended period,
which he attributed to the existence of legal, administrative, and finan-
cial institutions that enhanced overall economic activity, and the extensive



10  C. A K LOVELL

exploitation of slave labour and the spread of new technology, particularly
in agriculture and mining. Norberg (2020) emphasised the significance
of Rome’s coastal location, writing that not only roads led to Rome, but
shipping lanes as well, and attributed Roman prosperity to its location
and its openness to trade, people, and ideas. Taken together, these studies
illustrate the roles played by the three fundamental sources of economic
growth identified by Acemoglu et al. (2005) as institutions, culture, and
geography.

C. Clark (1940 [1951, Excursus]) actually managed to find some
quantitative evidence, although not of productivity. He quoted exten-
sively from Rostovtzetf (1926), who wrote of epochs of “high economic
development” and “complex economic life” achieved by ancient Egypt,
Babylonia, Rome, and Athens based on their large internal markets,
advanced production techniques, pure and applied science, and slave
labour, impeded only by constant warfare and augmented in Athens by
growing external trade. Clark then amassed a wide array of empirical
evidence in support of Rostovtzeff’s evaluation, consisting mostly of price
and wage data, including data enumerating the purchasing power of the
Greek drachma beginning in 400-375 BC, and the Greek real standard
of living at about the same time.

Summarising, even now we have no information on productivity levels
or changes in the ancient world. However, we do have a wealth of obser-
vation, and very limited quantitative information, on prosperity and some
of its sources, all suggestive of a relatively high level of economic perfor-
mance. It is not difficult to imagine that some of that high performance
reflects high productivity, and that variation in performance across space
and through time reflects productivity growth and decline.

Evidence, 1500-1820 (Maddison’s Merchant Capitalist Epoch)

Maddison (2006) gathered a massive amount of information on the
world economy, from year 1 AD through 1998. For the endpoints
of his merchant capitalist epoch 1500-1820, he reported levels and
average annual rates of growth of GDP per capita, in 1990 interna-
tional dollars using Geary-Khamis multilateral PPPs, for 20 countries,
eight regions, and the world. Depending on how closely employment
tracked population during this period, GDP per capita provides a work-
able approximation to a measure of labour productivity. Regional GDP
per capita levels varied widely in 1500, and national levels even more
so. Average annual rates of growth of GDP per capita also varied widely
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across regions and more widely across nations. Maddison also discussed
in some detail three proximate causes of economic growth and its vari-
ability. Conquest and settlement brought new fertile land and biological
resources and a potential transfer of population, crops, and livestock.
International trade and capital movements expanded domestic markets
that had limited the division of labour and allowed a transfer of tech-
nology. Trade also enhanced the discovery and dissemination of new
technology, particularly in agriculture and maritime navigation.

Other studies of the period exist, including those of Allen
(2000, 2001), who studied “the great divergence” in European real
wages between 1500 and 1750 and dispersion in European agri-
cultural labour productivity from 1300 to 1800, but the message
is consistent. It is one of wide dispersion, through time (and
often in the wrong direction) and across countries. This produc-
tivity dispersion chronicled by Maddison and Allen remains with
us today; see section “Productivity Dispersion, Productivity Gaps,
Distance to Frontier and Zombies”.

Evidence, 1820-1913 (Maddison’s Capitalist Epoch)

Maddison (20006) reported levels and average annual growth rates of GDP
per capita, also in 1990 international dollars using Geary-Khamis multi-
lateral PPPs, during 1820-1870, 1870-1913, and three subsequent time
periods in his capitalist epoch for countries and regions (e.g., Western
Europe, Western offshoots, etc.). World per capita GDP growth accel-
erated relative to the Merchant Capitalist Epoch, from 0.05% pa in
1500-1820 to 0.53% pa in 1820-1870 and 1.30% pa in 1870-1913.
The Western Offshoots (US, Canada, Australia, and New Zealand) led
the way, followed by Western Europe in 1820-1870 and Latin America
in 1870-1913. Inter-country and inter-region dispersion continued, char-
acterised by divergence rather than convergence. Maddison (2005; Table
7b) was able to report average annual growth rates of total productivity
for just three countries, the UK, the US, and Japan, for the same time
periods, with similar results.

Earlier scholars lacked data and techniques available to Maddison, but
nonetheless produced considerable evidence on productivity around the
world. C. Clark (1940 [1951]) reported that real national income per
person in work and per hour worked nearly doubled and more than
doubled, respectively, in the US from 1800 through 1913. These two
measures of labour productivity nearly tripled and more than doubled
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in France during the same period. Roughly similar findings for other
countries generally refer to shorter time periods within the Capitalist
Epoch. Fourastié (1951) amassed a different sort of evidence, much more
detailed and more narrowly focused on France from 1830. In addition to
real national income per capita, which increased nearly fourfold through
1900, he reported hourly and daily wage rates of unskilled labour and
prices of a wide range of consumption goods, from which he constructed
price-based productivity indices; see section “Methods” for a brief treat-
ment of price-based productivity indices. With an eye toward what he
called the level of living, he also reported trends in the number of doctors
and dentists, consumption of various commodities, and several modes of
transport services available.

Observations of Adam Smith, Alfred Marshall, and A. C. Pigon

Adam Smith (1776 [1937]) scattered apt remarks and observations
throughout The Wealth of Nations. He devoted Book II, Chapter III
to productive and unproductive labour and the accumulation of capital,
where he got to the heart of labour productivity and two of its determi-
nants. I am not the first to quote Smith on the matter Spengler (1959;
405) and Kendrick (1961; 3) predate me by a wide margin with identical
quotations], but the following phrase differs sufficiently from previous
quotations to justify its place here:

The annual produce of the land and labour of any nation can be increased
in its value by no other means, but by increasing either the number of its
productive labourers, or the productive powers of those labourers... The
productive powers of the same number of labourers cannot be increased,
but in consequence either of some addition and improvement to those
machines and instruments which facilitate and abridge labour; or of a more
proper division and distribution of employment.

Smith then wrote of “...perversion of the annual produce from main-
taining productive to maintain unproductive hands...” and of “...absolute
waste and destruction of stock...”, both of which retarded capital accu-
mulation; in today’s parlance, they created productivity gaps, a topic I
survey in section “Productivity Dispersion, Productivity Gaps, Distance to
Frontier and Zombies”. However, Smith’s fundamental insight was that
the productivity of labour can be increased in three ways, by employing
additional complementary capital, by improvements in technology, or,
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famously, by the division and reallocation of labour. This insight encour-
ages me to skip back to Smith’s Book I, Chapters I-1II. There he wrote
in some detail and depth of the importance of the division of labour
(“[t]he greatest improvement in the productive powers of labour...seem
to have been the effects of the division of labour.”), its origins in improved
dexterity, time savings and innovation, and its limitation by the extent of
the market, which can be expanded through improvements in transporta-
tion and infrastructure (he emphasised the significance of water-carriage)
and lowered trade barriers. In today’s literature, the division of labour
is replaced by the reassignment of zasks, with the same importance, as I
explore in section “Social Concerns”.

Leaping ahead a century, Alfred Marshall (1890 [1961]), like Smith
before him, wrote of the economic strengths and weaknesses of the
ancient Greek and Roman civilisations. However, his relevant contribu-
tions came in Book IV, in which he wrote of the agents of production,
which he counted as two (nature and man), three (land, labour, and
capital), or four (three plus industrial organisation). His treatment of
organisation raised several issues of current importance. A short list
includes claims that good organisation improves productive efficiency; the
division of labour improves performance; the concentration of specialised
industries in particular localities (agglomeration today) improves perfor-
mance; large-scale production confers many advantages to business; and
these advantages can be constrained or eliminated by government inter-
ference with the freedom of industry. All rely on good management, to
which he devotes Chapter XII, and which has re-emerged in the twenty-
first-century literature, as I explore in section “Drivers of Productivity
Change”.

The third giant, A. C. Pigou (1920 [1960]), made no observations of
Antiquity, and it is hard to find reference to productivity in nearly 900
pages of his treatise on welfare. Nonetheless, he contributed much of
substance directly related to this survey. Pigou characterised the national
dividend as things purchased with money income, and considered it as
a component of economic welfare, that part of total welfare that can be
measured with money. He treated increases in the dividend as enhancing
economic welfare, provided that the size of the dividend accruing to the
poor is not thereby diminished. However, he was careful to state that
a reduction in the inequality of the distribution of the dividend would
increase economic welfare only under certain conditions concerning the
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definition of inequality. He then devoted the entire Part IV to the distri-
bution of the dividend. In Chapter IV he argued that all inventions, both
product and process, must increase the dividend, although because they
“...may change the parts played by capital and labour in production in
such a way as to make labour less valuable relatively to capital...”, they
do not necessarily increase the share of the dividend accruing to labour,
which he loosely associated with the poor. This argument predates the
current decline in labour’s share of national income in many economies.

Pigou’s distinction of the national dividend from economic welfare
provides a good backdrop for the concurrent expression of social concerns
surveyed in section “Social Concerns”, and for the later revival of the issue
in the inclusive green growth movement surveyed in section “Expanding
the Scope of Productivity Analysis Redux: Inclusive Green Growth”. His
analysis of the distributional impacts of invention underpins the never-
ending “machinery question” covered in sections “Social Concerns” and
“Productivity and the Pandemic Depression”. His analysis of what we
now call “Pigouvian” taxes and subsidies to increase the dividend by
correcting for resource misallocation has found prominent application to
environmental issues.

A Meve Century Ago: Accumulating Methods and Evidence Amidst
Emerging Social Concevns

Four significant, and related, developments occurred during the last
century. The first is the creation of index numbers, which was funda-
mental to gathering evidence. The second and third reflect an interest
in gathering evidence on productivity trends, amidst growing concerns
about the association of productivity growth with social progress. The
fourth was the unfortunately brief appearance of the European Produc-
tivity Agency and its house journal Productivity Measurement Review,
which publicised productivity relationships at the level of the individual
firm, and even its plants and its production processes.

Methods
Evidence on aggregate productivity change in section “Evidence” is based
on the use of index numbers to track productivity developments through

time. The following brief overview of index numbers and their origins
owes much to Diewert (1993) and Balk (2008), both of whom provide
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references to authors and their indices, after converting their price indices
to quantity indices.
In 1823. Lowe proposed a fixed-base quantity index of the form

1 .. . . . .
0 = (:;LU), where 4! and 2° are quantities in successive time periods,
but he left the time period for the price weight » unspecified. Subse-

quently, Laspeyres specified base period price weights » = #, so that
Qr = % , and Paasche specified comparison period price weights » =

71, so that Qp = (%) Marshall and Edgeworth proposed arithmetic

mean price weights » = 7 = (0 + »1), with Qug = % . Sidg-
wick and Bowley suggested the arithmetic mean of Q7 and Q p, with
Osg = 1&[(%) + <%)], and Fisher recommended the geometric

0 710

index the “ideal” index, and his index dz)es indeccql perform best according
to the test approach and the economic approach to evaluating the perfor-
mance of index numbers; Balk (1995, 2008) and Diewert (in press a, b)
provide authoritative treatments of the two approaches.

It is easy to build a productivity index from any of the quantity
indices above. I follow tradition by defining a productivity index as an
output quantity index divided by an input quantity index. For example, a
Laspeyres productivity index is

mean of Q1 and Q p, with O = [(%) X (M)]l/z. Fisher called his

X _XL(xl,xO,wO)_ ( Oé)’
wrx

a Paasche productivity index is written similarly, and a Fisher productivity
index is
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in which y! and »° are output quantities with prices p! and p°, and x! and
x¥ are input quantities with prices w! and w°. The other quantity indices
become productivity indices in the same fashion. An important feature
of productivity indices is that they are empirical, functions of observ-
able quantities and prices (in principle, although not always in practice),
and can be calculated directly from the data without having to estimate
anything. Most contributors I survey in section “Evidence” use index
numbers to calculate productivity change.

In the above analysis, prices are used to weight quantity changes.
However, Hamilton (1944) observed that historical price series dating
back to the twelfth century “...are the oldest continuous objective
economic data in existence”, and contended that these data can reflect
“...much better than can other attainable historical data changes in
relative technological efficiency...” Subsequently a minority of writers,
apparently unaware of Hamilton’s contention, also have argued that
price changes may provide useful measures of productivity change. Dayre
(1951) and Fourastié (1951) both observed that real wages move propor-
tionately with labour productivity, and H. S. Davis (1955; 29-30) claimed
that “..productivity change and price change are in effect different sides of
the same coin...” Fourastié¢ (1951, 1957) stressed the “scientific impor-
tance and practical utility” of productivity measurement based on prices,
which he called “indirect” productivity measurement, and he illustrated
his point with detailed historical studies of trends in real wages (e.g.,
approximately 50 Indices of Change in the Level of Living During
the First Century of Technical Progress in France [1830-1955]). Siegel
(1952, 1955) was perhaps the first to specify an explicit price-based
productivity index, essentially by reversing the roles of prices and quanti-
ties in the above analysis. He created a Laspeyres price-based productivity
index

*Ow!

(K> _wawwe) (i)

PILT Pt T ()

yOp0

and a Paasche price-based productivity index is created similarly. The
geometric mean of the two is a Fisher price-based productivity index
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It is easy to show that Wr/Pr = Yp/XFr defined above if, and
only if, R /C! = R%/CP which requires Georgescu-Roegen’s (1951)
“return to the dollar” to remain constant through time. This equality
holds in national accounts, in which the prices used to weight quantity
changes are implicit deflators that convert nominal values to real values.
This equality also provides the foundation for primal and dual growth
accounting, pioneered by Jorgenson and Griliches (1967). However,
errors of measurement in the national accounts or distorted prices in other
contexts can cause the equality to fail, which implies that one index is
more accurate than the other. This possibility motivated Hsieh (2002) to
adopt a dual growth accounting approach to productivity measurement
in East Asian countries, and he found overstated investment expendi-
ture in Singapore the source of error in the primal growth accounting
productivity estimate. Fernald and Neiman (2011) argued that measure-
ment errors and distortions caused the two indices to diverge from one
another, and from true productivity growth, in Singapore. Further theo-

retical and empirical research into price-based productivity measurement
would add value.

Evidence
Early Estimates of Labour Productivity
Numerous early contributors to Monthly Labor Review reported on
studies of productivity dispersion across establishments, and even across
specific production processes within establishments that do not require
index number techniques with which to aggregate process outputs. These
studies, conducted under the auspices of the Bureau of Labor Statistics of
the US Department of Labor, provided early illustrations of what can be
achieved with cross-sectional samples collected at the establishment level.
They are precursors to subsequent focused-sample productivity studies,
dubbed “insider econometrics” by Ichniowski and Shaw (2012).

One of the earliest contributors was Squires (1917), who reported
results of a study of labour productivity in the lumber industry. The
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study was based on data collected from 26 sawmills across more than 20
distinct manufacturing processes that stretched “...from tree to lumber
pile” for a selected period of operation. In one particularly detailed inves-
tigation conducted over 11 representative logging establishments and
five processes, it was possible to calculate labour productivity (output in
board feet per man-hour) and unit labour cost (wages per board foot).
Inter-establishment variation in labour productivity ranged from 5:1 to
50:1 across processes, and in unit labour cost ranged from 4:1 to 12:1
across processes. Squires attributed an unknown part of this dispersion
to variation in the size of trees and in the dimension of lumber sawed,
and to variation in methods of production and handling of the finished
product. Squires’ attribution illustrates an age-old challenge in produc-
tivity measurement—the role played by omitted variables in the search
for the sources of measured productivity change.

Two decades later the story remained unchanged; only the setting
was new. Stern (1939) reported results of a study of the boot and shoe
industry from 1923 to 1936. The study reported labour productivity
(number of pairs of shoes produced per man-hour) in 43 plants, 23
making men’s shoes and 20 making women’s shoes. In 1923, labour
productivity varied by a factor of 4.3:1 in men’s shoes and by a factor
of 2.4:1 in women’s shoes. By 1936, productivity dispersion increased to
5:1 for men’s shoes and 4.3:1 for women’s shoes. A distinctive feature
of this study was its explanation for such wide and persistent inter-plant
productivity dispersion. Among the likely sources cited were variation
in management efficiency and in the skill and dexterity of individual
operators, variation in the installation and use of specialised machinery
economical only in large plants, variation in the rate of capacity utili-
sation of machines, and variation in shoe style (“particularly women’s
shoes”). Many of these sources reappear in modern studies of productivity
dispersion and its persistence.

A notable feature of these two studies is that both were focused-sample
inter-firm comparisons that did not require index number techniques.
However, most studies of the period were aggregate time-series studies
of productivity change, which did require index number techniques to
aggregate variables. I survey a few of these studies, not primarily to
recount their estimates of productivity change, but rather to illustrate
different features of productivity measurement each study raises.

In his path-breaking study of US manufacturing industries over the
period 1899-1914, Mills (1932) used a variant of Fisher’s “ideal” index



1 PRODUCTIVITY MEASUREMENT: PAST, PRESENT, AND FUTURE 19

numbers to calculate changes in the physical volume of production Gy =
3.9% pa, the number of wage earners G, = 2.2% pa, and output per wage
earner Gy, = 1.7% pa. Consequently, increases in labour productivity
accounted for nearly half of output growth. Mills also calculated changes
in the number of establishments Gg = 1.1% pa, and output per establish-
ment Gy /g = 2.8% pa, indicating that output growth exceeded growth in
the number of establishments. He attributed these trends to technical and
mechanical improvements, enhanced skills, increased technical efficiency
(perhaps reflecting the influence of Taylor’s scientific management), and
to a trend toward large-scale production. He also calculated the same
indices for 1913-1923 and 1923-1929.

Fabricant (1940) extended Mills’ time series of US manufacturing
industries to 1899-1937 and reoriented his focus from labour produc-
tivity to output per capita. He used a variant of the Marshall-Edgeworth
index to calculate output growth Gy = 3.5% pa (manufacturing output
did not recover to its 1929 level until 1937), population growth Gp =
1.4% pa, and output per capita growth Gy ,p = 2.1% pa. He did not relate
employment growth to population growth, and consistent with the title of
his book he paid scant attention to productivity. Two years later, Fabricant
(1942) extended his study period to 1899-1939 and reversed course by
sharpening his focus to unit labour requirements, the reciprocal of labour
productivity. He distinguished total employment from wage earners and
incorporated declining trends in working hours per week for both. He
calculated a decline of over 50% in the number of wage carners per unit
of output, and a much stronger decline in wage earner hours per unit
of output. He traced these declines to several causes, including automa-
tion, “novel and flexible” sources of power, giant factories, nationwide
industrial networks, and revised methods of labour management, many
of which remain relevant nearly a century later.

It is difficult to do justice to the breadth, depth, and historical coverage
of C. Clark’s Conditions of Economic Progress (Clark 1940, 2nd ed. 1951).
In one exercise, he calculated labour productivity (real product per hour)
for over 30 countries over varying long periods, 1800-1947 for the US,
1860-1947 for Great Britain, and 1789-1938 for France, with output
measured by real national income expressed in International Units (i.e.,
USD, 1925-1934) and labour measured by hours worked. In a second
exercise, he calculated labour productivity over varying periods for most
of the same countries (including Palestine, Arabs, and Jews) in each of
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three sectors of the economy, primary [agriculture (e.g., the distribu-
tive cost of a kilo of peas in Brisbane, Australia, in 1939, retailing only),
forestry and fisheries], manufacturing (excluding small scale), and tertiary
(commerce, transport, services, and small-scale manufacturing). In both
exercises, he found wide variation in productivity, both through time and
across countries. Fourastié (1957; 97) praised Clark for the breadth of his
research, writing that his 1940 book “...marked the beginning of a new
era in economics, if only because of the systematic use made of statistical
measurement, and the importance attached to the concept of long-
term progress”. He then criticised Clark for confusing value productivity
with physical productivity, a recurring problem in productivity analysis
explored in depth by Bartelsman and Wolf (2018).

Later Estimates of Total Productivity
Perhaps the first to generalise labour productivity to total produc-
tivity was George Stigler (1947), recipient of the 1982 Nobel Prize
in Economic Sciences—members of this august group are honoured
with given names—who calculated indices of labour productivity, capital
productivity, and total productivity for a dozen US manufacturing indus-
tries over the period 1904-1937. He found wide variation in each
productivity measure across industries and emphasised two features: the
importance of total productivity, highlighted by the wide difference
within each industry between trends in labour productivity and capital
productivity; and the impact of the choice of base period, illustrated by
modest (with one exception) differences in total productivity with 1937
weights and 1904 weights, a twist on the Paasche-Laspeyres spread.

Schmookler (1952) estimated changing efficiency of the aggregate
US economy over the decadal period 1869-1878 to 1929-1938. He
defined output as gross national product and input as the weighted sum
of labour, land, capital, and enterprise, all expressed in 1929 prices. Enter-
prise was a novel input, constructed as a function of managerial labour and
entrepreneurial capital. Total productivity grew at 1.36% pa (with labour
measured in man-hours) or 0.92% pa (with labour measured in man-
years), the difference highlighting a trend toward a declining work week.
Productivity gains accounted for about half of growth in gross national
product over the entire period.

Abramovitz (1956) also tracked the efficiency of the aggregate US
economy through the updated decadal period 1869-1878 to 1944
1953. He defined output as real net national product per capita and real
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input as a weighted sum of labour (man-hours) and capital (land, struc-
tures, durable equipment, inventories, and net foreign claims) per capita.
He estimated real output to have tripled, while real input increased by
just 14%, and so growth in total productivity accounted for almost the
entire increase in real output over seven decades. This result is some-
what surprising in light of previous findings based on similar data. It does
however anticipate Solow’s (1957) memorable 87%% productivity contri-
bution. Abramovitz characterised total productivity equally memorably as
“...the complex of little understood forces...” and as “...some sort of
measure of our ignorance about the causes of economic growth...” (pp. 6,
11). This acknowledged ignorance has spawned a flood of research, some
of which is surveyed in section “Drivers of Productivity Change”.

Kendrick (1956) investigated productivity trends in the US economy
over the period 1899-1953. He defined output as real private domestic
product, labour as man-hours worked, and capital as the real value of
land, plant, equipment, and inventories. Like several previous contribu-
tors, he acknowledged the inability to account for quality changes, and
he compared total productivity growth with partial productivity growth
associated with labour and capital, with the usual qualitative finding.
Kendrick estimated total productivity growth of 1.7% pa, just over half
the average rate of growth of real output of 3.3% pa. Soon there-
after, Kendrick (1961) added four years to his previous data and found
essentially the same rate of total productivity growth of 1.7% pa, which
continued to account for approximately half of output growth. However,
for our purposes the two most interesting contributions of his 1961 study
have been largely ignored, and warrant mention. The first was Kendrick’s
demonstration that the estimated rate of growth of the ratio of average
total factor price to average product price is “identical” to the estimated
rate of total productivity growth. This result, which holds only under
the constant profitability condition, anticipates the development of price-
based productivity indices, which I summarise in section “Methods”. The
second was Kendrick’s use of information on input price trends to appor-
tion the benefits of productivity growth to labour (99%) and capital (1%)
during the period, a dramatic departure from current concerns about the
recent decline in labour’s share of national income. Kendrick’s interest
in the ability to use price changes to measure productivity change, and
to examine the distribution of the fruits of productivity growth, set him
apart from most previous and many subsequent writers.
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Social Concerns

Concerns about the limitations of national income and related economic
measures were expressed forcefully by Simon Kuznets (1934;7), the 1971
recipient of the Nobel Prize in Economic Sciences. Kuznets argued that
“...[t]he welfare of a country can... scarcely be inferred from a measure-
ment of national income...”; to which H. S. Davis (1947; vii) added
“[n]o more important objective could be set...than that of increasing
our knowledge of the conditions which stimulate and those which retard
economic progress”. These concerns feature prominently in Gordon’s
(2016) history of American growth, which lacks the expected qualifier
“economic” in its title and is subtitled “The U.S. Standard of Living since
the Civil War”. His treatise claims that output measures miss the extent
of revolutionary change from 1870 to 1940 and, to a lesser extent, since
1940, and documents massive improvements in the standard of living not
incorporated in national income statistics.

The concept of social economic progress, social progress with an
economic core that H. S. Davis (1955) contended was necessary, has its
roots in the early twentieth century. Somewhat belatedly, it has inspired
a twenty-first-century revival of the development of holistic approaches
to productivity measurement, both micro (CSR, ESG, and related issues
I do not cover in this survey) and macro (the OECD’s inclusive green
growth programme, which I survey in section “Expanding the Scope of
Productivity Analysis Redux: Inclusive Green Growth”).

The Machinery Question
Early twentieth-century social concerns were perhaps first voiced in
numerous contributions to the Monthly Labor Review. These contribu-
tions raised two issues of importance to labour, a core component of
productivity analysis. The first chronicled injuries to, and threats to the
health of, labour in industry. The second chronicled “technological unem-
ployment”, the displacement of labour by machinery, and the challenge
of re-employment of displaced labour, a concern first raised well before
the Great Depression, and most notably voiced during the Great Depres-
sion by Keynes (1931), who worried about the impact of technological
unemployment on the economic possibilities for his grandchildren. The
issue remains relevant to this day, in no small part because the productivity
element of the issue has tended to remain in the background.

Some early writers acknowledged that technological improvements
brought productivity gains that created displacement; to cite one example,
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a study of the displacement of labour by machinery in the glass industry
(Monthly Labor Review 24:4, April 1927) found gains in labour produc-
tivity across several processes and products. In one extreme case of glass
blowing, a process unchanged from that used in Egypt some 3,500 years
ago, the introduction of new machinery raised labour productivity 41-
fold, reduced employment, and altered the nature of employment from
skilled glass blowers and unskilled child labour to mechanics and machine
operators. Soon thereafter in the same Review, J. J. Davis (1927), US
Secretary of Labor at the time, surveyed extant studies of the magnitude
of labour productivity gains across numerous industries, and wondered
“[w]hat are we doing with the men displaced?” In the case of telephone
operators, it was young women who were displaced, in one of the largest
automation shocks of the early twentieth century; this displacement and
its labour market impacts, but not its productivity impacts, have been
examined by Feigenbaum and Gross (2020). The widespread introduc-
tion of new technology brought both labour displacement and changing
skill requirements, as well as productivity improvements, two features that
remain relevant nearly a century later.

During and immediately following the Great Depression, many other
writers understandably ignored the productivity gains created by mecha-
nisation and concentrated on the possibilities for reabsorption of displaced
labour by new and growing industries, in some instances reinforced
by barriers to immigration. Lubin (1929a, 1929b), Myers (1929), and
Clague and Couper (1931) conducted similar studies of technological
unemployment, recording information such as the duration of unemploy-
ment, the source and destination industries of re-employed workers, the
age distribution and geographic mobility of displaced workers, and their
earnings distribution while displaced. Lubin noted that “newer” indus-
tries and trades were absorbing workers displaced from “older” industries
and trades prior to the Great Depression, providing an early example
of productivity-enhancing reallocation discussed in section “Produc-
tivity Dispersion, Productivity Gaps, Distance to Frontier and Zombies”.
Jerome (1932, 1934) summarised these and many more studies of the
time, and usefully distinguished productivity-enhancing from labour-
displacing mechanisation, and provided a detailed discussion of the
potential skill bias of each, providing an early example of complemen-
tarities discussed in section “Productivity Dispersion, Productivity Gaps,
Distance to Frontier and Zombies”.
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The machinery question was considered to have such broad public
interest that Scientific American (1982) devoted an entire issue to “The
Mechanization of Work”. Berg (2010) has released a fascinating political
economy history of the question.

More recently, The Economist (25 June 2016, 26 August 2017) has
traced the job-creating dimension of technical progress back to the
arrival of the first printed books in the 1470s, even before Ricardo
raised the “machinery question” in the nineteenth century. Mokyr et al.
(2015) have surveyed the long history of the machinery question and
the resulting “technological anxiety” from the industrial revolution to the
Great Depression. The machinery question has long been a contentious
issue in agriculture, in which enormous productivity gains from mecha-
nisation came simultaneously with comparably large labour displacement.
The introduction of the mechanical cotton picker in the American south
in the 1940s spawned labour displacement in the form of a wave of
black migration to the northern industrial cities (Lemann [1991], who
reported that “...picking a bale of cotton by machine cost the farmer
$5.26 and picking it by hand cost him $39.41”). The question even led
to an ultimately unsuccessful court case threatening agricultural mechani-
sation research, and hence agricultural productivity as well as agricultural
employment, in the late twentieth century (Martin and Olmstead 1985,
Los Angeles Times 1989).

The current literature on the machinery question is large and growing,
with studies of automation, information technology, artificial intelligence,
and robotics consistently finding both productivity gains and reduced
employment in originating industries and exploring the implications for
aggregate employment. Arntz et al. (2016) distinguished heterogeneous
tasks within occupations from occupations themselves and concluded
that automation is unlikely to destroy large numbers of jobs, with just
9% of OECD jobs at risk. Additionally, they argued that the introduc-
tion of new technologies may have two secondary effects, switching of
tasks within occupations and additional job creation. Autor and Salomons
(2018) expanded on the job creation possibilities, by distinguishing
direct from indirect effects of automation. They found that automa-
tion enhances total productivity and reduces employment in originating
industries, but that the direct employment losses are offset by indirect
employment gains in upstream and downstream industries and by induced
increases in aggregate demand through final demand and composition
effects. In a series of closely related studies, Acemoglu and Restrepo
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(2018, 2019, 2020) and Graetz and Michaels (2018) have examined
the impacts of productivity-enhancing automation on employment. All
combine a task-based framework with a decomposition strategy that allo-
cates employment change to a direct displacement effect and a variety
of indirect effects, including a reinstatement effect that captures the re-
employment concerns of earlier writers. The indirect effects include the
introduction of new technologies that create new tasks in which labour
has a comparative advantage, increasing both productivity and employ-
ment. Empirical evidence is mixed, but a common finding is one of net
productivity gains, small net employment gains or losses, and a strong
skill bias to employment changes.

In a continuing series on the future of work, McKinsey & Company
(multiple dates) optimistically predicted automation would boost global
productivity growth by up to 1.2% pa, contribute to the solution of a
range of societal challenges, and transform the nature of work. Autor et al.
(2019) tempered McKinsey’s optimism a bit, but only by conditioning
similar predictions. The authors emphasised that not all productivity-
enhancing technologies displace workers, and not all innovations that
displace workers raise productivity, and they stressed the necessity of
“...integrating technology with complementary innovations in work
systems and management practices...” that magnify the productivity
benefits of new and emerging technologies such as artificial intelligence
and robotics. The emphasis on complementarities between new tech-
nology and work systems and management practices permeates current
research, as exemplified by the OECD (2019), Gal et al. (2019) and
Sorbe et al. (2019). These studies stressed the crucial role of management
in harnessing new technology and suggest the hypothesis that new tech-
nologies can be managed more or less productively. Bloom et al. (2012)
have tested this hypothesis, using two large micro panel data sets that
enabled them to compare the performance of UK establishments owned
by US multinationals, establishments owned by non-US multinationals
and purely domestic establishments. They found establishments owned by
US multinationals obtained higher productivity than either other group,
a difference they attribute largely to superior US “people management”
practices that enable US establishments to exploit I'T more productively.
I return to a more inclusive survey of the role of management in driving
productivity gains in section “Drivers of Productivity Change”, and to
a discussion of artificial intelligence as a general-purpose technology and
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its likely impact on productivity growth in section “Productivity and the
Pandemic Depression”.

Social Economic Progress

More general social concerns centred on whether conventionally
measured productivity gains were sufficient for achievement of a more
inclusive objective of social economic progress (another old issue recently
rediscovered, and briefly recounted in section “Expanding the Scope of
Productivity Analysis Redux: Inclusive Green Growth”). Fagan (1935)
was an early proponent, defining economic progress as increased produc-
tion accompanied by increased leisure, reduced natural resource deple-
tion, and an “ever wider” distribution of productivity-generated wealth.
C. Clark (1940; Chapter 1) proposed a similarly broad definition of
economic progress, emphasising an increase of leisure, a “just” distribu-
tion of the fruits of productivity growth, the security of livelihoods, and
a reduction in the “wasting” of natural assets such as minerals, timber,
and the natural fertility of soils and pastures. He recognised that some of
these objectives may be mutually inconsistent. H. S. Davis (1947) argued
that productivity growth was necessary, but not sufficient, for economic
progress. Among his additional requirements were an appropriate provi-
sion of seed capital for future production, relatively rapid re-employment
of displaced labour and other resources, an increase in leisure, a “bal-
anced” distribution of income, and an avoidance of wasteful use of natural
resources. Spengler (1949) wrote of socio-economic growth, and distin-
guished economic advance from socio-economic improvement, citing
exhaustion of non-reproducible natural resources as separating the two
concepts and noting that soil-exhausting agricultural practices have been
advanced as an explanation for the decline of ancient Rome. Writing
in the same volume, J. M. Clark (1949) asked whether quantitative
growth provided a fair index of real economic advance. In his reply
to his own rhetorical question, Clark distinguished “sound and self-
sustaining” growth from “unsound parasitic” growth, citing the wasting
of the heritage of non-reproducible natural resources.

An obvious challenge arises, one that was not adequately addressed,
and indeed largely ignored, by these early proponents of social economic
progress. How does one define, and then measure, components such
as a just distribution of income, adequate health and leisure, environ-
mental degradation and exploitation of natural resources, or economic
activity carried out in the household? Gary Becker, recipient of the 1992
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Nobel Prize in Economic Sciences, was a founder of modern household
economics, writing extensively on household consumption, production,
and time allocation; he summarised his contributions to this and other
fields in Becker (1993). Ahmad and Koh (2011) have begun the process
of incorporating non-marketed housechold activity into the accounts, and
Schreyer and Diewert (2014) have provided theoretical foundations for
their incorporation. Income accountants around the world have estab-
lished satellite accounts. However, integrating them with core accounts
that would enable a systematic broadening of the conventional concept
of total productivity remains work in progress. A consortium led by
the United Nations has made valuable progress, with the 2008 System
of National Accounts United Nations (2009) suggesting the structure
of satellite accounts for tourism, the environment, health and unpaid
household activity, which addresses some of the components of social
economic progress. The United Nations also has produced the System
of Environmental-Economic Accounting 2012 (United Nations 2014).

The Brief Flourishing of the European Productivity Agency

The European Productivity Agency was established by the Organisation
for European Economic Cooperation in 1952, began operating in 1953,
and ceased operations in 1961. During this time, it published Productivity
Measurement Review, which contained summaries, often anonymous,
of empirical productivity-related studies of two often overlapping sorts,
with an objective of disseminating knowledge of best management prac-
tices. Both focused on productivity dispersion, reduction in which would
enhance overall performance. The first consisted of inter-firm and inter-
plant productivity comparisons, usually of labour productivity and always
very detailed, reminiscent of those reported previously in Monthly Labor
Review. One surveyed study conducted by the Netherlands Central Office
of Statistics (Productivity Measuvement Review 7, November 1956) illus-
trates the first sort. It tracked labour productivity dispersion among
12 Dutch bicycle manufacturers over six quarters during 1954-1955.
For example, man-minutes of direct labour per unit of product were
recorded across eight departments and ten operations. Inter-firm produc-
tivity dispersion was “striking”, ranging from 1.7:1 (tyre-fitting) to 16.4:1
(front forks). A glaring omission from the comparison, acknowledged
by the authors and a serious and continuing threat to many produc-
tivity comparisons, was a control for the type of bicycle manufactured.
The second concerned variability of financial performance by examining
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cost structures and pyramids of financial ratios, the latter building on
the duPont triangle approach to decomposing variation in return on
assets. A surveyed study conducted by three national productivity insti-
tutes (Productivity Measurement Review Special Number October 1961)
illustrates the second sort. It conducted an inter-firm comparison of the
performance of 23 shoe-manufacturing firms in 1957. A total of 51
performance criteria were recorded, ranging from labour productivity and
unit cost to the three components of the duPont triangle (return on assets
= return on sales x asset turnover). Again, inter-firm performance disper-
sion was large. Labour productivity (pairs of shoes/hours worked) ranged
from 0.20 to 1.79, and ROA ranged from —2.0 to implausible 31.3 and
38.4, illustrating a recurring problem: an unknown portion of observed
dispersion in the 51 criteria was attributed to a failure, or inability, to
account for variation in the type and quality of shoe produced.

Like the Monthly Labor Review before it, the Productivity Measurement
Review contained cross-sectional focused-sample comparisons of micro
units. Neither required index number techniques, but both could have
benefited from the analytical techniques the next section surveys.

CONVERGING TO THE PRESENT:
ANALYTICAL FOUNDATIONS AND DRIVERS

By the mid-twentieth century, we had a suite of index numbers with
which to calenlate productivity, and mathematical programming and
econometric tools (not covered in this survey) had been developed with
which to estimate productivity, but we lacked analytical models to struc-
ture and provide theoretical economic foundations for our estimation.
Recent economic approaches to productivity measurement have gained
in popularity and serve as a useful alternative to the older index number
approach.

A virtue of both the index number approach in section “Methods” to
productivity measurement and the analytical approaches to productivity
measurement in section “Analytical Foundations of Productivity Measure-
ment” is that both can be decomposed into a set of drivers of productivity
change. A further advantage of the analytical approach is that each func-
tion can be decomposed, in ratio form, difference form or both, into a
productivity change component and another component. This is a partic-
ularly useful property of parametric value functions, the decomposition
of which can quantify the financial contribution of productivity change
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to change in alternative measures of business financial performance. In
addition, the productivity change component can be further decomposed
into various drivers of productivity change, yielding a two-stage decom-
position of value change. This feature contrasts with productivity indices,
which are not measures of financial performance and can only be decom-
posed into a set of drivers of productivity change. Balk et al. (2020)
provide a detailed analysis of the methodology and the estimation proce-
dures for both index number and analytical approaches to productivity
measurement.

Analytical Foundations of Productivity Measuvement

Analytical approaches to productivity measurement were developed well
after the index number approach. Each analytical approach was developed
initially within a cross-section context, which is incapable of estimating
productivity change through time, although it can estimate productivity
variation across firms. Extension to a time-series context with the objec-
tive of estimating productivity change came later. Many analytical models
exist, and all can be adapted to a time-series context in which productivity
change measurement is feasible. I discuss some of the more prominent
models below.

Parametric Production Functions

Perhaps the first parametric function was a production function intro-
duced by Cobb and Douglas (1928). Their function, still widely used
empirically nearly a century after its publication, can be written as y =
AK®L'~ with y a single output, K and L capital and labour inputs,
and A > 0 and 0 < a < 1 parameters to be estimated. A problem with
this function, originally noted by Mendershausen (1938) is that it lacks
a time dimension, making it unsuitable for the estimation of produc-
tivity change. Griliches (1996) cited Jan Tinbergen (1942), co-recipient
of the first Nobel Prize in Economic Sciences in 1969, as the first to
add such a shifter to the Cobb-Douglas production function, writing
P =a'L»K'~*. However, when he estimated this function using data on
the US economy during 1919-1938, he judged the estimated coefficients
unacceptable. Perhaps as a result, a blizzard of empirical applications soon
followed. Among the first was Tintner (1946), who estimated the same
production function with a time trend, which turned out to be plausible
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and highly significant, for the US economy during 1921-1941. Some-
what later Robert Solow (1957), the 1987 recipient of the Nobel Prize
in Economic Sciences, then showed how to append a time shifter to any
production function. Solow simply made A a function of time and wrote
y = A(¢)f (K,L), from which it follows that

Iny=InA@#) +oalnK + (1 —a)InL

and

Gy =Ga+eyxGk +e,.GL,

with G indicating a growth rate and ¢ indicating a partial elasticity, both
of which are unobserved. Under an assumption that inputs are efficiently
allocated, partial elasticities are equal to cost shares, and this expression
becomes

Ga=Gy—[SkGk +8.GL1 =Gy —SkGk/L,

with § indicating a cost share, which is observed. Solow calibrated
this expression to aggregate US data over 1909-1949, from which he
concluded that 87%% of growth in output per man-hour was attributable
to G 4, which he called “technical change”. This left only 12%4% to capital
deepening. Another blizzard of empirical applications ensued, with most
subsequent writers following a slightly different strategy, by treating the
expression for Gy or G,/ as an equation to be parameterised and esti-
mated. Either way, the exercise results in an inference about the famous
“Solow residual” G4, which provides an approximation to 7 /X, the
productivity index obtained as the ratio of an output quantity index
to an input quantity index. Notice three features of G4: it does not
require price information, whereas 7' /X does; it requires a single output,
whereas 7 /X does not; and it supports a decomposition of observed
output growth into the relative contributions of productivity change and
input growth or, equivalently, a decomposition of labour productivity
growth into the relative contributions of productivity growth and capital
deepening.

Four observations are appropriate. First, the restriction to two inputs
can be relaxed. Second, the production function above satisfies constant
returns to scale, a restriction that can be relaxed by allowing the sum
of the exponents to differ from unity. Third, the expression for Iny
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is linear in InK and InL and provides a first-order approximation to
the true but unknown technology. The approximation can be improved
by adding squared and cross-product terms to the expression for Iny,
providing a second-order approximation to the technology. To many
scholars’ embarrassment, it took 43 years for this seemingly obvious
insight to be published, by Christensen et al. (1971)! Fourth, each of the
first three observations apply to Cobb-Douglas type expressions for cost
and revenue functions, respecting linear homogeneity of each in prices.

In principle, it is possible to extend the analysis from a single output
to multiple outputs, by replacing a parametric production function with
a parametric specification of a distance function introduced by Malmquist
(1953) and Shephard (1953, 1970), simply by appending A(?) to an
input or output distance function. In practice, this is rarely if ever
attempted, because a distance function has no natural variable to single
out as the dependent variable in a regression exercise. Instead, two
very different strategies are pursued. In one, a non-parametric distance
function, which does not require a dependent variable, is specified and
estimated using mathematical programming techniques. In the other,
a natural dependent variable is created by aggregating either inputs or
outputs and specifying a parametric value function such as a cost or
revenue function. These two strategies are surveyed in sections “Non—
parametric Distance Functions” and “Parametric and Non-parametric
Value Functions”.

Non-parametric Distance Functions
In this approach, a production function y = f(x) with a single output and
multiple inputs is replaced with a distance function 4(y,x) with multiple
outputs ¥ > 0 and multiple inputs & > 0. Define a production set T =
{(3,%): y can produce x}, an output set P(x) = {y: ¥ can be produced
with x}, and an input set L(y) = {x: x can produce y}. With an output-
expanding orientation, the distance function becomes an output distance
function do(y, x) = min{u : y/u € P(x)}, and with an input-conserving
orientation the distance function becomes an input distance function
di(x,y) = max{i:x/A € L(y)}. Rather than appending a time shifter
A(t) to each, a time indicator is attached to technology and variables,
yielding dy, (y*, x*) and dy (x*, y*), s = 0,1.

Distance functions have been applied to the measurement the efficiency
of producers using an input vector to produce an output vector in a single
activity in a single time period. This application was pioneered by Farrell
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(1957) and has been generalised to data envelopment analysis (DEA) by
Charnes et al. (1978). It can be further extended in two directions.

The first extension of distance functions is to the measurement of the
efficiency of production in a multi-level activity in any number of time
periods. The distinguishing feature of this extension is that resources
must be allocated both within and among activities, which can occur in
different time periods, a feature that characterises most modern produc-
tion. This extension has several strands, the most popular of which is
dynamic network DEA (NDEA). This rich literature, with its many empir-
ical applications, is a direct descendent of the contributions to the analysis
of the optimal allocation of resources of Leonid V. Kantorovich (1939)
and Tjalling C. Koopmans (1951), co-recipients of the 1975 Nobel Prize
in Economic Sciences, and Johansen (1972). As Peyrache and Silva (in
press) chronicle, most contributors to the current NDEA and related liter-
ature ignore, or are unaware of, its rich heritage. The authors survey the
analyses of the originators, the subsequent black box production models
of Farrell and Shephard, and the current NDEA and related models.

The second extension of distance functions is to the measurement of
productivity change. As in the case of index numbers, a productivity
index is the ratio of an output quantity index to an input quan-
tity index. Bjurek (1996) used distance functions to create Malmquist
quantity indices, and from them a Malmquist productivity index; empir-
ical applications appeared quickly. A Malmquist output quantity index
comparing yland y0 is written as Y (y!, y%, x) = do(y', x)/do(H°, x),
and a Malmquist input quantity index comparing x! and x° is written as
X' x0 y) =4, (xl, y)/dl(xo, y). A period 0 output quantity index is
YOy, y0,x%) = d%(yl,xo)/d%(yo, x9), a period 1 output quantity index
is YI(y!, y0, x1) = d(}(yl,xl)/d(}(yo,xl), and a geometric mean output
quantity index is Y(yl, yo,xl,xo) = [Yo(yl, yo,xo) X Yl(yl, yo,xl)]l/z.
The two input quantity indices are written in the same way, and a
geometric mean Malmquist productivity index is

and decomposes as
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The geometric mean productivity index has three drivers: the first
component measures change in productive efficiency, as a production
unit moves closer to or farther from best practice; the second compo-
nent measures technical change, which expands or contracts production
possibilities; and the third component measures exploitation of economies
of size by moving along the production frontier that bounds production
possibilities. A productivity index based on distance functions has three
virtues: it allows multiple outputs and multiple inputs, it is independent
of possibly mis-measured or missing prices, and it can support a narra-
tive about the sources of productivity change. These three virtues have
made this non-parametric productivity index an extremely popular vehicle
for empirical productivity analysis. Russell (2018) provides a compre-
hensive overview of the Malmquist and other analytical productivity
indices, and Aparicio et al. (2018) provide a recent empirical applica-
tion to the provision of public education in Spain following the financial
crisis, in which schools increased their productivity by raising academic
achievement despite shrinking budgets.

Parametric and Non-parametric Value Functions

Edward S. Mason, a former President of the American Economic Associ-
ation, wisely observed in his Preface to Dean (1941) that “...significant
economic relationships may be derived from the accounting and operating
data of a business firm”. He then added, in a sign of the times, that the
“...techniques here used, and at present available, are not so well suited
to deal with the more complicated problems of a multi-product firm with
changing methods of production”. As we now know, the resort to value
functions circumvents this problem by aggregating multiple variables to
create a single variable, cost or unit cost or revenue or unit revenue or
profit or some other indicator of business financial performance. This is
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the principal virtue of the use of parametric value functions to estimate
productivity change, the ability to tailor them to the presumed objective
of, and the constraints facing, a production unit.

I begin with a parametric cost function, which Dean estimated in
short-run form, assuming a single output, fixed technology, fixed capital
equipment, and fixed input prices, using monthly data for a leather belt
shop. Soon thereafter, Nordin (1947) estimated a long-run cost function
quadratic in a single output in an electric light and power plant during
more than 500 shifts, and Lomax (1952) estimated a unit cost function
log-linear in generating capacity and load factor for a sample of British
steam electricity-generating plants. Neither study controlled for variation
in input prices, although Lomax acknowledged the omission.

The use of a cost function is motivated by a business objective of
keeping costs down, as at Ikea or Walmart, for example, or by an analyst’s
belief that productivity change has a resource-saving orientation. A cost
function can be written as wx = A(#)c(y,w), with y an output vector, w
and x input price and quantity vectors, with ¢(y,w) = min,{wx: x € L(y)}
a minimum cost function (or cost frontier) to be estimated, and t a time
counter. A cost frontier has properties that must be imposed or tested,
including monotonicity, concavity, and homogeneity of degree +1 in w.
Following the same procedure as with a parametric production function
yields

Gyx = ZgyGy +ZSwGw +Ga

with partial elasticities ¢ and growth rates G. Cost change is driven by
change in outputs produced, by change in input prices paid, with }_ &, =
1 to incorporate homogeneity of degree +1, and by cost-reducing tech-
nical change. Morrison (1992) illustrated decompositions of cost change
along the lines of the above expression under a variety of scenarios relating
to size economies and fixity of some inputs, with an empirical application
to US, Canadian, and Japanese manufacturing.

This expression, especially with a single output, is popular, but it suffers
from an untenable assumption that actual cost equals minimum cost. This
assumption can be relaxed in either of two ways. One is by appending a
non-negative component to a normally distributed error term to allow
for cost inefficiency in addition to the usual sources of random noise, and
to allow change in cost efficiency to drive observed cost change. This
procedure generates a stochastic cost frontier model, and a stochastic
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production frontier model is created in the same way, with a two-part
error term; Sickles and Zelenyuk (2019) provide details and a guide to a
burgeoning literature.

In an alternative approach, let C% = »w%x® and C!' = wlx! denote
observed cost in periods 0 and 1, with w and x denoting vectors of input
prices and quantities, and let wx = ¢(y, w), with ¢(y,w) a minimum cost
function (or cost frontier) to be estimated. Change in observed cost from
period 0 to period 1 is expressed in ratio form as

c! wlx! co(yo,u)l)

0 T Wox0 T O30, w)

wlxl/cl(yl,wl) cl(yl,wl) CO(yl’wl)
w0x0/c0(30, w) X (T w!) X (30, w!)

which identifies two drivers of cost change, input price change (the first
term on the right side, in which only the input price vector changes)
and productivity change, which itself is the product of three compo-
nents, change in cost efficiency, change in technology, and change in
size (a combination of economies of scale and economies of diversifica-
tion). Combining an estimate of ¢(y,w) with observed cost enables one
to distinguish input price change from productivity change as drivers
of cost change, and also generates a story about the impact on cost
change of the three components of productivity change. The introduction
of efficiency change as an independent driver of productivity change in
distance functions and value functions has enabled analysts to investigate
an important managerial and public policy challenge, the minimisation of
productivity-sapping and costly inefficiency in production.

It is straightforward to convert this expression from ratio form to
difference form, which may appeal to managers comfortable thinking
in terms of monetary values. To illustrate, cost change is expressed in
difference form as

R
L )
o))
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+ [co(yl’ wl) _ co(yo’ wl)]

which decomposes observed cost change into the sum of an input price
effect and a productivity effect, which in turn decomposes into a cost effi-
ciency change effect, a technology effect, and a size effect, each expressed
in monetary terms. Each effect is measured in monetary terms. Both
ratio and difference forms of cost change are expressed from a period
0 perspective. It is easy to express both from a period 1 perspective, and
then to take the geometric mean of the two expressions. Grifell-Tatjé and
Lovell (2003) applied the difference form decomposition, with managers
representing observed cost and consultants representing minimum cost,
in a sample of Spanish electricity distributors.

In principle, it is possible to use similar approaches to identify the
contribution of productivity change to change in unit cost, which Bliss
(1923) advocated for two purposes: to evaluate business financial perfor-
mance, and to inform product pricing decisions. Gold (1971) decom-
posed unit cost change into changes associated with each input used in
the production process and applied the decomposition to US iron and
steel manufacturing during 1899-1939. He recognised the challenge of
defining a “unit” of output in a multi-output setting, which he addressed
by expensing profit and creating a “non-existent composite product”,
defined as total revenue. He found an output price index to have increased
by less than increases in two of three input quantities, which he attributed
to materials- and labour-saving improvements in technology. An alterna-
tive approach, which he also explored, is to define and decompose unit
cost for each output separately and conduct a productivity analysis for
each output, but this approach requires cost allocation. Kendrick and
Grossman (1980) calculated unit cost in the US nonfinancial corporate
business sector during 1948-1976, using an index of gross product orig-
inating as the unit of output. They found unit cost growth of 2.92% pa,
with an average factor price increase of 5.16% pa partially offset by an
increase in total productivity of 2.18% pa. For both Gold, and Kendrick
and Grossman, productivity growth kept unit cost down by offsetting the
upward pressure brought by input price increases. Grifell-Tatjé and Lovell
(2015; Chapter 7) provide detailed treatments of decompositions of cost
change, unit cost change, and unit labour cost change, with references to
empirical applications.
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Some companies, Netflix and Nvidia for example, seek rapid growth.
The same three cost-oriented approaches apply under a business objec-
tive of pursuing maximum revenue growth, or when the analyst believes
productivity change is output-augmenting. Observed data become
(x,p,y), with p an output price vector, and the maximum revenue func-
tion r(x, p) = max,{py:y € P(x)} 2 py must be estimated. The revenue
function also satisfies properties, including monotonicity, convexity, and
homogeneity of degree +1 in p, which must be imposed or tested.
Approaches to the measurement of output-expanding productivity change
are directly analogous to those for the measurement of input-saving
productivity change above, with py replacing wx and 7»(x,p) replacing
¢(y,w). However, empirical applications are scarce.

Pursuit of maximum revenue may be constrained, in at least three
interesting ways, each of which is easily motivated by observed business
practices. In the private sector, branch or division or regional managers
receive operating budgets and are assigned the objective of maximising
revenue. In the 1920s management at duPont and General Motors had
to decide how to allocate scarce investment and other resources across
product lines and among plants. Their criterion was maximising return
on those assets; Chandler (1962) and Johnson (1975, 1978) recount
the history. In the public sector, it is the pursuit of maximum output
that may be constrained, as when agency managers receive operating
budgets and are assigned an objective of maximising output, usually in
the form of service provision. In both cases, the input vector is no longer
fixed, replaced by a fixed budget constraint of the form wx < B, and
managers are free to choose an input vector that maximises output subject
to x(w/B) = 1. The idea originated with Shephard (1974), and has
found frequent application in the public sector, to the measurement of
the performance of hospitals, for which performance is some measure of
health outcomes such as QALYs or DALYs, and to the performance of
schools or universities, for which performance is some measure of student
outcomes such as standardised test scores or employment and income
statistics. Staiger (2020) has noted that structural similarities support the
use of similar productivity measurement techniques in the two sectors.
Blank and Merkies (2004) have applied the budget constrained output
maximisation model to Dutch hospitals, and Grosskopf et al. (1999) have
applied the model to US school districts.
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In a third scenario imperfect market competition allows empirical
application of the old Berle and Means (1932) conjecture of the sepa-
ration of ownership from management control. This separation gives
managers discretion to pursue their own objectives, which are best served
by maximising sales revenue. Owners cannot be ignored, however, and
profit becomes a constraint rather than an objective. Here an analytical
model that is structurally similar to the private sector model of Shep-
hard is appropriate, with the maximum budget constraint replaced with a
minimum profit constraint. Baumol (1959) proposed this model of profit-
constrained sales revenue maximisation in a cross-section context, but it
is easily adapted to a time-series context.

The standard textbook objective, if not the current socially responsible
objective, of a business firm is profit maximisation, and it is enlightening
to derive a profit maximisation model along lines similar to those for cost
minimisation. Let profit in periods 0 and 1 be given by ©n¥ = p’y’ —
w'x® > reqless 0, s = 0,1. Then profit change becomes

o =[]
=)ot )

in which the first term on the right side is a Laspeyres quantity effect
and the second term is a Paasche price effect, both in difference form. A
few manipulations of both effects leads to the following decomposition
of profit change

S (o) et
() B

The first term on the right side decomposes the Laspeyres quantity
effect into a productivity effect that converts a Laspeyres productivity
index 7' 1/X into a monetary value, the productivity bonus, and a
Laspeyres margin effect that attaches value to output expansion or
contraction Yy, > regless 1 with nonzero base period profit. The second
term decomposes the Paasche price effect into a price recovery effect
that converts a Paasche price recovery index Pp/Wp into a mone-
tary value, and a Paasche margin effect that values input price increase
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or decline W), > regless 1 with nonzero comparison period profit. This
expression, which is easy to implement empirically, highlights the fact that
productivity growth is not the sole source of improved financial perfor-
mance; price recovery may be equally or more important, depending on
market conditions. Grifell-Tatjé et al. (2018b) use this model to study the
business foundations of social economic progress.

The New South Wales Treasury (1999), inspired by Eldor and Sudit
(1981) and Miller (1984) in the business literature, implemented the
profit change model above, which it called Profit Composition Analysis,
to separate the productivity performance from the price recovery perfor-
mance of government-owned businesses, particularly those possessing
market power and subject to price regulation. Villegas et al. (2020) have
applied the profit change decomposition model to the English and Welsh
water and sewerage industry.

Dwivers of Productivity Change

Now that we know how to model and estimate productivity change, we
are equipped to delve into the factors that drive or impede it. Many drivers
have been identified, perhaps the most significant of which appear below.

Quality Change

Several previously cited writers have lamented their inability to adjust vari-
ables for changes in their quality. More than other drivers, quality change
is primarily a measurement issue; resolving the issue enables one to disen-
tangle the separate contributions of quantity change and quality change
to total change, of inputs, outputs, and external (“non-discretionary”)
variables characterising the environment in which production takes place.
Denison (1962) provided an illustration of what can be achieved with
good data. He calculated growth rates of real national income, labour,
land, and capital over varying periods in the US. For 1929-1957 he calcu-
lated Gy = 2.93% pa, Gr, = 1.57% pa, Gx = 0.43% pa, zero growth for
land, and total productivity growth Gy,x = 0.93% pa. He attributed
growth in the labour input to growth in employment, with Gg = 1.00%
pa, and growth in several quality indicators that raised labour’s contribu-
tion, including hours, education, experience, and changes in the age-sex
composition of the labour force. He decomposed capital’s contribution,
but not to quality and quantity change, and he made no adjustment to
real national income. He did, however, decompose productivity growth



40 C. A. K. LOVELL

into seven components, including restrictions against optimum use of
resources, sectoral shift from agriculture, and the primary component,
advance of knowledge.

Denison (1974) subsequently revised these figures, the main revisions
being increases in Gy and Gy, x and a corresponding reduction in Gp.
He also added a new series covering the faster growth period 1950-1962,
and a longer 1929-1969 period for the non-residential business sector.
In the interim, an extended debate ensued in the Survey of Current
Business (1972), with Denison pitting his relatively large contribution
of productivity growth to US output growth against a much smaller
contribution estimated by Jorgenson and Griliches (1967). The debate,
though instructive, generated limited convergence of views of the relative
contribution of productivity growth to US economic growth.

Econometricians treat quality change as a type of specification error;
Griliches (1957) illustrated the econometric issues involved. The OECD
Productivity Manual, OECD (2001) and International Labour Orga-
nization (2020) have treated the theory and empirical adjustment of
quantities and prices for quality change in great detail and have provided
guidelines on the measurement of and adjustments to output, labour
input, and capital input, and the measurement and interpretation of
productivity in the presence of compositional effects. In contrast to
adjusting outputs and inputs for compositional change, the challenge
of incorporating features of the external operating environment into a
productivity analysis has received considerable attention in the literature,
but relatively little attention has been paid to how to measure it.

Technology

Technological drivers of productivity growth, including technical
progress, efficiency change, and the exploitation of economies of size,
made their first appearance in section “Analytical Foundations of Produc-
tivity Measurement”. The empirical application of distance functions and
cost functions to implement these decompositions is spread widely across
private and public sectors. However, one driver is concealed in this tripar-
tite decomposition. Economies of size is a generic term, encompassing the
familiar radial notion of economies of scale with a less common notion
of economies of diversification, a non-radial concept. It is important to
distinguish the two, because firms tend to grow by altering the propor-
tions of outputs they produce, by diversifying their product range, or even
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by specialising production in a single product, and the cost of expansion
can be sensitive to the direction of output growth.

The economic analysis of economies of diversification is not new.
Marshall (1890) devoted Book V, Chapters VI and VII to cost allo-
cation in a multi-product firm, under the heading of “joint supply”,
against an institutional backdrop of the repeal of the Corn Laws. Penrose
(1959) devoted Chapters VI and VII to economies of size and diver-
sification, noting that in an environment of changing technology and
tastes, or in the presence of temporary fluctuations in demand (e.g.,
seasonal), a firm can make more profitable use of its resources by
spreading production over a variety of products. She also anticipated the
subsequent analytical literature by exploring the trade-off between the
sacrifice of scale economies in specialised production and the gain in cost
complementarities from diversified production.

The analytical foundations of the economies of diversification are
relatively recent, and are based on a multi-product cost function, or
frontier, and most details are available for a limited sort of diversifica-
tion economies named economies of scope in Panzar and Willig (1981)
and for diversification economies more generally in Baumol et al. (1982).
Applications are numerous, especially in the provision of multiple finan-
cial services; see for example Pulley and Braunstein (1992) and Cummins
et al. (2010) among many others. Growitsch and Wetzel (2009) test for
economies of scope in European railways, and de Roest et al. (2018) test
for economies of diversification in EU agriculture. Such studies generally
quantify the cost-oriented benefits of diversification, but there is a revenue
side to business success as well, and the business world is littered with
costly diversification failures—think of the Ford Edsel, the Sony Betamax,
and the Apple Newton for example.

Organisation

I treat organisation as the role of management in enhancing business
performance. I define management broadly to include both those who
direct individual businesses and those who direct an aggregate economy
through monetary, fiscal, trade, and regulatory policies; in the latter case
management corresponds to the “helmsmen” of Koopmans (1951). The
study of organisation has a rich history and a lively current literature, most
of which is directed at the business enterprise rather than the aggregate
economy.



42  C. A. K. LOVELL

Walker (1887) clearly understood the importance of management,
calling it the source of business profits. This profit, which he called
surplus, “...represents that which he is able to produce over and above
what an employer of the lowest industrial grade can produce with equal
amounts of labour and capital. In other words, this surplus is of his
own creation, produced wholly by that business ability which raises him
above and distinguishes him from the employers of what may be called
the no-profits class”. Among the components of business ability, Walker
mentioned administrative and executive ability, including the ability to
avoid waste, and the ability to meet changing market demands quickly.
Alfred Marshall (1887), whose 1879 Economics of Industry Walker had
favourably cited, wrote of the allocation of the surplus generated by
superior management to rent and profit.

Later Marshall (1890; Book IV, Chapter XII) made another contribu-
tion to the literature on business management, combining and expanding
on his and Walker’s earlier writings by defining the functions of manage-
ment. He regarded “business men” as a highly skilled industrial grade
who undertake risks, bring together capital and labour, engineer the busi-
ness, and superintend its minor details. The supply price of business men
had three components: the supply price of capital, the supply price of busi-
ness ability and energy, and the supply price of organisation that brings
the first two together.

The distinguished management consultant Drucker (1954; 71) had
insights that might have guided much subsequent work on management
and productivity. He focused on the guality of management, claiming
that “...the only thing that differentiates one business from another ...
is the quality of its management ...” He continued by contending that
the only way to measure managerial quality is by means of a “...measure-
ment of productivity that shows how well resources are utilized and how
much they yield”. He defined the yield of utilised resources in terms of
meeting multiple, often conflicting objectives: “There are few things that
distinguish competent from incompetent management quite as sharply as
the performance in balancing objectives”. One of his objectives is public
responsibility; see sections “Social Concerns” and “Expanding the Scope
of Productivity Analysis Redux: Inclusive Green Growth”.

Penrose (1959) devoted Chapters III-V to entreprencurs and
managers, and treated managerial services as an essential input to
a production process [i.e., f(K,L0) = 0]. Management creates an
inescapable limit to the growth a firm can achieve in any given period.
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This managerial limit can, however, be relaxed through changes in
external conditions such as the state of knowledge or the state of
the arts. This association of a managerial limit with the frontier of
production possibilities, and the potential for increasing production possi-
bilities through external improvements, foreshadows a large literature
on productivity gaps, distance to frontier, and catching up and falling
behind considered in section “Productivity Dispersion, Productivity Gaps,
Distance to Frontier and Zombies”.

But first we need to address the challenge of incorporating manage-
ment into an analytical approach to productivity measurement treated
in section “Analytical Foundations of Productivity Measurement”. Early
efforts of Hoch (1955, 1962), who called it “entreprencurial capac-
ity”, and Mundlak (1961) and Massell (1967), who called its omission
“management bias”, showed one way of incorporating management
into a parametric representation of production technology. Rather than
including it as an input, since they did not pretend to know what it was
or how to measure it, they estimated it as a firm effect y = A;f(K,L),
with 7 indexing firms. All three were able to reject the null hypothesis
of no firm effect, which signals the presence of productivity dispersion
surveyed in section “Productivity Dispersion, Productivity Gaps, Distance
to Frontier and Zombies”. Mefford (1986) was able to take a different
approach, because he had a proxy for plant management in a large multi-
plant international business. He constructed an index M of the rankings
of managers’ plants on three performance criteria: output goal attain-
ment, budget over- or under-fulfilment, and output quality, asserting that
these criteria are “...the major evaluative factors on which most indus-
trial managers are judged and corporate management confirms this to
be the case in this firm”. Having this information, unavailable to Hoch,
Mundlak, and Massell, enabled him to incorporate M as an input in a
production function regression y = f(K,L,M ). Mefford found a statisti-
cally significant positive elasticity on M, implying a positive relationship
between his proxy for management performance and output. The econo-
metric issue involved is exactly what Mundlak and Massell called it,
management bias. Griliches (1957) illustrated the econometric issue and
explained the circumstances under which the omission of management
does or does not bias estimates of the contributions of the included
variables.

Nearly a half century after Hoch, Mundlak, and Massell wrote of
management as a firm effect, Bloom, Van Reenen, and colleagues
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embarked on a research project that remains ongoing. They created a
management score as a function of 18 key indicators of the quality of
management practices grouped into four areas: shop floor operations,
performance monitoring, target setting, and provision of incentives. They
also proposed a pair of indicators that potentially drive the quality of
management practices, the extent of product market competition and the
nature of business ownership. They then developed five indicators of busi-
ness economic and financial performance that potentially result from the
quality of management practices, including total productivity, profitability
(ROCE), Tobin’s Q, sales growth, and survival. They also amassed large
and growing inter-sectoral international databases with which to test
hypotheses on the drivers and consequences of variation in the quality of
management practices. Their methodology, data, and findings appear in a
continuing series of publications beginning with Bloom and Van Reenen
(2007).

Scur et al. (2021) recount the history of The World Management
Survey, the database used by many contributors to the literature exploring
the impact of management on business performance. In their initial study
of 732 manufacturing firms in Europe and the US, they found the
distribution of management practices to be dispersed and asymmetric,
with relatively large variance and negative skewness. From this, they
reached a number of conclusions: three different measures of the degree
of product market competition are significantly and positively associated
with better management practices; family ownership by itself is unrelated
to the quality of management practices, but family ownership combined
with primogeniture lowers the quality of management practices; a long
tail of badly managed firms occupied primarily by primogeniture family
firms operating in markets with low competition; significant variation in
the quality of management practices across countries and a much larger
variation within countries; and perhaps most significantly, the quality of
management practices is strongly associated with all five indicators of firm
performance.

Subsequent studies have been based on larger samples of up to 11,000
firms, often within sectors such as healthcare and education or within
countries such as India, and frequently with different variables such as the
human capital of managers. Thus Bloom et al. (2009) explored the rela-
tionship among work-life balance variables, management practices, and
productivity. Using a sample of over 700 firms in Europe and the US, they
found that, once management practices are included, work-life balance
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variables have no independent impact on productivity, contradicting the
claims of some that higher productivity comes at the cost of work-life
balance. Bloom et al. (2010) expanded the list of business performance
indicators. They used a sample of over 300 manufacturing firms in the
UK to explore the relationship between the quality of management
practices and economic and environmental performance. They found
better-managed firms to be significantly more productive, but not at the
expense of the environment. Better-managed firms were also significantly
less energy-intensive, and therefore generated fewer greenhouse gas emis-
sions. Bender et al. (2018) used a sample of 365 medium-sized German
manufacturing plants to investigate the role of a subset of management
practices directed toward human resource management (HRM). They
found that plants with higher management practice scores had above
average worker skills gained by augmenting human capital through selec-
tive hiring and attrition. They also found that the human capital of
management made a larger contribution to productivity than the human
capital of the labour it employs. Later Bloom et al. (2019) expanded
the list of drivers of variation in the quality of management practices,
and they introduced additional drivers of economic performance. They
used samples of varying sizes of US manufacturing plants and found
“enormous” dispersion of management practices. Variation in the quality
of management practices accounted for a greater share of variation in
productivity, growth, and survival than did variation in R&D expendi-
ture, ICT per employee, or employee human capital. They found two new
drivers of the quality of management practices, the business environment
as proxied by right-to-work laws that increase labour market competi-
tion and the arrival of “Million Dollar Plants” that generate learning
spillovers. Lemos et al. (2021) decomposed management practices into
operations management practices and people management practices in
a sample of public and private schools in Andhra Pradesh, India. They
found private schools to be better managed on both practices, although
people management skills were the primary drivers of teaching quality
and student value added. They also found that more effective private
school teachers received significantly higher wages than less effective
public school teachers. Bloom and colleagues have published many other
studies concerning the quality of management practices, but this sample
provides the essence of their contribution: when studying productivity,
management matters.
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The work of Bloom and colleagues has motivated a vast amount of
related research. Adhvaryu et al. (in press a) unbundled the manage-
ment practices index to focus on its people management skills elements
and found that these skills increase productivity but not management
pay. Adhvaryu et al. (in press b) studied management performance and
productivity following air pollution shocks and found that managers with
people management skills were better able to mitigate the adverse impact
of air pollution shocks on productivity. Hoffman and Tadelis (2021)
focused on managers’ people management skills in a large high-tech firm;
they found these skills to reduce attrition of those employees manage-
ment wants to retain, and to benefit managers having these skills with
higher promotion rates and, contrary to Adhvaryu et al. (in press a),
larger salary increases. While much work inspired by that of Bloom and
colleagues has examined the impact of the quality of management prac-
tices on organisational performance, Alexopoulos and Tombe (2012)
expanded on the management technologies perspective on the relation-
ship between HR and productivity introduced by Bloom and Van Reenen
(2011) to examine the impact of innovations in managerial technolo-
gies on performance. Examples of novel managerial technologies include
Taylor’s scientific management, just in time, and total quality manage-
ment. The authors used aggregate US data to examine the impact of
16 such indicators on productivity, and among their results, they found
that managerial technology shocks raised productivity more rapidly than
non-managerial technology changes do.

Reversing the usual strategy, Cai and Wang (2020) studied worker
evaluation of management and found that evaluation of management by
teams of workers improved the relationship between management and
employees, reduced employee turnover, and increased team productivity.
Gosnell et al. (2020) also studied the evaluation of management perfor-
mance, in this case airline captains, and found performance monitoring
and feedback, target setting, and prosocial incentive provision improved
airline productivity, defined as a function of fuel use, time delay, and safety.
Sickles et al. (2021) applied production theory to an unbalanced panel
of 505 medium-size manufacturing firms in Europe and the US. They
found the shadow price of management to exceed average management
compensation, and therefore management to be relatively under-utilised,
with both inequalities shrinking over time.

I conclude this discussion with the perhaps obvious observation that
the people management skills elements of the 18 management practices
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identified by Bloom and colleagues are becoming increasingly valuable,
but this observation is not new. Long ago, Drucker (1954) bemoaned
the lack of attention paid to the HR component of management. He
observed that “...we know too little about it so far, operate largely by
superstitions, omens and slogans rather than by knowledge. To think
through the problems in this area and to arrive at meaningful measure-
ments is one of the great challenges to management”. The challenge
and the significance of the HR function remain, and over a half century
later The Ecomomist (26 March 2020) has observed that HR heads’
desks are moving closer to the corner office. The academic literature
and the business press both are stressing the significance of the HR
element of management practices, and this empbhasis is spurring interest
in the role of HR practices and IT adoption, and complementarities
between the two, as drivers of business performance, both productive
and financial. Important contributions have been made by Black and
Lynch (2001), Ichniowski and Shaw (2012), Bartel et al. (2007) and
Lazear et al. (2015) among many others, most of whom emphasise the
significance of complementarities between HR practices and IT adoption.
Benner (2018) explored the importance of complementarities between
management practices and I'T adoption and use for business productivity,
citing one hypothetical example of management’s choice between allo-
cating scarce resources to producing Blackberrys more productively or to
creating the iPhone.

Institutions

No business operates in a vacuum. Rather, business operating environ-
ments are characterised by an institutional framework. Douglass North
(1990), co-recipient of the 1993 Nobel Prize in Economic Sciences,
described the framework as “...the rules of the game in a society or,
more formally, ...the humanly devised constraints that shape human
interaction”. As such, institutions influence the economic and financial
performance of business, and therefore aggregate productivity perfor-
mance. North illustrated the important role played by institutions in
influencing aggregate economic performance by tracing the contrasting
institutional histories of England and Spain from the beginning of the
sixteenth century through their downstream consequences for the diver-
gent twentieth-century economic performances of the US and Latin
America.
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In an influential study, Hall and Jones (1999) regressed output
per worker against physical and human capital per worker for a 1988
cross-section of 127 countries, and found a large unexplained residual,
suggesting that something else must influence inter-country variation in
labour productivity. This large measure of their ignorance led them to
develop an index of nations’ social infrastructure, the institutions, and
government policies that define their business operating environments.
Further empirical analysis led them to the conclusion that variation in
countries’ productivity performance was determined primarily by variation
in their social infrastructure. Soon thereafter Easterly and Levine (2001)
studied time-series data for OECD, Latin American, and East Asian coun-
tries, and found with few exceptions factor accumulation to account for
less than 2/3 of GDP growth, once again leaving a large unexplained
residual. Citing numerous previous studies, they tested the hypothesis that
“national policies” influence productivity growth, using policies including
openness to trade, inflation, government size, financial development, and
a black-market premium. They found all but inflation to exert significant
influences on productivity.

Numerous recent studies have used the latest available version of the
World Bank Group (2020b) Doing Business data to examine the impacts
of institutions on business performance; the Group claims nearly 4,000
peer-reviewed articles and over 10,000 working papers have used the
data since 2003. The data include indicators of difficulties involved in
opening a business, getting a location, accessing finance, dealing with day-
to-day operations, and operating in a secure business environment, from
which the Group has constructed an aggregate index of the ease of doing
business, currently for 190 countries (New Zealand ranks first). Each of
the following studies used these data to emphasise particular institutions,
either singly or jointly. Barseghyan (2008) and Barseghyan and DiCecio
(2011) added to the list of institutional variables an index of entry
barriers, which include costs an entrepreneur incurs for starting a new
firm, building a physical location and meeting minimum capital require-
ments. They found that these entry barriers reduced labour productivity
by reducing the total productivity residual and created a misallocation
of resources that allowed unproductive firms to operate. Moscoso Boedo
and Mukoyama (2012) investigated the effects of entry and exit (firing)
costs on income and productivity across countries. They found that both
costs reduced aggregate productivity, but through different channels.
Entry costs reduced aggregate productivity by reducing both entry and
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exit, thereby keeping low productivity establishments in operation, while
firing costs reduced aggregate productivity by hindering the realloca-
tion of labour from low productivity establishments to high productivity
establishments. D’Erasmo and Moscoso Boedo (2012) examined the
impact on aggregate productivity of costly entry from the less produc-
tive informal sector, which looms large in developing countries, to the
more productive formal sector with its better institutions such as debt
enforcement mechanisms. They found that countries with low degrees
of debt enforcement and high entry costs into the formal sector were
characterised by low allocative efficiency and low aggregate productivity.
Bergoeing et al. (2016) explored complementarities among reforms to
entry and exit barriers. They found that only comprehensive reforms
combining loosening of both entry and exit barriers had substantial effects
on output growth and aggregate productivity.

Egert (2016) summarised OECD findings to date on the impact
of product and labour market regulations and the quality of other
institutions on aggregate total productivity for a panel of 34 OECD
countries over a 30-year period. Among the findings were (i) active
labour market policies, employment protection legislation, R&D expen-
ditures, and openness to international trade all had statistically significant
impacts on productivity; (ii) regulations were more effective if they were
enforced more strictly, a seemingly obvious finding emphasised by Bochm
and Oberfeld (2020) based on their study of manufacturing plants in
India, known for its weak enforcement practices; and (iii) interactions
reinforced the impact of some pairs of policies, suggesting significant
complementarities among policies..

Among the more significant recent studies, Bambalaite et al. (2020)
stressed the importance of relaxing entry restrictions into professional
and service occupations and showed that relaxation enhances aggregate
productivity growth through two channels: it enhances productivity at
affected firms, and it induces labour reallocation toward more produc-
tive firms. Hermansen (2020) explored the prevalence and adverse effects
on job mobility, earnings and productivity of occupational licencing, and
non-competition agreements in the US. Demmou and Franco (2020)
have examined variation in the quality of the governance of access
to infrastructure services and pro-competitive regulation in network
industries and found both to generate strong productivity growth in
downstream industries, again through two channels: sound governance
improves the productivity of firms operating in network industries, and it
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magnifies the downstream productivity effect. The OECD continues to
publish studies on the role of institutions, and the most recent findings
are available at http://www.oecd.org/economy,/OECD-Economics-Dep
artment-Working-Papers-by-year.pdf.

Geography

The influence of geography on economic performance has been acknowl-
edged for a very long time. Adam Smith (1776 [1937]), in Book I,
Chapter III wrote of the attractions of great towns and water-carriage
along the seacoast of the Mediterranean or on the banks of navigable
rivers such as the Nile in Egypt and the Ganges in Bengal. He contended
that both geographic features expanded the size of the market that other-
wise limits the division of labour. Alfred Marshall (1890 [1961]), in
Book IV, Chapter X wrote of the concentration of specialised industries
in particular localities, citing the breeding of canaries in a small remote
village in western Tyrol. He echoed Smith by noting that the advantages
of localisation of industry resulted from physical conditions such as the
character of the climate and the soil, or easy access by water, and from
advantages of proximity to similar and complementary skilled trades. He
inquired if these advantages could be maintained by “...the concentra-
tion of large numbers of small businesses of a similar kind...” or if these
advantages would spur aggregation into “...a small number of rich and
powerful firms...”, which in turn led him to distinguish internal from
external economies. Smith’s and Marshall’s association of these locational
advantages with productivity gains was implicit rather than explicit, but
the latter would eventually follow.

Recent developments are based largely on the “new” economic geog-
raphy initiated by Paul Krugman (1991a, 1991Db), recipient of the 2008
Nobel Prize in Economic Sciences. Later Krugman (1998), in a special
issue of Oxford Review of Ecomomics and Policy devoted to the new
economic geography, provided an insightful look back to the begin-
nings. He described the new economic geography as a genre of research
directed to an investigation into the “...geographical concentration of
manufacturing based on the interaction of economies of scale with
transportation costs”, and he created a “...not entirely imaginary histo-
ry...” that reflected the observations of Smith and Marshall. Subsequent
investigations have been global as well as local.

Sachs et al. (2001) used sophisticated mapping software to create
five global climate zones. They found both production and productivity,
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defined as GNP per capita, to be highly concentrated in the coastal
regions of temperate climate zones, with per capita income in these
regions over twice the global average. William Nordhaus (2006), co-
recipient of the 2018 Nobel Prize in Economic Sciences, narrowed the
geographic focus from climate zones to cells, by using mapping software
to create over 15,000 geographic cells, each with area bounded by 1° lati-
tude by 1° longitude contours. He found a strong negative relationship
between mean temperature and output per capita, but a strong posi-
tive relationship between mean temperature and output per area, a key
variable from a geographic and ecological point of view, up to approx-
imately 5 °C, a paradox he labelled the climate-output reversal. Both
Sachs et al. and Nordhaus cautioned that geographic features are not
the sole determinants of economic performance, which also depend on
the social and economic institutions within which production occurs.
Porter (1990, 1998, 2000) also entered the fray, with his introduction
of “clusters”, geographic concentrations of interconnected companies and
institutions in a particular field that create a competitive advantage—think
of Silicon Valley or the California wine cluster or the Italian leather fashion
cluster. Porter argued that clusters offer advantages in efficiency, effective-
ness, flexibility, and innovation enhanced by complementarities among the
activities of cluster participants, thereby increasing the productivity of all
participants.

Two local applications are worthy of note. Andersson and L66f (2011)
used data on all manufacturing firms with ten or more employees
in Swedish municipalities during 1997-2004 to relate labour produc-
tivity and location, which they defined as a functional region consisting
of several municipalities that together form an integrated local labour
market. They found significant economies of agglomeration, with firms
located in larger regions being more productive, controlling for human
and physical capital, firm size, ownership structure, industry classifica-
tion, and other variables. This productivity advantage was augmented by
a dynamic learning effect, with current agglomeration enhancing future
productivity. In a cautionary tale, Au and Henderson (2006) noted that
institutions can constrain as well as enhance performance, warning that
restrictions on migration constrain agglomeration and productivity, citing
China, which has severely limited rural-urban migration as an example.
The authors found that these restrictions caused many Chinese cities to
be undersized, sacrificing large potential gains in labour productivity from
increased agglomeration.
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Another example of barriers to labour mobility, and hence aggregate
productivity, of current concern involves the elasticity of housing supply,
usually through strict zoning laws. Hsieh and Moretti (2019) have exam-
ined the effects of stringent restrictions to new housing supply in high
productivity cities such as San Francisco and San Jose. These restrictions
constrain the number of workers with access to high productivity jobs,
resulting in labour misallocation and reduced aggregate labour produc-
tivity. The authors studied 220 metropolitan areas from 1964 to 2009,
and they found that relaxing, but not eliminating, these barriers to labour
mobility would increase the growth rate of aggregate output by over a
third, increasing US GDP in 2009 by 3.7%. Garcia Marin et al. (2021)
used data from China, Brazil, and the US to confirm that lifting housing
supply restrictions raises aggregate total productivity, and to show that it
enhances export intensity by allowing exporting firms to locate in large
cities, magnifying the productivity gains.

Productivity Dispersion, Productivity Gaps, Distance to Frontier
and Zombies

There exists a distribution of productivities in any group, which reduces
aggregate productivity beneath its potential to a degree depending on
its variance and its skewness. Both properties of the distribution create a
policy challenge.

Productivity dispersion is not a recent phenomenon. Early studies
appeared in Monthly Labor Review. In addition to the studies of Squires
(1917) and Stern (1939) discussed in section “Evidence”, Stewart (1922,
1924), who was US Commissioner of Labor Statistics at the time,
summarised productivity studies in a wide range of industries, including
cotton mills, sawmills, brickyards, blast furnaces, agriculture, and copper
mining. In a sample of over 1,000 copper mines, for example, enormous
dispersion in labour productivity existed, with the least productive 15%
of miners producing 30 pounds per day and the most productive 15%
producing 120 pounds per day. Subsequent studies summarised in the
Productivity Measurement Review also revealed large inter-plant dispersion
in labour productivity and financial performance as measured by unit cost,
unit labour cost, and return on assets; two of these studies are discussed
in section “The Brief Flourishing of the European Productivity Agency”.
Ingham (1961) summarised the methodology used in these studies and
surveyed some of the findings.
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Interest in productivity dispersion, its persistence, and its cost
continues into the twenty-first century, enhanced by improved method-
ologies and vastly expanded databases. Syverson (2011) surveyed the
literature to 2011 and found evidence of “ubiquitous, large and persis-
tent” productivity dispersion, and the literature has grown rapidly since,
quantifying the dispersion, investigating its time path for convergence or
divergence, and searching for its sources. Bartelsman and Wolf (2018)
discussed subsequent dispersion measures and findings, without decom-
posing dispersion into within-sector and between-sector contributions, a
significant omission since some sectors are widely believed to have higher
productivity levels than others, an example being IT-producing and IT-
using sectors. However, since productivity can refer to labour productivity
or total productivity, and dispersion can be defined asymmetrically with
respect to time, as is usual, or symmetrically, as is less common but
analytically problematic, a rich methodological literature has developed
in the past decade. In his contribution to this Volume Balk (in press)
provides a succinct summary of the relevant literature and contributes to
its continued development in two ways. He derives symmetric decomposi-
tions of aggregate output and labour productivity growth, in levels rather
than indices that avoid what he describes as “...terms that can be consid-
ered as mathematical artefacts, without economic meaning”. He then
shows how his decomposition of labour productivity growth can provide
a convenient foundation for an analysis of dispersion and misallocation,
which in turn provides a basis for a search for the drivers and costs of
misallocation and appropriate policy remedies. Productivity and its disper-
sion also can be measured using value functions, as in section “Parametric
and Non-parametric Value Functions”, and Balk and Zofio (2020b) have
developed symmetric decompositions of cost dispersion.

The subsequent literature has followed two occasionally intersecting
paths. One path explores misallocation and reallocation, and their effects
on productivity. The other explores productivity frontiers and disper-
sion beneath them. Both strands have found productivity dispersion and
resource misallocation to be quantitatively significant, and to exert a
proportionate dampening effect on aggregate productivity. I consider the
two paths sequentially, the second in more detail than the first.

In an editorial to a special issue of Review of Ecomomic Dynamics
devoted to misallocation and productivity, Restuccia and Rogerson
(2013) provided an overview of the first path, an overview they updated
and enriched in Restuccia and Rogerson (2017) and Restuccia (2019).
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The essence of this approach is to shift the question from the rhetorical
“why are we so rich and they so poor?” to “why are we not richer?” The
answer is that misallocated resources reduce our productivity beneath its
potential, and reallocation can increase it. The literature devoted to the
misallocation component is richer in evidence than that devoted to the
reallocation component, perhaps because there is more of'it. The simplest,
but not the only, way to think about misallocation is via failure to opti-
mise, failure to satisfy first-order conditions for achieving some objective
mentioned in section “Analytical Foundations of Productivity Measure-
ment”. If the extent of failure in one organisation differs from the extent
of failure in another, resources are misallocated, driving aggregate produc-
tivity beneath its potential. Efficient reallocation would transfer resources
from the organisation exhibiting greater failure to the other organisation,
raising aggregate productivity.

Misallocation has many sources, including international trade barriers,
product and labour market regulations, credit constraints and other credit
market imperfections, restrictions on housing supply, and heterogeneous
costs of doing business. Empirical analysis has investigated the magnitudes
of the impacts of these misallocations on productivity, which predictably
have been negative, ranging from negligible to large. The limited evidence
on the effects of reallocation suggests, also predictably, that it raises
productivity. Hsich and Klenow (2009) estimated that reallocation due
in part to reforms raised productivity growth by up to 2% in China
during 1998-2005, but misallocation worsened in India despite reforms
during 1987-1994, reducing productivity growth by about 2%. In a
counterfactual exercise, they reduced misallocation in both countries to
the level observed in the US and calculated that it would generate huge
productivity gains of 30-50% in China and 40-60% in India. Dias et al.
(2016) found large potential gains from within-industry reallocation in
Portugal leading up to the Eurozone crisis in 2009. They found large
and growing misallocation that caused large and growing total produc-
tivity dispersion. Between 1996 and 2011, potential GDP loss due to
misallocation increased from 48 to 79%, trimming potential GDP growth
by 1.3% pa during the period. Calligaris et al. (2018) studied misallocation
across the universe of Italian incorporated companies during 1993-2013
and found strong evidence of growing misallocation. Had misallocation
remained unchanged over the period, total productivity would have been
18% higher than it was in 2013, which would have translated into a
1% higher annual growth rate. They also found that firms that invested
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relatively heavily in intangible capital were inefficiently small and under-
resourced but keeping up with the technological frontier, while firms with
a large share of workers under the Italian wage supplementation scheme
or were family-managed or financially constrained were inefficiently large
and over-resourced and lagging behind the technological frontier. Garcia-
Santana et al. (2020) highlighted cronyism as a source of misallocation in
Spain during 1995-2007, in which the most rapid economic growth in
at least 150 years occurred despite negative productivity growth and was
due solely to factor accumulation. Using a quasi-universe of Spanish firms
during the period, they found deteriorating allocative efficiency so severe
that, had it remained at initial levels, productivity growth would have
been 2.4% pa rather than —0.7% pa. Most interestingly, they found that
industries that suffered the largest increases in misallocation were those
industries in which connections with public officials were most important
for success. They concluded that their findings provide novel evidence
on the role of crony capitalism in the economy. Many more such studies
exist, and the message rarely varies. Misallocation is ubiquitous, worse in
some sectors and in some countries than in others, decreasing in some
instances and increasing in others, and it has a potentially large adverse
impact on productivity and therefore standards of living.

The second branch uses micro productivity data to construct macro
productivity frontiers, and to characterise frontier units and to explore
the distribution of units beneath the frontier. Much of the empirical liter-
ature uses firm data to create national and global productivity frontiers,
defined as the most productive national and global firms in an industry.
For example, Andrews et al. (2015) defined national frontiers as the 10
most productive firms within each country, industry, and year, and the
global frontier as 50 or 100 most productive firms within each industry
and year. In other studies, absolute numbers are replaced by fixed percent-
ages. The two definitions generate very similar productivity gaps between
the best and the rest, although they have a common disengagement from
the theory of production and its extension to production frontiers. It
would be worthwhile therefore to compare empirical findings obtained
with these two ad hoc definitions of frontier firms with those obtained
using theory-based econometric or mathematical programming frontier
techniques summarised in Sickles and Zelenyuk (2019). To facilitate the
comparison, Nguyen et al. (in press) survey alternative software packages
available for estimating econometric frontiers, with an emphasis on Stata.
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Once national and global frontiers have been established, by defi-
nition or by estimation, the next step is to characterise national and
global frontier firms and explore the productivity gaps between global
and national frontier firms and other firms. The eventual challenge is
to explain the gaps, frequently in terms of the speed and breadth of
technology diffusion, and to design appropriate government policies to
enhance diffusion and narrow the gaps. Criscuolo (2015) provided an
accessible introduction to the literature, in which she stressed that large
and growing productivity gaps are the consequence of disparate abili-
ties to innovate, to combine technological, organisational, and human
capital improvements, or as she puts it, “[s]Jome firms clearly ‘get it’
and others don’t...” Andrews et al. (2015, 2016) used the OECD-
Orbis database to study firms in 23 /24 OECD countries at the two-digit
level during 2001-2009,/1997-2014. They found global firms to be
much more productive than other firms, larger but younger, more prof-
itable and more capital- and patent-intensive, and more likely to be
part of a multinational group than other firms. Over time, the produc-
tivity gap separating frontier firms from other firms has been growing;
the gap between global and national frontier firms has been narrowing,
but best practices, including the use of advanced technologies, have not
diffused beneath national frontier firms. They identified policies designed
to narrow both gaps, including the promotion of pro-competition legisla-
tion, enhancing education opportunities, introducing R&D tax subsidies,
reducing the stringency of employment protection regulation, and revis-
iting bankruptcy laws that protect extreme laggards (a group I explore
below, in which extreme laggards are called “zombies”).

Several OECD studies have explored the role of digitalisation in
narrowing the productivity gap, which they call the digital divide that
instead of narrowing has been widening in the last decade. Berlingieri
et al. (2017), in a study using firm-level data across 16 OECD countries
during the first decade of the twenty-first century, found digitalisation
to be one of the drivers of two divergences, those of productivity and
wages, with most of the increased dispersion in both being within rather
than across sectors. Significantly, they found the increased dispersion in
productivity to be strongly correlated with increased dispersion in wages.
Andrews et al. (2018) identified the primary drivers of digitalisation.
Using a broad sample of 25 industries in 25 European countries during
2010-2016, they found that business capabilities, such as managerial and
technical skills in combination with high performance work practices,
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and the institutional provision of incentives, such as access to financing
and low barriers to entry and exit that contribute to a competitive
business environment, both promote digital adoption, and they found
strong complementarities between the two. Gal et al. (2019) charac-
terised the productivity gains from digital adoption. They found that
adoption of five digital technologies in an industry created substantial
productivity gains in firms, but complementarities between digital tech-
nologies and skilled labour, organisational capital and other intangibles
meant that most productivity gains accrued to already productive firms,
thereby widening the digital divide both within and between industries.
Sorbe et al. (2019) surveyed a range of policies designed to increase
digitalisation, responsible for approximately half of the digital divide.
Among the policies they proposed were (i) reform of telecommunica-
tion sectors to enable cheaper access to high-speed internet; (ii) increased
training, of management and low-skilled employees; (iii) reduced entry
costs, including financing constraints; (iv) enhanced efficiency of insol-
vency regimes; and (v) leading by example, by improving digitalisation of
government to exploit synergies between public and private sectors. They
also echoed previous writers by stressing the strong complementarities
among policies.

Moving away from advanced OECD economies, Maue et al. (2020)
took the microeconomic approach to an extreme by studying produc-
tivity dispersion and persistence among nearly 10,000 agricultural plots
on over 12,000 smallholder farms across four countries in Africa. They
used a conventional log-linear production function approach outlined
in section “Parametric Production Functions”, in which the residual
provides a measure of productivity. Their initial survey-based finding was
of much larger productivity dispersion, and much lower persistence, than
typically found in non-agricultural sectors. However, when they used
surveys, satellite information, and other sources to correct for initial
measurement error, primarily in output, they found substantial measure-
ment error, correction for which reduced initial estimates of dispersion by
roughly half, and roughly doubled initial estimates of persistence, putting
estimates of both in line with stylised facts of non-agricultural productivity
growth in developing countries.

Most studies have found the distribution of firm productivities to be
skewed as well as dispersed, frequently with a long left tail. Whenever firm
productivities are negatively skewed, firm employment is likely to be nega-
tively skewed. The literature has distinguished laggard firms, comprising
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firms in the least productive 40% of the distribution, from unhealthy firms,
dubbed zombie firms, those in the bottom 5% or 10% of the distribu-
tion. Zombies have been defined in various ways, usually in terms of one
or more measures of profitability; all are financially unwell and extreme
productivity laggards. Berlingieri et al. (2020) have studied produc-
tivity dispersion among laggard firms, and have warned against equating
laggard firms, which tend to be younger and smaller than average, with
zombie firms, which tend to be older and larger than average. Laggards
present a public policy challenge, but zombies create a more serious chal-
lenge; they have become the subject of growing public attention and
scholarly research, most emphatically during the 2020 pandemic-induced
depression. As an example of growing public attention, The Economist,
which calls them the “corporate undead”, has published literally scores of
articles about zombie firms and zombie jobs recently.

Zombies were spotted first in Japan during its lost decade of the
1990s. Caballero et al. (2008), Fukuda and Nakamura (2011), and Goto
and Wilbur (2019) all studied the causes and consequences of Japanese
zombie firms, and all related a similar story. To meet Basle capital stan-
dards, many banks continued to extend credit at subsidised rates to
insolvent borrowers, a practice called “evergreening”, hoping for even-
tual recovery of the borrowers or government assistance. Caballero et al.
showed that approximately 30% of borrowers were kept alive by this prac-
tice by the turn of the century. Consequently zombie-infested markets
became congested, with less productive zombies occupying market share
that discouraged entry and investment by more productive firms and
lowering aggregate productivity and slowing Japan’s eventual recovery.
A natural question to ask is what happened to the zombies after the turn
of the century. Fukuda and Nakamura, and Goto and Wilbur, showed that
their eventual bankruptcy was rare, and that most recovered satisfactorily.
They attributed this outcome to corporate restructuring, which involved
shrinking zombies through reducing employee numbers, mainly through
dismissals, and shedding fixed assets.

Zombies were discovered next in Europe. Against a backdrop of
declining productivity growth in OECD countries, Andrews et al. (2017,
Andrews & Petroulakis 2019), Adalet McGowan et al. (2017, 2018),
and Gouveia and Osterhold (2018) used firm-level panel data to show
that the productivity gap between frontier firms and laggard firms has
varied across countries, and has grown rapidly in the twenty-first century,
with zombie firms occupying a growing market share in all countries and
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constraining the growth of more productive firms. The adverse impact on
healthy firms has worked through two channels, by reducing productivity-
enhancing capital reallocation, and by crowding out credit, both of
which reduce aggregate productivity beneath its potential. Banerjee and
Hofmann (2018, 2020) studied zombies in 14 advanced economies from
the 1980s to 2016. The share of zombies among all firms increased from
around 2% in the late 1980s to 15% in 2017, the probability of remaining
a zombie from one year to the next increased from 60 to 85%, and their
prevalence increased during the 2008 financial crisis. Roughly one quarter
of zombies exited and ceased operating. Recovering zombies remained
weak, at high risk of relapse, and significantly less productive than other
incumbent firms. The authors attributed the rise and survival of zombies
to weak banks that rolled over loans rather than calling them or writing
them off] in conjunction with low interest rates that reduced borrowing
costs and lowered the pressure on zombies to restructure or exit. They
found zombies to be less productive than other incumbent firms, thereby
reducing aggregate productivity beneath its potential by crowding out
investment and employment in healthy firms and potential entrants.
Storz et al. (2017) and Schivardi et al. (2017) studied zombies in
euro area periphery countries, including the southern tier countries of
Portugal, Spain, Italy, and Greece, as well as Ireland and Slovenia. Storz
et al. focused on bank stress as a determinant of the prevalence of
zombies, with bank stress a function of capitalisation, non-performing
loan ratios and return on assets and other financial indicators. They
found variation in bank stress negatively correlated with financial health
of zombie borrowers, a result that was robust to alternative definitions of
bank stress and zombie financial health. In their study of Italian zombies
during the financial crisis, Schivardi et al. found stressed banks were signif-
icantly more likely than healthy banks to continue lending to zombies,
extending their survival and increasing aggregate productivity dispersion,
although the adverse effect of the credit misallocation on the growth of
healthy firms was modest. Osterhold and Gouveia (2020) studied zombie
firms in Portugal, a valuable case study because Portugal has reduced exit
barriers more than most OECD countries. They found a large presence of
zombie firms, which were less productive than other firms and depressed
aggregate productivity by stifling resource reallocation. They also found
that the reduction in exit barriers enhanced exit of the least viable zombie
firms and encouraged restructuring of the remaining zombie firms. They
also raised an important public policy issue, as zombie firms accounted
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for over 20% of employment and capital in some sectors, creating a need
to design a policy mix that minimises the social costs of exit.

Weak and impaired banks have played a crucial role in these studies,
with zombie firms more likely than healthy firms to be linked to weak
banks that have exercised forbearance by evergreening loans to zombie
firms to avoid realising losses on their balance sheets. Variation in the
design of insolvency regimes (e.g., the treatment of non-performing loans
and failed entrepreneurs) also has influenced the survival of zombie firms,
by enhancing or impeding corporate restructuring and liquidation and
by improving creditor recovery rates. This has widened productivity gaps
and created differential barriers to restructuring and entry of produc-
tive firms and exit of zombie firms. Reform of insolvency regimes along
several dimensions in some countries has spurred productivity-enhancing
creative destruction and created job displacement, a new twist on the
old machinery question, although reform also has created higher non-
zombie employment growth and an improved matching of skills with
jobs, and these effects have varied across countries as well. However,
there remains much scope for improving the design of insolvency regimes,
through actions to reduce bank forbearance of non-performing loans and
to enhance retraining and job search. Keuschnigg and Kogler (2020)
succinctly described the ability of strong banks to fulfil their Schumpete-
rian role by allocating credit to productive uses and away from zombies,
and the inability of weak banks to do either. They provided European
evidence of the crucial roles national banking systems have played in both
promoting and deterring the reallocation of credit and their influence on
aggregate productivity growth.

Zombies have not gone away, and much subsequent public attention
and scholarly research have examined the role of the financial systems
and insolvency regimes in fulfilling their Schumpeterian role of creative
destruction by facilitating the exit or restructuring of zombie firms and
zombie jobs, and the policy options available to improve the performance
of financial systems and insolvency regimes. The large-scale government
and central bank interventions in response to the pandemic depression
discussed in section “Productivity and the Pandemic Depression” have
magnified concerns about, and coverage of, the growth of zombie firms
and their depressing effect on aggregate productivity.
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Expanding the Scope of Productivity Analysis Redux:
Inclusive Green Growth

Nearly a century ago Fagan, C. Clark, and other writers cited in
section “Social Concerns” favoured the incorporation of indicators of
non-market goods such as leisure and natural resource depletion into a
measure of a country’s social output. Even earlier, as Sandmo (2015)
has noted, the Marquis de Condorcet, Parson Malthus, and several other
economists from the eighteenth and nineteenth centuries wrote about
natural resources and their growing scarcity, although apparently none of
these early writers proposed incorporating resource depletion, pollution,
and other environmental outcomes into a holistic measure of a country’s
social output, much less its productivity. In his “biography” of the subject,
Hulten (2001; 33-35) referred to the boundary of productivity analysis,
noting that these variables extend “...far beyond the boundaries of the
market economy...” and incorporating them would be “...an impossibly
large order to fill”. Hulten was referring specifically to the then-recent
green GDP proposal of Nordhaus and Kokkelenberg (1999) to expand
the national accounts to include environmental indicators, although his
argument applies to the incorporation of leisure and other non-market
goods as well. This section is directed to recent efforts to expand the
boundary of productivity analysis beyond the market economy.

Nordhaus and Kokkelenberg wrote of various aspects of, and efforts
to implement, environmental accounting. They began by discussing the
benefits of augmenting existing economic accounts embodied in the
national income and product accounts with satellite natural resource and
environmental accounts. Among the benefits they cited were (i) valu-
able information on the interaction between the environment and the
economy; (ii) information showing whether stocks of natural resources
and environmental assets were being used in a sustainable manner; and
(iii) information to guide regulatory and tax policies. Satellite accounts
would include accounts for subsoil mineral assets such as coal, petroleum,
and gas, accounts for renewable resources such as timber, and environ-
mental resources such as clean air and water. For some of these variables,
“...novel valuation techniques...” would be required for their inclusion
in the satellite accounts.

The paucity of valuation techniques mentioned by Nordhaus and
Kokkelenberg is a long-standing concern in environmental research
involving quantities as well as prices. Significant scientific progress
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has occurred in the measurement of quantities of all three types of
resources, but measurement of prices has proved to be a significant chal-
lenge, for natural and environmental resources and other non-market
goods. However, for purposes of environmental productivity analysis,
the concern can be allayed somewhat. Incorporating non-market vari-
ables such as greenhouse gas emissions into an index number approach
to productivity analysis summarised in section “Methods” does require
prices with which to weight quantity changes. However, incorporating
non-market variables into an analytical approach to productivity anal-
ysis summarised in section “Non-parametric Distance Functions” does
not require price weights, and this approach has become a popular
method for conducting environmental productivity analysis. Coelli et al.
(2007), Dakpo et al. (2016), and Fersund (2018) provided comprehen-
sive overviews of the modelling issues involved, the essence of which is
easy to summarise. Two technologies exist, one for the production of
desirable outputs, and the other for the generation of undesirable by-
products, and the two technologies are linked in two ways, by shared
materials inputs (aka natural capital; see the discussion below) and by the
need to satisfy the materials balance condition.

Interest in incorporating environmental variables into augmented
national accounts, and then into an environmental productivity analysis,
has mushroomed since Hulten wrote of the boundary of productivity
analysis.

Costanza et al. (2009) echoed the calls of earlier writers in
section “Social Concerns”, quoting Kuznets extensively, for the devel-
opment of improved indicators of progress and well-being that extend
beyond GDP. They then surveyed a compendium of related studies of
three types: (i) indices that adjust GDP such as the Genuine Progress
Indicator; (ii) indices that exclude GDP such as the Ecological Foot-
print; and (iii) indices that include GDP such as the Human Development
Index. Simultaneously, and to much greater acclaim, perhaps because the
lead author was a co-recipient of the 2001 Nobel Prize in Economic
Sciences, Joseph Stiglitz et al. (2009), in what has become known as “The
Stiglitz Report”, wrote of the limits of GDP as an indicator of economic
performance and social progress. They listed a litany of omissions, most of
which C. Clark had mentioned in 1940, including leisure time, inequality
of income, wealth, and opportunity, depletion of exhaustible resources
and environmental degradation, and trust and social capital. The title
of their report notwithstanding, although they stressed the need for
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measurement, they did not suggest sow to measure these missing indi-
cators. Perhaps because of this omission, soon thereafter Social Indicators
Research (2011) devoted most of a special issue to critiques of the Stiglitz
Report, most of which centred on the measurement issue.

Nearly a decade after the Stiglitz Report, Stiglitz et al. (2018) released
a sequel devoted to the measurement of what counts for economic and
social performance. It placed dual emphases on making better use of
available statistics and building foundations for new and improved statis-
tics in areas not adequately covered by official statistics, both with an
ultimate objective of improving policy analysis and decisions. Prominent
among the areas were the several dimensions of inequality, environmental
vulnerability and resilience and the sustainability of growth, and social
capital and trust, and within each area, it evaluated the quality of avail-
able metrics. The report concluded with twelve recommendations on the
way ahead for measuring well-being; all but two stressed the need for
improving the suite of metrics to be included on the dashboard of indi-
cators with which to guide policy. A companion volume, OECD (2018a)
contains essays assessing the adequacy of available metrics and ongoing
data challenges for nine areas covered by Stiglitz et al. (2018). To the
extent that these metrics become available across OECD countries and
through time, they will support a welcome productivity analysis of social
economic progress.

The next step has been to progress from an analysis of the adequacy
of available metrics to their application to the motivating issue, the
measurement of inclusive green growth, an imprecise concept sufficiently
malleable to suit a range of policy objectives. The Green Growth Knowl-
edge Platform (2016) has defined it as a multi-faceted concept combining
economic growth, environmental sustainability, and social inclusiveness.
The OECD (2014) has interpreted the inclusive component as allowing
individuals to contribute to economic growth and to receive equitable
benefits from it, avoiding inequality of income, wealth, opportunity, and
health outcomes. The OECD Green Growth Indicators (2017) defined
the green component of inclusive green growth as progress toward four
objectives, establishing a low carbon, resource-efficient economy, main-
taining the natural asset base, improving people’s quality of life, and
implementing appropriate policies toward meeting the first three objec-
tives. It measured progress with 41 Main Indicators, 27 of which are
available for most OECD countries.
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Setting inclusiveness aside for the moment, it seems appropriate, and
tractable, to consider green growth as economic growth constrained by
regulations protecting the environment and policies favouring investment
in green technologies, the primary channel being the productivity growth
component of economic growth. One policy issue then becomes whether
stringent environmental regulations undermine or enhance productivity
growth, essentially a renewal of the much-maligned Porter (1991)
hypothesis. Ambec et al. (2013) provided a 20th anniversary survey of
the extant empirical evidence on the hypothesis, which has been decid-
edly mixed. Support for a weak version, which states that environmental
regulation stimulates environmental innovation (which may or may not
improve financial performance or raise productivity) has been strong.
Support for a strong version, which states that properly designed envi-
ronmental regulation induces cost-reducing innovation that more than
compensates for the cost of compliance and improves the financial (and
presumably the productivity) performance of firms, has proved elusive.

More recent OECD evidence suggests a nuanced intermediate
outcome, that properly designed environmental regulations can benefit
the environment without financial sacrifice or loss in productivity. The
OECD has developed a composite index of environmental policy strin-
gency (EPS), details of which are available at http://oe.cd/eps. Albrizio
et al. (2017) have used this index to test the strong version of the Porter
hypothesis. With a sample of 17 OECD countries and 10 manufacturing
sectors during 1999-2009, they found a tightening of environmental
policy stringency to have had a positive effect on industry-level produc-
tivity growth in countries where an industry was close to the global
productivity frontier, with the effect diminishing with distance to the
frontier. At the firm level, they found only one-fifth of firms to have
increased productivity, and half of firms to have encountered productivity
declines, following a tightening of environmental policy stringency. They
suggested that the discrepancy between industry- and firm-level findings
may reflect exit dynamics or oftshoring. Dechezleprétre et al. (2020) have
pursued the exit dynamics issue; they used the EPS index to examine the
effects of energy prices and environmental policy stringency on employ-
ment in the OECD during 2000-2014. They found the joint effects to
be negative and statistically significant, but small in magnitude, as exit
of some firms, which reduced employment initially, encouraged employ-
ment growth in surviving firms. The OECD also has developed an index
of Design and Evaluation of Environmental Policies (DEEP) to augment
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its long-standing indicators of product market regulation. Berestycki and
Dechezleprétre (2020) have used this index to measure the influence of
energy prices and environmental regulatory stringency on competition,
which can occur through two channels: first, by distorting market compe-
tition through a differential impact across firms, and second by imposing
transaction and administrative costs on all firms that can raise barriers to
entry. The authors calculated DEEP for 29 OECD countries in 2018
(Korea is best, Italy is worst), but the OECD has not reported empirical
evidence obtained from combining DEEP with EPS to identify chan-
nels through which increases in the stringency of environmental policy
impact productivity growth. The OECD work on policy stringency has
been updated and summarised in OECD (2021).

Cardenas Rodriguez et al. (2018) have developed a growth accounting
methodology that can be employed in conjunction with EPS and DEEPD.
Starting from a transformation function H(Y, R, L, K, N, t) 2 1, in which
T is GDP, R is an undesirable environmental by-product, L, K, and N
are labour, produced capital, and natural capital, respectively, and t is a
time index, they derive

dlnY olnR dlnL 0lnK dlnN JInEAMEFP

o R T TRk teN T
The left side is pollution-adjusted GDP growth, consisting of GDP
growth less an adjustment for pollution abatement growth. The right
side is input growth, consisting of growth in the contributions of labour,
produced capital, and natural capital, plus environmentally adjusted
productivity growth. The latter component has a conventional interpre-
tation in an unconventional setting, as a residual representing that part
of pollution-adjusted GDP growth that cannot be explained by growth
in the use of the three inputs. As with all residuals, it may contain other
unincorporated sources of variation in environmentally adjusted produc-
tivity growth. An initial empirical study covered 51 countries over the
period 1990-2013. Empirical findings varied widely across countries, with
environmentally adjusted productivity growth rates ranging from over 3%
pa in Estonia, Ireland, and Lithuania to barely positive in Greece and
Turkey. Adjustments to GDP growth for pollution abatement ranged
from over 0.5% in the Czech Republic and Germany to less than —
1% in Turkey, indicating that the first two countries sacrificed potential
economic growth with industrial restructuring that reduced emissions,
while Turkey relied on emissions-intensive industries to generate growth.
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A third finding measured the growth contribution of natural capital to
pollution-adjusted GDP growth, with the Russian Federation and Saudi
Arabia most reliant at over 0.5% pa and the UK, Hungary, and Denmark
reducing their reliance on natural capital.

The incorporation of natural capital in a production relationship by
Cardenas Rodriguez et al. is not new, but recently renewed interest in
it is a valuable analytical and empirical development of growing policy
interest. In the 1930s and 1940s, Fagan, C. Clark, and H. S. Davis all
wrote of the avoidance of a wasteful use of natural resources, and Spengler
identified wasting of the heritage of non-reproducible natural resources as
distinguishing (colourfully characterised) sound from unsound growth.
More recently Nordhaus, Stiglitz, and colleagues have introduced various
aspects of the environment as driving a wedge between economic and
social progress; see the discussions in sections “Social Concerns” and
“Expanding the Scope of Productivity Analysis Redux: Inclusive Green
Growth”. Current interest in natural capital has shifted, from a largely
normative view of environmental waste and degradation as a by-product
of economic growth to a strictly positive effort to incorporate natural
capital as an input into an analytical production relationship capable of
empirical estimation and testing. This interest has received a boost from
the availability of relevant data from the OECD Green Growth Indicators
and data developed by other international agencies.

Ecologists have a broad societal perspective on natural capital. Thus
Guerry et al. (2015) have interpreted natural capital and the ecosystem
services it provides as society’s “life support systems” and have explored
the role of natural capital in sustaining human well-being. They advo-
cated the incorporation of natural capital and its ecosystem services into
management practices and public policies. Costanza et al. (1997) valued
the world’s ecosystem services and natural capital at 16-54 trillion USD,
nearly all of which is outside the market economy. To put this estimate
in perspective, and noting the 23-year difference, the 2020 EU GDP
was approximately 15 trillion USD. Kareiva et al. (2015) have proposed
a greater incorporation of environmental costs and benefits accruing to
and arising from natural capital into corporate accounting and reporting.
Economists, on the other hand, tend to take a narrower view of natural
capital, interpreting it as they do management, as a missing or hard-to-
measure input to production processes. Somewhere in between, scientists,
call them environmental economists, seek a balance between the preser-
vation of natural capital and the ecosystem services it provides and the
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use of natural capital in the production of goods and services valued by
society. Common to all views are its measurement and the valuation of its
contribution to social and private productivity.

Brandt et al. (2017) and Freeman et al. (2021) have treated natural
capital as a (previously) missing input, the omission of which causes
something akin to management bias analysed by Hoch and others and
discussed in section “Organisation”. They used OECD data incorporating
the subsoil assets component of natural capital to estimate production
relationships. Brandt et al. created an unbalanced panel of countries to
compare estimates of productivity growth incorporating and omitting
natural capital over the period 1986-2008. They found national differ-
ences ranging from —0.16 in Norway to +0.21 in Chile and +0.28
in Russia. Negative estimates indicate that natural capital grew faster
than the traditional inputs of labour and produced capital, and posi-
tive estimates indicate the opposite. Thus, traditional productivity growth
overstated inclusive productivity growth in Norway, where natural capital
grew three times faster than traditional inputs, and understated it in
Russia for the opposite reason. Freeman et al. decomposed natural capital
into several components (e.g., coal, gas, oil, etc.) and created a 2011
cross-section of countries to compare productivity levels. They found
productivity levels including natural capital to fall short of those excluding
natural capital for each country among the eleven most resource-intensive
countries. Thus, traditional productivity levels in these resource-intensive
countries overstate inclusive productivity levels. They found the opposite
for all countries having a share of natural capital rents less than that of the
US, the reference country.

Productivity in the Cirdenas Rodriguez et al., Brandt et al., and
Freeman et al. studies is defined using real GDP as the output, with
the input vector including and excluding natural capital. The logical next
step is to broaden the output concept to a more inclusive measure of
social output advocated by writers ranging from Fagan and C. Clark to
Stiglitz and colleagues. Nonetheless, these and other findings provide
ample evidence in support of a central message of modern productivity
analysis I emphasised in section “Introduction”, that its purview has
widened greatly through its development from its early narrow focus on
some measure of growth in output per capita.
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THE FUTURE: CONFRONTING TwO CHALLENGES
OF TRANSCENDENT SIGNIFICANCE

We have gathered data, we have developed techniques, and we have
gained experience from applying techniques to data in a rich variety of
settings over at least the past century. But we have not encountered a pair
of circumstances quite like those of the 2020s, a depression brought on
by the COVID-19 pandemic and climate change brought on largely by
reliance on fossil fuels to power past economic growth. The World Bank
Group (2020a) has characterised the pandemic depression as a “crisis”,
and Tol (2009) has characterised climate change as “the mother of all
externalities”. These challenges raise the question of whether they influ-
ence productivity adversely or positively, and whether productivity can
influence either challenge.

In its October 2020 World Economic Outlook, the International Mone-
tary Fund (2020) predicted the pandemic would create a depression
with “a long and difficult ascent”. It forecast a decline in global
economic growth to —4.4% in 2020, with a rebound to 5.2% in 2021.
It acknowledged that the depth of the contraction would depend on
several unknowns, including the length of the pandemic and resulting
lockdowns; the impact of social distancing on spending; the ability of
displaced workers to secure employment; the extent of scarring from
firm closures and extended periods of unemployment; the introduction
of strengthened workplace safety measures that incur business costs; and
the impact of reconfigurations of global supply chains on business produc-
tivity. In its December 2020 Preliminary Economic Outlook, the OECD
(2020c) forecast a similar decline in global real GDP to —4.2% in 2020
and an increase to 4.2% in 2021. Like the IMF, the OECD acknowl-
edged substantial uncertainty around its projections. Both the IMF and
the OECD stressed the desirability of public policies promoting green
investment that would address the two challenges of growing out of the
depression and mitigating climate change.

I base the rest of the discussion on the academic and business litera-
tures, with an objective of uncovering conjectures or evidence that may
contribute to our understanding of the separate and combined impacts
of the pandemic and climate change on productivity. In section “Produc-
tivity and the Pandemic Depression”, I consider the potential impacts
of the pandemic and its associated depression on productivity. Much
of the literature on this topic exploits what we have learned from past
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diseases and from past depressions. In section “Productivity and Climate
Change”, I consider the potential impacts of climate change on produc-
tivity, an event that has no precursor from which to learn. The two
phenomena are related; greenhouse gas emissions that contribute to
global warming have fallen during the pandemic-induced depression as
business activity has declined. Accordingly, in section “Linkages Between
the Two Challenges”, I consider the potential impacts on productivity of
complementarities between the two.

Productivity and the Pandemic Depression

The pandemic depression has renewed interest in past depressions, from
the 1918 influenza pandemic through the Great Depression of the 1920s
and 1930s to the financial crisis of 2008.

The 1918 influenza epidemic caused tens of millions of deaths,
2% of the global population during 1918-1920, and led to declines
in output per capita on the order of 7% (Barro et al. 2020, Beach
et al. in press), marginally higher than IMF and OECD predictions for
the current pandemic depression. Arthi and Parman (2021) surveyed
studies of the long-run economic impacts on health, labour, and human
capital of the influenza pandemic, and found substantial scarring effects,
including reductions in educational attainment and wages. These and
many other studies tend to agree on the measurable economic impacts
of the pandemic, and on the lack of evidence concerning its impacts on
productivity.

Unlike the 1918 economic downturn, the Great Depression of 1929
was not brought on by a public health crisis. Nonetheless, it has relevance
for the 2020 pandemic depression. An enormous amount of research has
investigated its economic impacts, from Galbraith’s (1955) The Great
Crash 1929 to current working papers. Findings of steep declines in
output and employment are common, and these declines have implica-
tions for productivity trends, the consensus view being that productivity
was pro-cyclical. Ohanian (2001), for example, found an 18% decline in
total productivity from 1929 to 1933, less than half of which he attributed
to popular factors such as changes in capacity utilisation, changes in the
composition of production, reallocation of labour, labour hoarding, and
increasing returns. He then conjectured that a decline in production
efficiency attributable to decreases in organisational capital, “...the knowl-
edge and know-how firms use to organize production...” such as that
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surveyed in section “Organisation”, may have been responsible for much
of the remaining decline. Field (2003) argued that, despite the 1929-
1933 productivity decline, the decade from 1929 to 1941 was “...the
most technologically progressive of any comparable period in US economic
history” (italics in the original). He attributed a small part of this achieve-
ment to a build-up for World War II, and most of it to an unusually
large number of economically significant technological and organisational
advances that occurred following the depression. Field’s bold assertion
has received support from Gordon’s (2016) massive study of US growth,
although Gordon argued that total productivity growth was even faster
in the following decade. Magnitudes aside, these and many subsequent
studies have found that productivity was pro-cyclical during the Great
Depression.

The prevailing productivity story emanating from the 2008 financial
crisis changed from one of pro-cyclicality to one of a-cyclicality. Fernald
(2015) found strong growth in US total and labour productivity from
1995 through 2003, followed by much weaker growth beginning in 2003
and lasting through 2013. Thus, slower productivity growth preceded
and followed, rather than coincided with, the financial crisis. Fernald
attributed the pre-crisis productivity slowdown to the waning of the rapid
pace of IT investment and complementary innovations such as business
reorganisation that boosted productivity growth beginning in the mid-
1990s. Fernald and Wang (2016) added to the sources of a-cyclicality
more flexible labour markets that have reduced the need to adjust capacity
utilisation, a decline in pro-cyclical reallocations within and across produc-
tion units, a shift in the structure of the economy from manufacturing to
services, and the growing importance of intangible investments in R&D,
IT, and other hard-to-measure outputs. Gali and van Rens (2021) also
claimed the pro-cyclicality of productivity in the US vanished, and its
disappearance was driven by increased labour market flexibility resulting
from innovations in job search technology and improvements in infor-
mation about the quality of job matches. This reduced hiring and firing
frictions, allowing firms to adjust employment in response to shocks.

Looking forward with the benefit of hindsight gained from analysing
previous economic downturns, a growing number of studies of the
pandemic depression have appeared. Many have explored the relation-
ship between health and economic outcomes of the pandemic. Others
have examined the impact of the pandemic on output and employ-
ment, and the ability of fiscal and monetary policy to minimise the
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adverse impacts. Still others have studied the impacts on international
trade and global value chains. Dieppe (2020) has been one of few
to study the impact of the pandemic on productivity. He found a
largely negative impact to date, caused by uncertainty that weakened
domestic and foreign direct investment, mobility restrictions that slowed
the reallocation of labour toward higher productivity employment, and
weakened corporate and public sector balance sheets that constrained
investment and exacerbated employment losses. Looking ahead, he envi-
sioned productivity-enhancing opportunities for businesses and countries
that adopt complementary policies toward the integration of new tech-
nologies that automate production, the improvement of human resource
management, and the development of financial institutions.

Implicit in the discussion above is a much-debated trade-off between
the health and economic outcomes of the pandemic, and the ability of
public policies to influence the trade-off. Tisdell (2020), Kaplan et al.
(2020), and Acemoglu et al. (in press) have created models of the
trade-oft with great potential value for productivity analysis in general,
and specifically for the analysis of productivity dispersion, productivity
gaps, distance to the frontier, the identification of zombies, and even
the measurement of holistic productivity change incorporating health
outcomes. The models differ in their definitions of health and economic
outcomes and in other details, but have a common analytical structure.
Geometrically, measure health outcomes such as number of COVID-19
cases or deaths per capita on one axis and economic outcomes such as
GDP per capita on the other axis, and introduce cross-sectional or panel
data on the two outcomes from countries or regions within a country. The
data form a pandemic possibility set consisting of all feasible combinations
of the two outcomes, with the set bounded by a pandemic possibility
frontier that describes the trade-offs between the two outcomes. Conven-
tional frontier estimation techniques project each country to different
points on the frontier, reflecting variation in public policies. Some coun-
tries seek to avoid adverse health outcomes by imposing social controls
such as restrictive lockdowns, perhaps targeted at certain susceptible
groups, and promoting vaccinations, while others seek to avoid economic
damage at the cost of adverse health outcomes with generous business
and employment stimulus packages. Kaplan et al. and Acemoglu et al.
stressed the advantages of targeting, by occupation or age or pre-existing
co-morbidities, a strategy Tisdell questioned on freedom of choice and
ethical grounds, citing Adam Smith and George Orwell. Independently
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of social preferences, the discovery and dissemination of new medical
technologies have the potential to shift the frontier in a favourable direc-
tion. A current example of new technologies that shift the frontier is
the application of genetics to medicine, in particular the development of
messenger ribonucleic acid (mRNA) vaccines to combat the virus. There
is guarded optimism that mRNA may be useful in combatting other
conditions, including HIV, rabies, and even cancer. The Economist (27
March 2021) surveyed the development, the current significance, and the
future potential of these new biomedical technologies.

The Economist (8 December 2020) has speculated that the pandemic
might spawn a new era of rapid productivity growth. Their reasoning
began with Solow’s (1987) celebrated quip that “[yJou can see the
computer age everywhere but in the productivity statistics” and continued
with David’s (1990) reminder from the economic history community that
it takes time for general-purpose technologies to bear fruit. It almost
concluded with work of Brynjolfsson et al. (2019, 2021) that built on
the contributions of Solow and David. These authors argued that Al is
a general-purpose technology, which enabled them to exploit the litera-
ture on general-purpose technologies, including the time-frame insights
of David, to address a current version of Solow’s productivity paradox.
The adoption of general-purpose technologies such as Al requires invest-
ment in complementary intangibles such as R&D, organisational capital,
and workforce training, which tend not to appear in company balance
sheets or in national accounts, and this has important consequences for
productivity measurement. The role played by intangibles generates what
the authors called a productivity J-curve. Soon after the adoption of a
general-purpose technology, true productivity growth is under-estimated
because measured inputs are used to accumulate unmeasured intangibles.
Eventually true productivity growth is over-estimated because the unmea-
sured intangibles generate measurable outputs. The productivity J-curve
declines and then increases, measuring the deviation between estimated
and true productivity growth.

Brynjolfsson et al. developed the productivity J-curve prior to the
onset of the pandemic depression. The contribution of the Ecomomist
was to extend the idea to the pandemic depression, arguing that the
pandemic, despite its economic damage, has quickened the adoption of
new technology and made a productivity boom more likely to develop. It
cited investment in digitisation and automation, and related adoption of
Al, 3D /4D printing, robotic process automation (RPA), and numerous
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other tangibles and intangibles. If economies remain in the downward-
sloping portion of the productivity J-curve, the pandemic has brought
the upward-sloping portion forward.

Refocusing from national economies to individual businesses, the
pandemic forced companies to adopt work from home, or remote work.
The practice spread quickly and broadly, and became one of the most
studied features of the pandemic. Remote work reduces commuting time,
offers flexible working hours, and may improve work-life balance, each
of which may influence productivity. The findings have been decidedly
mixed.

McKinsey & Company (2020e, 2020f) summarised the findings of
a large international survey, in which nearly half of employees working
from home reported higher productivity at home than at the office,
although fully one-third of respondents reported inadequate internet
service, making the investment in digital infrastructure an important
policy challenge. They then argued that the pandemic was a tipping point,
with business implementing new technologies and operating systems that
enhanced the productivity of remote work, but primarily among the
well-educated and well-paid minority of the work force. Similar find-
ings were reported by Slack (2020), a corporate messaging firm, based
on a survey of 4,700 home workers in six countries. The survey found
that flexible working eliminated the money and time cost of commuting,
enhanced workers’ work-life balance, and increased their productivity.
Davis et al. (2021) also postulated that the pandemic would accelerate the
widespread adoption of new technologies that increase the productivity
of work from home, the key parameter being the elasticity of substi-
tution between market work done at home and market work done at
the office. Bloom et al. (2021) provided additional evidence in support
of McKinsey and Davis. They used US patent applications to uncover
empirical evidence that remote work has induced innovation toward tech-
nologies such as remote interactivity that enhance the productivity of
remote work. Additional evidence is surely forthcoming.

However, in a pair of member surveys, the Association of Char-
tered Certified Accountants (2020, nd) found that the most frequently
mentioned impact of the pandemic was reduced employee productivity,
even though most respondents have implemented flexible work strategies
and most believed remote work would be a long-lasting pandemic impact.
In their study of the switch from office work to remote work by over
10,000 highly skilled employees in a large Asian I'T company, Gibbs et al.
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(2021) measured productivity by the ratio of an output measure provided
by the company to hours worked on a relevant task. They found a signifi-
cant increase in hours worked, no significant change in measured output,
and a productivity decline of about 20%. They suggested that remote
work hampers communication, coordination, and collaboration, and the
impact on the productivity of highly skilled professionals may differ from
that of other workers due to the nature of the IT job requirements.

The academic literature has evinced an almost instant recognition
of the economic and public health significance of the 2020 pandemic
depression. In addition to a flood of working papers, two new academic
journals devoted to vetted real-time economic analysis of the pandemic
have appeared, Covid Economics, from the Centre for Economic Policy
Research, and The Economics of the Coronavirus Crisis, from Intereco-
nomics/Review of European Economic Policy.

Productivity and Climate Change

In contrast to the pandemic depression, climate change has attracted a
multitude of studies directed toward its impact on productivity, perhaps
because it has been occurring for centuries, whereas the pandemic
depression began in 2020.

In its Fifth Assessment Report, the Intergovernmental Panel on
Climate Change (IPCC) (2014) stated that warming of the climate
system is “unequivocal”, and human influence on the climate system
is “clear”. The Panel noted variation in vulnerability to climate change
across nations, and across regions and sectors within nations, and stressed
the need for complementary policies and actions to promote mitigation
of and adaptation to the impacts of climate change. It also empha-
sised the constraints facing implementation of both, and the likely gaps
separating achievements from possibilities. The emphasis on gaps brings
to mind something similar to Kaplan’s pandemic possibility frontier in
section “Productivity and the Pandemic Depression”, with climate change
substituted for pandemic and inspiration drawn from the literature on
productivity dispersion and distance to frontier in section “Productivity
Dispersion, Productivity Gaps, Distance to Frontier and Zombies”. In a
subsequent Special Report, the IPCC (2018) asserted, with high confi-
dence, that global warming is likely to reach 1.5 °C above pre-industrial
levels between 2030 and 2052 if it continues to increase at the current
rate. To provide an idea of the magnitude of the likely cost required to



1 PRODUCTIVITY MEASUREMENT: PAST, PRESENT, AND FUTURE 75

limit global warming to 1.5 °C target by the IPCC date range, van Vuuren
et al. (2020) have constructed a meta-model from climate and integrated
assessment models to generate an estimate of the cumulative abatement
costs of meeting the target. Using a 5% discount rate, their median esti-
mate of the cost is 30 trillion USD, with a 90% confidence interval of
10-100 trillion USD. Recall from above that the 2020 EU GDP was
approximately 15 trillion USD.

I consider two sectors, agriculture, in which the impacts are partic-
ularly severe, and business, whose managements must adapt. In both
cases, farm-level and firm-level impacts and responses aggregate to
national outcomes. For an insider’s view on the difficulties encountered in
attempting to implement a policy agenda for dealing with climate change,
I recommend Garnaut (2019), a readable survey of the economic and
political issues involved, with a global perspective set against an Australian
backdrop.

Because agriculture is particularly sensitive to the vagaries of the
weather, and since crop productivity is commonly measured by easily
observable yield, crop output per area, it has attracted a large volume
of research into the impacts of climate change on agricultural produc-
tion. Two recent studies illustrate the diversity of issues involved and
the importance of developing flexible models of the relationship. Wang
et al. (2019) and O’Donnell (2021) provided empirical evidence on
the effects of weather and climate change on US agricultural produc-
tivity. The two studies used the same economic data, a state-by-year
panel of three outputs and four inputs covering 1960-2004 avail-
able at https://www.ers.usda.gov/data-products/agricultural-productiv
ity-in-the-us/, although they used these data to measure productivity
very differently. Wang et al. added two climate variables, a temperature-
humidity index that measures the effects of extreme heat and humidity
on livestock production, and an aridity index that measures the effects of
rain deficit on crop production. They found productivity to have been
sensitive to long-term tremds and interstate variation in both climate vari-
ables, but that both impacts have diminished through time as states have
adapted to changing climate conditions. However, unexpected shocks of
both types have had substantial productivity impacts. O’Donnell added
three different weather variables, a pair of heat indicators, and a precipita-
tion indicator. He found the main drivers of productivity change through
time to have been improvements in technology and change in scale and
mix efficiency, and the main drivers of productivity variation across states


https://www.ers.usda.gov/data-products/agricultural-productivity-in-the-us/
https://www.ers.usda.gov/data-products/agricultural-productivity-in-the-us/

76  C. A. K. LOVELL

to have been variation in production environments (e.g., soil type and
terrain) and variation in scale and mix efficiency. In contrast to the find-
ings of Wang et al., O’Donnell found inter-temporal change and interstate
variation in weather variables to have exerted a relatively small impact on
US agricultural productivity.

Turning to business, The Ecomomist (17 September 2020) called
climate change “the great disrupter” and described several channels
through which climate change has influenced business behaviour, and
how government policies have affected the relationship. Among these
channels are the disruption of global supply chains, the regulation and
deregulation of emissions, (the paucity of) carbon pricing, and a growing
incentive to direct process and product innovation away from fossil fuels
and toward the use of renewable resources such as the sun and wind.
Many of these issues, and more, have appeared in the business press.
In one of many articles on the impacts of climate change on business,
McKinsey & Company (2020c) stressed the growing risks to business
performance posed by climate change, especially its impacts on global
supply chains, which are “optimised for efficiency, not resilience”, and
suggested business strategies for adaptation. Deloitte (2020) conducted
a survey of over 1,000 European CFOs, who revealed growing pressure
to act from a broad range of stakeholders. Despite the growing pressure,
few companies have analysed risks or have governance structures in place
and have reacted largely by pursuing short-term cost-saving strategies
and setting emissions reduction targets not aligned with the 2015 Paris
Agreement. Deloitte does identify potential business opportunities such
as improving energy cfficiency, creating new products or services that are
less energy-intensive, and enhancing the resilience of their supply chains.
Each of these strategies has the potential to improve business productivity,
holistically if not conventionally defined.

I now turn to the impacts of climate change on aggregate produc-
tivity. Heal and Park (2013) used country-level panel data to derive
temperature-driven productivity impacts, and they found significant
temperature sensitivity of per capita income that varies with a country’s
position relative to the temperate zone. In hot zones, the impact of an
increase in temperature is large and negative, while in cold zones the
opposite happens, both with approximately 3—4% productivity change
per degree C. They did not explore the trade and migration possibili-
ties created by these geographically opposing effects. Nath (2020) did;
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he studied the impact of temperature on sectoral reallocation and aggre-
gate productivity, using firm-level data across a wide range of countries.
His estimates showed that extreme heat reduced non-agricultural output
per worker, but by less than in agriculture, implying that hot coun-
tries could adapt by shifting resources from agriculture to manufacturing.
Simulations suggested that this has not happened, since subsistence food
requirements dominate comparative advantage. Climate change draws
labour into relatively low productivity agriculture rather than drawing it
away, with the perverse reallocation effect exerting downward pressure on
global GDP. Cruz Alvarez and Rossi-Hansberg (2021) have documented
the wide geographic variation in the impacts of global warming and have
predicted large productivity and welfare losses in parts of Africa, India,
and Latin America, and gains in Siberia, Alaska, and northern Canada.
They emphasised that their magnitudes depend crucially on economic
adaptation mechanisms, the extent of migration and inter-regional trade,
and endogenous local innovation.

It is also possible to incorporate environmental impacts into an
inclusive model of productivity growth. The OECD (2018b) used the
augmented growth accounting methodology of Cardenas Rodriguez et al.
(2018) to estimate China’s environmentally adjusted productivity growth
during 2000-2013 at approximately 2.5% pa, with a declining trend
reflecting China’s growing reliance on natural resources and ecosystem
services to fuel economic growth. Li and Ouyang (2020) used an alterna-
tive methodology to estimate green productivity growth in 284 Chinese
cities during 2004-2015. They started from the premise developed by
Acemoglu et al. (2012) that technical progress may be directed to green
or brown technologies. They incorporated three components of technical
change, indigenous technical change embedded in the stock of knowl-
edge in patents, technology transfers from foreign direct investment, and
absorptive capacity, the ability to assimilate and apply new technology to
commercial ends. They found green productivity to have trended down-
ward during this phase of the Chinese extensive development model,
which promoted rapid energy- and resource-intensive growth that made
China the world’s largest contributor to global greenhouse gas emissions.
They also found indigenous technical change to have had an adverse
impact on green productivity growth, since patents tended to protect
existing brown technologies, and they found the impact of technology
transfers to have been contextual, depending on a city’s per capita income
among other determinants. Only absorptive capacity had a positive, albeit
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small, impact on green productivity. They also found that environmental
regulation enhanced green productivity growth in an expanded model
of technical change, which provided support for the Porter Hypoth-
esis. A new Chinese economic growth model was enshrined toward
the end of the study period, promoting slower green growth with an
energy- and resource-saving orientation augmented with restrictive envi-
ronmental protection policies. Growth has indeed slowed, and the energy-
and resource-intensity of GDP have declined. A similar green produc-
tivity study quantifying the benefits would be welcome, particularly if it
captured the disruption of the pandemic recession.

Several academic journals specialise in either climate change or envi-
ronmental economics, and both publish studies exploring economic
aspects of climate change. In addition to a growing number of working
papers, one journal is devoted exclusively to the economics of climate
change, Climate Change Ecomomics, which recently devoted a special
issue commemorating William Nordhaus’ receipt of the Nobel Prize in
Economic Sciences. Another journal devoted to all aspects of climate
change, Oxford Open Climate Change, launched in late 2020, and
Economic Policy has devoted a special issue to the economics of climate
change.

Linkages Between the Two Challenges

The Lancet (2020) published an editorial about the two “converging”
crises of climate change and the pandemic, noting their common causes
of human activity and their common consequences for human health,
and stressing the oft-reported observation that the poorest and most
marginalised people are the most vulnerable. A related report from The
Medical Journal of Australin (2020) documented the common causes
and consequences in Australia, where temperature extremes and bushfires
exacerbated the health effects.

Simultaneous occurrence does not imply causality, but the pandemic
depression has slowed greenhouse gas emissions, at least temporarily.
However, like all previous depressions, the pandemic depression will end,
which has motivated a search for other ways to slow or reverse the
growth of greenhouse gas emissions in an environment of economic
growth. Numerous proposals have appeared, some of them introduced in
section “Expanding the Scope of Productivity Analysis Redux: Inclusive
Green Growth” under the heading of inclusive green growth. As a general
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policy-oriented observation, there has developed a widespread agree-
ment among scholars, if not among politicians, that synergies are there
waiting to be exploited with the appropriate policies. Programs to boost
economies out of the pandemic depression can promote green growth,
for example by switching from fossil fuels to climate-friendly renewable
energy sources and complementary technologies, and by investing in the
greening of buildings and transport, all examples of directed technical
change. However, the gap between scientists and policymakers is yawning,
and is emphasised in a wide array of studies. Some, such as Gettins
(2020) and Gardiner (2020) point to the urgency of addressing both
challenges as distinguishing scientists from policymakers, who appear to
lack the urgency in combatting climate change they exhibited in fighting
the pandemic. Others, including Pearce (2020) and Spratt and Armistead
(2020), point to the need for, and the uncertain likelihood of, a green
recovery from the pandemic. As this survey has stressed in other contexts,
management matters.

Le Quéré et al. (2020) chronicled the reduction in daily CO;, emis-
sions during the pandemic depression. They calculated a decrease of 17%
through April 2020 relative to mean 2019 emissions, and they predicted
emissions reductions ranging from 4 to 7% for all of 2020, with large
variances depending on government actions and economic incentives. Liu
et al. (2020) and Friedlingstein et al. (2020) predicted that global CO;
emissions would decline by 8.8 and 7%, respectively, throughout 2020.
Forster et al. (2020) have taken a longer-term perspective, predicting
a negligible impact of the pandemic depression on global greenhouse
gas emissions by 2030, depending on the extent to which the recovery
tilts toward green stimulus and reduced fossil fuel investments. Thus,
the pandemic depression and climate change have been closely related
through late 2020, are expected to be modestly correlated in the short
term and conditionally correlated in the long term.

Helm (2020) has summarised the short-term environmental impacts of
the pandemic depression and has offered a somewhat nuanced look ahead
to some possible long-term consequences. He considered two impacts in
detail, the possible re-orientation of public fiscal and pricing policies in
a green direction, particularly in energy and transport, and the potential
for continued de-globalisation and shortening of value chains initiated by
the pandemic. Concerning the first impact, he expressed a preference for
pricing environmental impacts over fiscal stimulus programs but lamented
that pricing of environmental impacts was more popular with economists
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than with legislators. Regarding the second impact, he noted that the
relative decline of domestic production of five widely traded carbon-
intensive goods in the EU and US since China’s accession to the WTO
was largely replaced by coal exports to China. This practice exported
carbon emissions from the EU and US to China, thereby increasing
emissions through two channels, from shipping and aviation and from
relocating production of carbon-intensive goods away from countries with
relatively high environmental standards. From the recent reshoring expe-
rience during the pandemic, Helm found grounds for optimism, inferring
that de-globalisation may reduce total greenhouse gas emissions.

Many other studies have chronicled the short-term environmental
impacts of the pandemic depression and estimated the long-term impacts.
However, the long-term impacts depend in large part on the public poli-
cies enacted in the interim. Hepburn et al. (2020), Engstrom et al.
(2020), and Agrawala et al. (2020) have considered a range of policies
and have evaluated the relative merits of green and brown approaches.
Hepburn et al. surveyed a large number of central bank and finance
ministry officials and other economic experts from G20 countries on
the relative merits of 25 recovery policies, using four criteria: speed
of implementation, economic multiplier, climate impact potential, and
overall desirability. From their responses, the authors identified five poli-
cies having high potential on both economic multiplier and climate
impact criteria: clean physical infrastructure investment, building effi-
ciency retrofits, investment in education and training to address both
immediate unemployment from COVID-19 and structural unemploy-
ment from de-carbonisation, natural capital investment for ecosystem
resilience and regeneration, and clean R&D investment. Engstrom et al.
introduced another consideration, an economy’s public health objectives,
and consistent with concerns expressed through several IPCC Assessment
Reports, Agrawala et al. added to public health yet another consideration,
an economy’s social and distributional policy objectives. This led them to
propose a vague “just transition” reminiscent of C. Clark’s call for a “just”
distribution of the fruits of productivity growth in 1940.

This inclusive interpretation aligns with the OECD’s Focus on
Green Recovery website (https://www.oecd.org/coronavirus/en/the
mes/green-recovery), which contains numerous current policy papers,
policy responses, and blogs, all directed toward the importance of devel-
oping public policies that would exploit the synergies, by pursuing green
growth. I cite two of several policy-oriented documents. The OECD
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(2020a) has proposed “building back better” from the two challenges,
in which policies directed toward improving well-being and inclusiveness
occupy the central position among a circle of economic and environ-
mental policies. The explanation for centrality is persuasive: centrality is
crucial to gaining social and political acceptance of economic and envi-
ronmental policies. Whereas the OECD (2020a) stressed the importance
of the inclusiveness of the recovery, the OECD (2020b) stressed the
greenery of the recovery. It proposed six outcome indicators, with partic-
ular significance attached to the share of renewable energy in the energy
mix and material productivity, the ratio of real GDP to the consump-
tion of domestic raw materials from natural resources. It proposed seven
policy indicators intended to enhance a green recovery, including the
usual shop-worn tax, subsidy, and carbon pricing schemes, but also an
expansion of environmental R&D expenditure. An objective summary of
the OECD’s pandemic recovery vision would be that productivity growth
has a significant role, provided it is inclusive and green.

The previously cited literature is macroeconomic in nature, and busi-
nesses respond to macroeconomic policies with management decisions
that make it desirable to explore the business literature linking the
two challenges. McKinsey & Company (2020a, 2020b, 2020d) has
been at the forefront, claiming that business simply cannot afford to
ignore the dual challenge, and set two priorities. The first is to decar-
bonise. The second involves making operations more resilient and more
sustainable, by shortening and diversifying value chains, investing in
energy-efficient manufacturing, and increasing digitisation of sales and
marketing. Addressing both priorities requires investment, and McKinsey
notes that, with near-zero interest rates for the near future, there is no
better time than the present for such investments, a sentiment shared
in much of the business literature. Numerous sources warn, however, of
bottlenecks to investment at a scale necessary to pursue green growth, to
reach net zero, or to meet the Paris Agreement target.

The academic literature has shown a growing recognition of the signif-
icance of the joint impacts of, and the complementary solutions to,
the pandemic depression and climate change. In addition to a rapidly
growing number of working papers, at least two academic journals have
devoted special issues to the joint challenge, Environmental and Resource
Economics 76:4 (August 2020) and Oxford Review of Economic Policy 36,
Supplement 1 (2020).
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CONCLUSIONS

Productivity analysis has come a long way from its origins in observation
in the distant past, as I have chronicled in this survey. I have documented
advances in data collection to provide evidence, in measurement to quan-
tify evidence, in analytical modelling to incorporate objectives of and
constraints to production activities, and in a century of effort to recognise
the critical role of management in productivity analysis and to broaden the
scope of productivity analysis beyond the market economy.

In the process of writing this survey, I have also highlighted what I
believe are three significant developments within the overall growth of
the field of productivity analysis that tend to be overlooked in conven-
tional surveys. One is a growing interest of economists in the productivity
performance of individual businesses. This has shown up most visibly in
efforts to find the missing management input, which has been a promi-
nent component of business school curricula for generations, although
we began to incorporate it only in the 1950s. More recently, we have
developed sophisticated models of the causes and consequences, both
financial and productivity, of variation in the quality of management prac-
tices, backed by large data sets. Moreover, the aggregate productivity of
nations and industries that has dominated our research is (almost) simply
that, an aggregate of the productivities of individual businesses directed
by Drucker’s managers, helped or hindered along the way by Koop-
mans’ helmsmen. A second development began with Ricardo’s machinery
question and refuses to fade away. Technology was long viewed as a
source of labour displacement, embodied at one stage by the mechanical
cotton picker. But now new technology embodied in robotics, artificial
intelligence, and machine learning and other advances in information
and communications technology, has of necessity raised the profile of
human resource departments assigned the task of accommodating it,
thereby illustrating the complementarities involved, and has come to
be viewed as an admittedly disruptive source of economic and social
progress. A third development is a concomitant growing interest in incor-
porating non-market activities into productivity analysis. This interest
attracted prominent economists to express a range of social concerns in
the wake of the Great Depression and has re-emerged nearly a century
later among growing environmental concerns expressed in the Inclusive
Green Growth movement at the aggregate level, and in the CSR and ESG
movements at the business level. It is worth noting that the non-market
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sector is populated by more than just environmentalists and stakeholders.
For example, economic activities within the household have attracted
the attention of Becker and a host of prominent economists for a long
time, although their productivity consequences have been investigated
only recently, and they receive only a brief recognition for this survey.

An unfortunate shortcoming has permeated some of the issues I
find most interesting, the occasional inability to explicitly incorporate
productivity, the result of the data constraint, or a focus on issues of
more immediate concern such as health, a drawback that is nonetheless
particularly worrisome for a survey of productivity measurement! Never-
theless, I find two causes for muted optimism. First, these issues revolve
around resources and outcomes, regardless of whether they are adequately
captured in the data under investigation. From resources and outcomes,
it is a relatively short step to the ratio of the two, or the distance between
the two, and that distance needs to be traversed. Second, provided
productivity is properly measured, and with the important caveat of
keeping context in mind, productivity improvements contribute positively
to addressing any economic challenge. Hopefully, the current objective of
analysing the potential of productivity growth to contribute to the solu-
tion of the two simultaneous challenges of transcendent significance, will
motivate an enlightened subsequent survey of productivity analysis.

I close on a happy note. Eleven recipients of the Nobel Prize in
Economic Sciences, awarded over a half century from 1969 through
2018, appear in this survey, attesting to the significance of productivity
analysis and measurement.
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CHAPTER 2

Symmetric Decompositions of Aggregate
Output and Labour Productivity Growth:
On Levels, (Non-)Additivity,
and Misallocation

Bert M. Balk

INTRODUCTION

The typical situation we will consider in this chapter is that of an economy
consisting of a fixed number of industries. The mathematics, however,
can also be applied to other situations, such as an industry consisting of
a large number of firms (or establishments, or plants). In each case, we
are looking at an ensemble of, more or less autonomous, consolidated
production units. For an economy and its industries, their profit and loss
accounts are provided by the National Accounts. For individual firms one
must rely on business surveys carried out by official statistical agencies, or
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administrative data retrieved from company records, or some combination
of sources.

The conventional measure of output is (nominal) value added (=
revenue minus cost of intermediate inputs), since that can be compared
and added over production units without running into double-counting
problems. Aggregate value added, at the economy level, is called Gross
Domestic Product (GDP). One is interested in the growth of real GDP
and its industrial sources or components. Another important measure is
labour productivity, real GDP per hour worked, as this can directly be
related to various measures of welfare.

Several authors have developed decompositions of growth of GDPD,
total factor productivity, or labour productivity according to industrial
components. Of older vintage are the decompositions derived in a theo-
retical framework based on neo-classical assumptions and/or continuous
time. Classics are those by Hulten (1978), Gollop (1979), Jorgenson
et al. (1987), Nordhaus (2002), and Stiroh (2002). Over the course
of years, these decompositions have been reinvented, streamlined, or
extended. More recently, we have seen a number of approaches outside
the traditional, neo-classical framework. These include Tang and Wang
(2004, 2015), Diewert (2010, 2015, 2016), Reinsdorf and Yuskavage
(2010), and Dumagan (2013a, 2013b). Most of these decompositions
are essentially asymmetric with respect to time and appear to contain
terms that can be considered as mathematical artefacts, without economic
meaning.

Balk (2014, 2021, Sections 6.3 and 6.4) provided symmetric decom-
positions for growth of GDP and labour productivity, based on the
powerful instrument of the logarithmic mean. All these were formulated
in terms of indices. In the present chapter, we return to this theory,
simplifying the presentation by reformulating in terms of levels.!

Here is an outline of what is coming. Sections “Decomposition
of Output Growth” and “Decomposition of (Simple) Labour Productivity
Growth” discuss output growth and labour productivity growth, respec-
tively. Section “Additivity and Misallocation” turns to the assumption of

1 Decompositions of total factor productivity growth were discussed in terms of indices
in Balk (2021, Chapter 7), and in terms of levels in Balk (2021, Chapter 8).
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additivity and reviews against this backdrop several concepts of misallo-
cation of labour as provided in the literature. Section “How to Over-
come Non-additivity” discusses two recipes for enforcing additivity on
non-additive data. A brief conclusion follows.

DEecomMproSITION OF OUuTPUT GROWTH

We consider an ensemble K of consolidated production units. The central
place is occupied by the following relation, expressing the additivity of
nominal value added,

VAN =3 VAl Q2.1
kelkC

where 7 denotes an accounting period. It is assumed that VA¥ > 0 for
all the production units and all the time periods considered. For each
production unit k € K real value added is defined as

RVA (2, b) = VA¥ /P&, (2, b); 2.2)

that is, nominal value added at period ¢ divided by (or, as one says,
deflated by) a production unit-%-specific value-added based price index?
for period # relative to a certain reference period 4. Without loss of gener-
ality, it may be assumed that period & lies somewhere in the past and that
production unit % already existed in period 4. The functional form of the
price indices may vary over the production units; in particular, the price
indices may be direct or chained or of mixed form. The notation is chosen
so as to emphasize that, unlike nominal value added, real value added is
not observable, but the outcome of a function.
Rewriting the last expression yields

VAN = P, (1, ))RVA* (1, b) (k € K). (2.3)

Nominal value added is here decomposed into a price component and
a quantity component. It is assumed that P{}A(b,b) = 1, so that
RVAK (b, b) = VAkb; that is, in the reference period real value added is
identical to nominal value added.

2 On the construction of value-added based price and quantity indices, see Balk (2021,
Chapter 2, Appendix B).



108 B. M. BALK

For the ensemble, which can be considered as an aggregate production
unit, we have similarly

VAN = P& (1, )RVAR (1, b), (2.4)

where P{,%(t, D) is a value-added based price index for the ensemble /C for
period ¢ relative to a certain reference period 4. This index is supposed
to be estimated from a sample of establishments and products. Its func-
tional form may differ from those of the production unit-specific price
indices. An assumption of technical nature is that all the price indices in
expressions (2.3) and (2.4) are using the same reference period.

Substituting expressions (2.3) and (2.4) into (2.1) and dividing both
sides by the price index for the aggregate, P\I,%(t, b), delivers a relation
between real value added of the ensemble and real value added of the
individual units,

K (t,b
RVAX (¢, b) = > %RVA’%;, b). 2.5)

kelC " VAN
Similarly, substituting expressions (2.3) and (2.4) into (2.1) but now
dividing both sides by real value added of the ensemble, RVAX (1, ),
delivers the dual relation between the price index for the ensemble and
the individual price indices,

RVAK(z, b)
Pl b= =" Pk (1,b). (2.6)
VA ,;C RVAK (¢, ) VA

It is important to observe that, unlike nominal value added—see expres-
sion (2.1)—real value added is in general not additive. Moreover, as
relative price changes P{}A(t, b)/ P",%(t, b) (k € K) do not necessarily add
up to 1, real value added of the ensemble is not a weighted mean of real
value added of the constituent production units either. Dually, the price
index for the ensemble is not a weighted mean of the individual price
indices. We will return to this issue in section “Decomposition of (Simple)
Labour Productivity Growth”.

Consider now another period ¢/, say, prior to ¢. If the production units
are industries, it is quite natural to assume that they exist in both periods
and can be matched. If the production units are firms, we are considering
the subset of firms available in both periods (i.c., the so-called continuing
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firms), which usually makes out the majority of firms in any ensemble.3
Divide then both sides of expression (2.5) by aggregate real value added
of period ', RVAX (¢, b). After adding in numerator and denominator
RVAX(t', b) (k € K), we obtain

RVA (1) 5 (P{;A(t, b) RVA* (', b)) RVAX (¢, b) 0

RVAN (17, b) S\ Pi (. b) RVAR (17, b) | RVAK (17, 1)
which expresses aggregate real-value-added change as a weighted sum of
individual real-value-added changes. Notice that these weights generally
do not add up to 1. The dual relation is

Pl(t.b) (RVAk(t,b) P{;A(ﬂ,b)> P, (t,b) 08
kel

PK.(t. b) RVAK (1, b) PK.(1", b) ) PE (' D)

Thus, aggregate value-added based price change is a weighted sum, but
not a weighted mean, of individual price changes. In both expressions
(2.7) and (2.8), the weights are a mixture of periods #' and # data.*

Evidently, the primal relations are more interesting than the dual ones.
Using the definition of real value added once more, expression (2.7) can
be rearranged as

RVAN(1,6) VAM [ Pl (t.b)/PY(t.b) RVA*(t, D) 29)
RVAR (1, b) S VAR PY (0, b)/ PR b) RVAR (D) |

We see here that, apart from the relative price change term (i.e., the first
term between brackets), real-value-added change of the ensemble is a
nominal-value-added share-weighted mean of real-value-added changes of
the individual production units. In terms of growth rates, this expression

3 How to cope with a dynamic ensemble when measuring total factor productivity
change is discussed in Balk (2021, Sections 7.7 and 7.8).

4 Expressions (2.5) and (2.7) correspond to expression (2.8) of Dumagan (2014).
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can be decomposed as

RVAF @, b) VAKY \ RVAK (7', b)

VAK' [Pk (1, b)/PE (1, b) _1
S VAN \ P, (', b) /PR (1, b)

RVAX(z, b) |
RVAK(#', b)
AR Pk (¢, b)/PK (¢, b
VAR \ PE (17, b)) P8 (. b)

A/C Akt/ Ak
RVAK (1. b) oy V. (RV (1, b) _1>

kelC

(2.10)

kelC

Corresponding with the Dumagan (2014) decomposition, the first term
on the right-hand side of the equality sign could be called ‘pure growth
effect” (= weighted mean of individual growth rates), the second term
‘growth-price interaction effect’ (= weighted covariance of relative price
changes and growth rates), and the third term ‘relative price effect’ (=
weighted mean of relative price changes). The weights of the three terms
are the same, namely nominal-value-added shares of period ¢'.
Combining the second and third terms delivers the simpler expression

RVAX (7, b) -y VAY (RVA'@ D)
RVAF @, b) VAKY \ RVAK(#/, b)

kek . . o @2.11)
Z RVA (l,b) PVA(I’ b) . PVA(t ,b)
S RVAR (@, by \ PR b) PR b)

the last term of which corresponds to the ‘price change effect’ in the
Dumagan (2016) decomposition. The weights of the two terms, however,
are different. Moreover, the real-value-added based weights do not add
up to 1.

Unfortunately, however, the decomposition in expression (2.9) is not
unique. To see this, interchange in this expression the periods ¢ and ¢’
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and take reciprocals. This leads to an expression of the form

RVAS(,5) \ ™ VAY [ Pl b/ PG D) RVARLB) |
RVAK (1, b) S VAR \ P, (7, b)/ P (1. ) RVAF (1, )
2.12)

which can be decomposed in terms of growth rates as

K -1 kt k -1
RVAX (2, b) -y VA¥ [ ( RVA*(r, b)
RVAS(1', b) S VAR | \ RVA* (7, b)

-1
s VAKX ([ PL (1, b)) PE (2, ) .
S VAR \\ Py b)/ PR @ b)

RVAX (¢, b) _1_1
RVA* (¢, b)

-1
+ZVA"’ PE, (t.b)/ PK (1. b) .
VAR \\ Py (@, b)/ P57, b)

kel
(2.13)

Whereas expression (2.9) is a weighted arithmetic mean of relative-price-
change-corrected individual real-value-added ratios, expression (2.12) is
an harmonic mean of the same entities. Morecover, the weights are
different: the first uses period #' shares, but the second uses period
¢t shares. Put another way, expressions (2.9) and (2.10) are forward-
looking, whereas expressions (2.12) and (2.13) are backward-looking.
The two decompositions of the same aggregate real-value-added change,
RVAK (t,b)/ RVAX (', b), are asymmetric with respect to time.

A symmetric decomposition can be obtained by taking, for instance,
the geometric mean of the two asymmetric decompositions. Thus,

172
5 vk’ [ PEL@b)/ PR (1.b) RVAK(1,b)
RVAN (1, p) | #keK vaR7 \ B @)/ R 7 b) RVAR W) 2.14)

K o —1
RVA™ (', b) > vakt [ P& b))/ PR (D) RVAK (b
keK yaKT \ PE, (7.5)/ PK (' .b) RVAF(¢',b)
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This is, however, a very complex expression the parts of which are difficult
to disentangle. A much simpler, symmetric decomposition of the aggre-
gate real-value-added ratio can be obtained by employing the logarithmic
mean. The aggregate nominal-value-added ratio can then be decomposed

as
Kt
1n(\%) PR A t)ln( ) (2.15)

kel

where

VAK VAk’/
LM(VA,C, e

VAkt VAkt/
Zkelc LM(VA’Cf ’ VA}O/

vk, 1) = k € K)

and LMJ(.) is the logarithmic mean.® The coefficients y* (¢, ') are (loga-
rithmic) mean nominal-value-added shares, normalized so that they add
up to 1. Notice that in the derivation of expression (2.15) no assumptions
were involved.

Substituting expressions (2.3) and (2.4) into expression (2.15) yields

RVAKX (1, b) W (2, b) RVA(z, b)
In| ——= 222 ) 4 >
n(RVA’C(t/,b)> * n( K, b)) v O] (RVAk(t’ b)

kel
JAN(N))
+ ki, i) In[ A2 ).
2! “(Pémcb)
(2.16)

5 For any two strictly positive real numbers 2 and &, the logarithmic mean is defined
by LM(a, b) = (a—b)/In(a/b) if a # b and LM(a, a) = a. It has the following properties:
(1) min(a, b) < LM(a, b) < max(a,b); (2) LM(a, b) is continuous; (3) LM(ra, Ab) =
ALM(a,b) (A > 0); (4) LM(a, b) = LM(b,a); (5) (ab)}/? < LM(a,b) < (a + b)/2; (6)
LM(a, 1) is concave. See Balk (2008, 134-136) for details.
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Combining the price terms, and using the fact that the coefficients
¥¥(t,t") add up to 1, then delivers

RVAX ¢, b) RVAX (¢, b)
1 - - 7
n(RVA’C(t/,b)) ,;CW t.1)1 (RVA"(N b)

+Zwk(z,ﬂ)1n( VAt D)/ P (1. b) )

= PiA (. b)/ Pl b)

2.17)

Here, the aggregate real-value-added ratio appears to be the product of
two components, a weighted geometric mean of individual real-value-
added ratios and a weighted geometric mean of relative price changes.
Expression (2.17) may directly be compared to expressions (2.10) and
(2.13) by observing that, if a ~ 1 then Ina &~ a — 1. Thus, the logarithms
of ratios may be interpreted as growth rates. The most striking feature of
expression (2.17) is then that iz does not contain an interaction term. Such
a term is an artefact, materializing only in asymmetric decompositions.
The relative-price-change term vanishes if and only if

W (2, ) NN
1 In 2.18
n( wm) PR A ND ( «m) (2.18)

kel

This equality means that the aggregate price index for period ¢ relative
to period ¢/, P’%(r b)/ P (t b), is a Sato-Vartia index of the individual
price indices P, A(t b)/P. A(t b) (k € K) (see Dumagan & Balk, 2016).
A trivial case materializes when the same deflator is used for all the units
and the ensemble; that is, when Pk At D) = \’,%(t, b) (k € K).

In general, howeve1 the relatlve -price-change term will not vanish.
Even if all the individual production units face the same input and output
prices, compositional differences between the units are responsible for
differences in aggregate price developments.

DECOMPOSITION OF (SIMPLE)
LABOUR PrODUCTIVITY GROWTH
We now turn to the decomposition of (simple) labour productivity

change. Let L¥ denote the total quantity of labour input, measured in
some common unit (say, hours worked), of production unit k € K in
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period ¢. It is fairly natural to assume that

Lk = >k, (2.19)
kel

where L denotes the total labour input quantity of the ensemble. Put
otherwise, we are assuming that an hour worked in production unit % is
the same as an hour worked in production unit ¥’ (k, k' € K).

Simple (value-added based) labour productivity is defined as real value
added divided by labour input quantity (Balk 2021, 120); thus, for the
individual production units as

SLPRODY,, (1, b) = RVA* (1, b)/L* (k € K), (2.20)
and for the ensemble as
SLPRODX, (1, b) = RVA* (¢, b)/ L. (2.21)

The growth rate of aggregate simple labour productivity, going from
period ¢’ to period ¢, is then obtained by considering

RVAX (¢, b) LK

| SLPRODS, (1, b)
n

SLPRODX, (', b)
The first term on the right-hand side of this expression can be decom-

posed according to expression (2.17). The second term can be decom-
posed, like expression (2.15), as

L’Cl Lkl
In & :ZA"(r,/)ln(W), (2.23)

kel

where

th th’
IM( L, L

K@, 1) = P
2 kek LM<W’ LT)

(ke K)

are (logarithmic) mean labour shares, normalized so that they add up to
1.
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Using the definition of simple labour productivity as given by expres-
sion (2.20), and employing the fact that Y, (¥, ') — Ak (1, 1)) = 0,
it turns out that expression (2.22) may be written as

SLPRODY, (1, b SLPROD*(t, b
In D) S k(SO0 D)
SLPRODS;, (', b) &= SLPROD* (¢, b)

Y ) m( PE (1, b)/ PE (1, ) )

PL (1, b)/ PR, (¢, b)

kelC
)\,k(t, t/) th/L]Ct
k ’ AT ==
+1§Cw (t,t)<l wk(z,ﬂ))m(mz'/uo’ :

(2.24)

Hence, the growth rate of aggregate simple labour productivity consists
of three main parts: a weighted mean of individual labour productivity
growth rates, a weighted mean of relative price changes, and a covariance
of labour share growth rate and the excess of labour share over value-
added share, respectively. In all these parts, the weights are the same:
(normalized logarithmic) mean nominal-value-added shares over the two
periods considered. Notice that the covariance term vanishes if the labour
shares of the production units coincide with their value-added shares.
Notice further that expression (2.24) is not an approximation, but an
identity, and that there were no assumptions involved in the derivation.

If all the deflators are transitive, so that the dependence on reference
period & vanishes, then expression (2.24) corresponds to expression [4]
of Dumagan and Balk (2016). An asymmetric, base-period (') weighted
variant was obtained by Diewert (2016, expression [1.9]). Diewert
observed that, empirically, the relative-price-changes factor appeared to
be insignificant.® But this does not come as a surprise. Recall our expres-
sion (2.18) and notice that, to the first order, the relation expressed there
always holds since the inputs and outputs of the ensemble are the union
of the inputs and outputs of all the individual production units.

The third term on the right-hand side of expression (2.24) deserves
closer attention. Even if the individual labour productivities do not
change, and there is no relative price change, then change of labour

6 Though individual components appeared to be quite large for some industries in
particular years.
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shares causes aggregate labour productivity change. Now, labour shares
add up to 1, and thus, a change of the labour share of a certain produc-
tion unit & goes with a change of the labour share of at least one other unit
k’. This can be made explicit by noticing that expression (2.23) implies
that

th/LICt )»k/(l‘,t/) Lk’t/L’Cl
ln(L’“’/L’C”> == 2 Sran M\ | ke 229

K ek k' £k

Hence, expression (2.24) can alternatively be written as

SLPRODX, (¢, b SLPROD (¢, b
o Simont ) = X e S
SLPRODS, (. b)) - SLPRODX(¢/, b)

Pk, (t,b)/PK (1.b
i Z Wk(l,l/)ln( ]:]A(l )/ \Ijé\(f ) >
keK Py (. b)/ PG (', b)

-2 > v 1—}‘k(”’/) W,y
kel k ek k' £k ’ vk, ) | Ak, t)

Lk/t/L’Ct
In| ———7 |
Lkt /LICI

In this way, the roles played by the labour shares of all the production
units are made explicit. I believe this corresponds to the intuition under-
lying the decomposition method proposed by Baldwin and Willox (2016).
The third term on the right-hand side of expression (2.24) considers
(labour) reallocation from the perspective of each individual production
unit k. Likewise, the third term on the right-hand side of expression
(2.26) considers this from the perspective of all the other firms k' # k.
There is no need to make a choice here.

(2.26)

ADDITIVITY AND MISALLOCATION

As noted in section “Decomposition of Output Growth”, real value added
is in general not additive. Additivity of real value added holds if and only
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RVAX (1, b) = Y RVA*(1, b). (2.27)
kekC

Basically, this means that the real value added produced by production
unit % is made of the same ‘stuff’ as the real value added produced by
unit k' (k, k' € K), and thus, these ‘quantities’ may be added together.
Put otherwise, all the product differences between the production units
are neglected.

Given the definitions of aggregate and production unit-specific real
value added, expression (2.27) may be replaced by

(P\’;(t, b))_l = kz;c \%(P@A(t, b)>_1; (2.28)

that is, the price index for the ensemble is a current-period-nominal-value-
added weighted harmonic mean of the price indices for the individual
production units (aka a Paasche index). This is of course a very severe
restriction.

The virtue of assuming additivity is that aggregate simple labour
productivity then takes on a simple form. Based on expression (2.27),
we obtain

th
K k .
SLPRODY, (7, b) = Y~ SLPRODY,, (¢, D)

ke

(2.29)

that is, a aggregate simple labour productivity is a labour share-weighted
arithmetic mean of individual simple labour productivities (recall the
additivity of labour in expression (2.19)). Expression (2.27) can also be
reformulated as

RVAX (¢, b) = Z SLPRODY,, (1, b)L*'. (2.30)
kekC

This provides a convenient starting point for a discussion of the concept
of misallocation. The basic idea behind this concept, of which no unequiv-
ocal definition is available in the literature, seems to be that an expression
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such as (2.30) is considered as representation of a production function
with neo-classical traits.”

Expression (2.30) specifically pictures the production process of
aggregate real value added as a linear one in which each firm, with
given size LY, has selected an element of the set of productivities
{SLPROD]{]/A(I, b) | k¥’ € K}. Evidently, the actual allocation of firms and
productivities (or ‘productivity shocks’, as they are called in the litera-
ture) is not necessarily optimal. On the assumption that productivities
can indeed be selected frictionless, maximal real value added would be

> <max SLPRODY, (z, b)) LM = (max SLPRODY, (z, b)) L*. @231
e k'elC k'elC

Call this RVAMAXX (t, b). The alternative interpretation is that this is the
aggregate real value added that could be obtained if the total labour
supply shifts frictionless to the production unit exhibiting the highest
productivity.®

The (labour) allocation discrepancy may then be defined as the ratio of
actual to maximal real value added; that is,

RVAX ¢, b)

LADN (¢, p) = ——
VA RVAMAXX (7, b)

(2.32)
the maximum value of which is 1. Substituting expressions (2.30) and

(2.31), the labour allocation discrepancy can be expressed as

SLPRODY,, (1, b) Lk
maxy e SLPRODY, (¢, b) L

LAD, (1.b) = Y (2.33)

kekC

that is, a labour share-weighted arithmetic mean of relative simple labour
productivities. The relative gain from a better, even optimal, allocation of

7 For instance, Hopenhayn (2014) considered, reformulated in our notation,
Y kel SLPROD/{,A (t, bY(LKYP with p < 1. However, such a model is difficult to reconcile
with an accounting identity like expression (2.30).

8 The Hopenhayn (2014) model delivered max ks ke)C{ZkeIC SLPRODI{,A(z, b)(Lk[)p |
' (1-p)
Srer L = 150 = (Spexc SLPRODY, (1, by 120 ) " (1K,
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labour input is inversely related to the allocation discrepancy, as

RVAMAXX (¢, b) . 1

SR S (2.34)
RVAX (¢, b) LADS, (1, b)

In a recent study, Gu (2019) proposed the difference between weighted
and unweighted means of the individual productivities,

LKkt 1
~Z_SLPRODY, (1, ) — Y ——SLPRODY, (1, b), (2.35)
l;;: L}Cz VA ];C #(IC) VA

where #(K) denotes the number of firms in the ensemble, as a measure of
allocative efficiency. This increases if more productive firms increase their
share of labour resources. The maximum value is

1
k _ - k
max SLPRODY, (7. b) k}é}é 770 SLPRODIA (), (2.36)

which suggests

RVAS (1, ) — (L jex 7y SLPRODY (1, ) ) LI

(2.37)
K
RVAMAX" (¢, b) — (Zkelc 70y SLPRODY, (7, b))L’Ct

as an alternative measure of labour allocation discrepancy.

Microdata researchers, working with ensembles consisting of large
numbers of individual firms or plants, are usually intrigued by the large
dispersion of (labour) productivities and the large dispersion of firm
sizes.? Given that, under the assumption of additivity, the ‘stuff” produced
by unit % is exchangeable to the ‘stuff’ produced by unit &, why is there
not just one big production unit and, hence, one single productivity
figure?

Thus, which causes are responsible for the empirical productivity
dispersion? And why has labour supply, that is, the total labour input avail-
able to a particular ensemble, not migrated to the production unit with
the largest productivity? These are some of the questions being considered

9 For an overview of the issues, including a research agenda, see Bartelsman and Wolf
(2018).
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in OECD’s MultiProd project (Berlingieri et al., 2017). The discussion
in this chapter will be restricted to a number of measurement issues.

An obvious approach is to split the ensemble K into a number of
disjunct sub-ensembles, Ky (d = 1, ..., D). Then, the right-hand side of
expression (2.29) can be written as

Dy Kat
L~
SLPRODY, (1, 5) = Y WSLPROD@(I, b). (2.38)
d=1
Thus, simple labour productivity of the entire ensemble is a weighted
mean of the productivities of the sub-ensembles, the weights being sub-
ensemble labour shares (notice that, by disjunctivity of the sub-ensembles,

LKt = 32 1Kty The extent to which the productivity of the ensemble
is dominated by sub-ensemble 4 is then captured by the ratio

L%t SLPRODY (1, b)
LKt SLPRODY, (1, b)

d=1,..,D), (2.39)

which can be presented as a percentage. The sub-ensembles could be size
deciles (where, for instance, size is measured by sales). Then, the ratio in
expression (2.39) for d = D provides the extent to which the top decile
dominates the productivity of the ensemble. As some theory predicts that
resources flow to the largest production units, the larger this ratio the less
misallocation there is.

The productivity dispersion in the ensemble itself may be measured by
the (square root of the) (weighted) variance of the individual productivi-
ties, 10

K Lk k
var (SLPRODy, (¢, b)) = Z W(SLPRODVA(L b)
kel

2
—SLPRODX, (1, b)) .

(2.40)

10 Ap alternative is the interquartile range, which seems to be less sensitive to outliers.
See Foster et al. (2021).
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In the same way, the variances for each of the sub-ensembles Ky (d =
1, ..., D) may be calculated. Their relation is given by

D lcdt
var (SLPRODVA(t b)) = Z 79 var (SLPRODKd (t, b))

D 7Kyt
L™ K,
+ 5 (SLPROD (t.b)
d=1

(2.41)

_SLPRODX, (1, b))

Whereas expression (2.38) decomposes the first moment of the produc-
tivity distribution, expression (2.41) does the same with the second
moment. The right-hand side of the latter expression, however, consists
of two main components. The first is a labour share-weighted mean
of sub-ensemble variances and the second is the variance of the sub-
ensemble productivities. Put technically, the components concern within
and between variance, respectively.

Like expression (2.39), the extent to which the productivity variance
of the ensemble is dominated by sub-ensemble 4 is captured by the ratio

Lt var (SLPROD (1, b))
LKt var (SLPRODX, (1, b))

d=1,.. D), (2.42)

which can also be presented as a percentage. Defining the sub-ensembles
as size quantiles, Berlingieri et al. (2017) proposed these ratios for d = 1
and d = D as signalling misallocation. However, the relationship with
theory appears to be weak.

Finally, almost any study of productivity dispersion is hampered by
the fact that at the level of individual production units specific prices
are unavailable, so that theoretically required unit-specific deflators must
be replaced by available ensemble-specific deflators—which implies addi-
tivity. Put otherwise, instead of (now called) physical productivities
SLPROD" A (&, b) (k € K) one calculates r7evenue productivities,

VAY/ P (1. b)

k
SRLPRODY, (¢, b) = T
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Pk (1, b
= SLPROD'{,A(t,b)% kek). (2.43)
VA"

As the second line shows, revenue productivity equals physical produc-
tivity times the relative value-added price of the production unit. Some
theory predicts that in a market where resources are efficiently allo-
cated the dispersion of revenue productivity (as an empirical approx-
imation of marginal revenue product) would be zero. Prominent in
this line of thought is the much quoted article of Hsich and Klenow
(2009). However, Haltiwanger et al. (2018) have demonstrated that this
theory requires a fair number of unrealistically strong assumptions. Equal
revenue productivity among producers in a certain market appears to be
not necessarily a sign of efficient allocation of resources. And reversely,
an allocation that appears to be efficient leads not necessarily to equal
revenue productivities. Moreover, from an empirical point of view the
relation between revenue productivity dispersion (variance) and physical
productivity dispersion (variance) is not very simple.!! All in all, if and
how both measures can be related to the misallocation issue is a topic
of research. The reader is referred to De Loecker and Syverson (2021,
Section 6.3), for a description of the state of the art.

How 1o OVERCOME NON-ADDITIVITY

The non-additivity of real value added is generally considered a nuisance
for users of National Accounts since it gives rise to non-allocatable resid-
uals RVAX (t, D) = ek RVAX(z, b). Several recipes have been offered to
overcome this. I discuss two recent ones.

The conventional approach consists in deflating by annually chained
Paasche price indices; that is

t
Pha.by= [] PG -1 (2.44)
t=b+1

11 A5 noted, revenue productivity equals physical productivity times a relative price.
Consider two stochastic variables X and Y. It appears that var (XY) = cov (X2, Y2) +
E X2 E Y2—(E X)2(E Y)?[1+ cov (X,Y)/E X E Y]?, where E denotes mean, var
denotes variance, and cov denotes covariance. Thus, there is no simple relation between
var (XY) and var (X) or var (Y).
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PE (1, b) = ]_[ PE(r.t - 1) (ke K), (2.45)
T=b+1

where the superscript P denotes Paasche. Using expressions (2.3) and
(2.4) and the fact that Laspeyres-Paasche index pairs satisfy the Product
Test, we see that the conventional approach can equivalently be described
by the following system of real values

RVA (1, b) = vAK? ]_[ ottt — 1) (2.46)
T=b+1
RVAK(7, ) = VAK ]_[ ok (t, 1 — 1) (k€ K, (2.47)
T=b+1

where the superscript L denotes Laspeyres. Nominal reference period
values are uprated by chained Laspeyres quantity indices. This system is
clearly non-additive. The extent of non-additivity depends of course on
relative price developments.

For those who want to overcome non-additivity, Balk and Reich
(2008) proposed the following set of deflators:

t

Phaby= ] PEE@r-D (2.48)
T=b+1

Pipt.b) = PR e—1) [ PR o= (ke k). (2.49)
T=b+1

Notice the subtle difference between the expressions (2.45) and (2.49): in
the Balk-Reich approach, the k-specific deflators differ only in the (¢, 7—1)
stretch, whereas the tails, covering the (r — 1, b) stretch, are the same. It
is straightforward to verify that this system returns additive real values.
Recall that the definition of the Paasche price index implies the following
identity,
VAICt VAkt
=Y (2.50)

Pl -1 S PH@ -1
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Dividing both sides of equation (2.50) by Hz{—:le P\fA’C(r, 7 — 1), and
applying the definition of real value added, then delivers

RVAX (1, b) = Z RVA¥(t, b), (2.51)
kelkC

which means additivity.
Recently, Choi (2015) proposed an alternative. To see how this works,
notice that equation (2.50) is equivalent to

VAk,tfl
okt i-n=>y ———

— Q5 (1,1 = 1). (2.52)

Now, Choi’s Condition of Internal Consistency (CIC) was defined as

RVA*(r,b) — RVA*(t — 1,b) _ VAH'!
RVAF (¢ — 1, b) A/

(Q\L,jg(z, f—1)— 1) k € K).
(2.53)

On the right-hand side of this equation, we see the contribution of
production unit % to aggregate quantity change Q{‘,f(t,t —1)—1. On
the left-hand side, we see the contribution of the same production unit
to aggregate real value added change RVAX (¢, b)/RVAR (1 — 1,b) — 1, if
real value added were additive.

Expression (2.53) can be rewritten as

RVAK(z, b) = RVAF (1 — 1, b)
V k,t—1
+ RVAR(r — l,b)W(Q\L,fg(t, (=1 —1) ke,

(2.54)

Summing over all the production units and using expression (2.52)
delivers the following result,

> RVAR @ b) = 3 RVAR( — 1 b) + RVAR G — 1) (0K = 1 - 1)
kel kekC
= > RVAF(r — 1,5) + RVAK (1, b) — RVAR (¢ — 1, ),

kel
(2.55)

where the final step rests on expression (2.46). The first line and last line
of expression (2.55) taken together mean that if additivity holds in period
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t — 1, then also in period #; formally,

RVA (t — 1,b) = > RVAF(t—1.b) = RVAX (¢, b) = > " RVAk (1, b).
kelkC kelkC
(2.56)

Since additivity obviously holds in the reference period b, RVAX (b, b) =
> ek RVAK (b, b), we may conclude that Choi’s CIC generates an addi-
tive system of aggregate and sub-aggregate value added.

A disadvantage of Choi’s system is that it does not provide explicit
functional forms for the aggregate and sub-aggregate deflators. Instead,
deflators are defined as ratios of nominal to real value added.

CONCLUSION

The two key results of this chapter are expression (2.17), concerning
the decomposition of aggregate output (= real value added) growth,
and expression (2.24), concerning the decomposition of labour produc-
tivity growth. If additivity is assumed, then aggregate labour productivity
appears to take on a very simple form. Against this backdrop a number of
misallocation measures were reviewed. The final section was devoted to a
comparison of two ways of enforcing additivity on non-additive data.
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INTRODUCTION

In this chapter, we provide practitioners, who are interested in analysing
the performance of production units, with a brief introduction to the
stochastic frontier paradigm—one of the most powerful techniques for
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performance analysis developed in the last century.! Stochastic frontier
analysis employs econometric models to estimate production frontiers and
technical (in)efficiency with respect to these frontiers. Since its first intro-
duction by Aigner et al. (1977) and Meeusen and van den Broeck (1977),
stochastic frontier analysis has been applied to study the productivity
and efficiency of production units in various economic sectors, such as
banking (e.g., Adams et al., 1999; Ferrier & Lovell, 1990; Kumbhakar &
Tsionas, 2005; Malikov et al., 2016), healthcare (e.g., Comans et al.,
2020; Greene, 2004; Mutter et al., 2013; Rosko, 2001; Zuckerman et al.,
1994), and agriculture (e.g., Battese & Broca, 1997; Battese & Coelli,
1995; Kumbhakar & Tsionas, 2008), to mention a few. Moreover, the
methodology is also used to undertake cross-country studies on various
important aspects of society such as the healthcare system (Greene, 2004)
and taxation (Fenochietto & Pessino, 2013).

Our chapter also documents the estimation routines used to implement
the classical models as well as the recent developments in this research area
for practitioners, especially those who are willing to use Stata, but also
with tips on where to find analogous programs for R and Matlab users.?
Interested readers can find more comprehensive overviews in Sickles and
Zelenyuk (2019, Chap. 11-16) and Kumbhakar et al. (2021a, 2021b).

The structure of this chapter is as follows. We start our discussion
with the basic stochastic frontier model. We then extend our discussion
to various generalisations of the stochastic frontier paradigm, including
stochastic panel data models, stochastic frontier models with determinants
of inefficiency, also referred to in the literature as “environmental factors”,
and the semi-parametric stochastic frontier models. To provide readers
with an accessible toolkit to implement these methods, we also document
available commands/packages in popular statistical softwares. We focus

L Another powerful technique for performance analysis is data envelopment analysis—
the technique based on the mathematical linear programming method proposed by Farrell
(1957) and popularised by Charnes et al. (1978).

2 On this aspect, our chapter complements earlier surveys on empirical frontier appli-
cation and productivity and efficiency analysis software, e.g., Daraio et al. (2019, 2020).
Besides, the chapter also complements the previous contributions of Belotti et al. (2013)
and Kumbhakar et al. (2015), who focused only on stochastic frontier analysis using
Stata, by providing the sources on analogous implementations in Matlab and R. More-
over, we also include the discussion about the semi-parametric stochastic frontier models
with ready-to-use Stata codes to implement the model proposed by Simar et al. (2017),
which to the best of our knowledge have not been documented elsewhere before.
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on the implementation via Stata and also provide brief comments on the
sources on analogous implementations in Matlab and R. Besides, we also
provide an empirical illustration for the methods discussed in this chapter.

Basic StocHASTIC FRONTIER MODELS

The stochastic frontier paradigm can be viewed as a generalisation of the
classical production function approach, where the optimal allocation in
production is a testable restriction rather than a prior assumption usually
assumed by the neoclassical production theory (Sickles & Zelenyuk,
2019).

The distinctive feature of the stochastic frontier paradigm (compared
to the canonical average production model paradigm) is its non-
symmetric two-component error, composed of a regular idiosyncratic
disturbance and an additional one-sided non-negative error component.3
The former accounts for factors such as measurement error, misspecifica-
tion, and the randomness of the production process, whereas the latter
aims to represent the technical inefficiency that reduces the actual output
from its maximum feasible level.* Assumptions in the canonical model
used in stochastic frontier analysis on the conditional independence of
both error terms and the regressors as well as their independence from
each other have been lifted over the years in a series of refinements of the
basic model. We will discuss these in turn later in our chapter.

Aigner et al. (1977) Model

The canonical model of the stochastic frontier paradigm was proposed
independently by Aigner et al. (1977) (hereafter ALS) and Meeusen and

3 In the panel data context, which we will discuss in the next sections, the composed
error can include four components.

41n this chapter, our discussion will follow the traditional exposition based on the
production function. A similar exposition (with some adaptations) applies to other charac-
terisations of the production side, such as cost function and revenue function. Meanwhile,
more elaboration is needed if one is interested in measuring profit efficiency (see Fire
et al., 2019; Sickles & Zelenyuk, 2019 Chap. 2) and references therein.



132 B. H. NGUYEN ET AL.

van den Broeck (1977). The ALS model is formulated as®

lnyizlnf(xilﬂ)—i_giv i=19-~~’n5

& = v —u;,
Vi ~iid N(Q sz), G.D
Ui ~iid N+(0, Uf)

where y; € %l is the output, x; € %% is a vector of p inputs and
B is a vector of the parameters corresponding to x;.> The error term
i is composed of a normally distributed disturbance, v;, representing
the measurement and specification error, and a positive disturbance u;
(following the half-normal distribution), representing technical ineffi-
ciency.” Furthermore, v; and u; are assumed to be statistically indepen-
dent from each other and from x;. With the distribution assumptions on
u; and v;, the likelihood function for the model is constructed and the
model is then estimated using the maximum likelihood estimator.

Once the parameters of the model have been estimated, one can obtain
the expected level of technical inefficiency by estimating

Eluil = /2/7 0w, (3.2)

5 The formulation here is a convenient representation of a production relationship,
where actual output is decomposed into the maximum output (with noise) and ineffi-
ciency, i.e., y;i = f(x;j|B)exp(e;) = f(x;|1B) exp(v;) exp(—u;). After log-transformation, we
have a linear relationship as shown in Eq. (3.1).

6 Multiple outputs also can be considered. For example, this can be done by employing
a distance function instead of the production function or by looking at the estimation
of the cost frontier or by converting outputs into polar coordinates (e.g., see Simar &
Zelenyuk, 2011). One can also use dimension reduction techniques to reduce the dimen-
sion outputs or inputs into smaller dimensions, e.g., via Principle Component Analysis,
or using economic or price-based aggregation (e.g., see related discussion in Zelenyuk
(2020) and an application in Nguyen and Zelenyuk [2021]). The latter approach can be
especially useful in the case of very large dimensions (sometimes called ‘big wide data’
cases), ¢.g., as is done for measuring the total output of countries (e.g., GDP), industries
or firms (total revenue) or for some inputs (e.g., capital). Due to space limitation, we
will focus here on the single output case, as was also considered in ALS and many other
studies.

7 Other distributional assumptions such as exponential, truncated normal, gamma, and
so on, can be used for the inefficiency term (e.g., see Almanidis & Sickles, 2012; Almanidis
et al., 2014; Greene, 1980a, 1980b, 1990; Meeusen & van den Broeck, 1977; Stevenson,
1980).
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and the expected level of efficiency by using the following approximation®

E[exp(—u,-)] ~ 1— Elu;]. 3.3)

If one is interested in the estimates of individual (in)efficiency of a specific
production unit, more elaboration is needed. The most popular approach
in the literature is to follow Jondrow et al. (1982) (hereafter JLMS),
where the inefficiency of a production unit can be estimated or predicted
using the expected value of u; conditional on the realisation of the
composed error of the model, i.c., E(u;|g;),” given by

% + M, (3.4)
“(2)

Oy

E(ujle;) =

where

2
—0, &

— %ufi_ 3.5
o2+ 0} (3-5)

Moxi

and

2 e
ol = T (3.6)
while ¢(-) and ®(-) are pdf and cdf of the standard normal distribution,
respectively. 1% It is worth noting that while being originally developed for
ALS, the JLMS-type procedure can be extended to predict (in)efficiency
of a specific firm in the other models estimated by the maximum
likelihood estimator (see more discussion in Kumbhakar, 1987).

8 The exact expression of the expected level of efficiency is given by E [exp(—u;)] =

2
211>((7u)exp<02“>.

9 It is worth noting here that although this estimator is unbiased, it is an inconsistent
estimator of individual inefficiency (see more discussion in Jondrow et al., 1982).

10 Ope also can estimate the efficiency of a production unit by using the relation-
ship E[exp(—ui)|a,~] ~ 11— E[uilei] or utilising the exact expression E[exp(—ui)|si] =
M
bet o

exp(—u*i + %Jf)qu (Battese & Coelli, 1988).
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Implementation of ALS Model

There are several options to estimate the basic stochastic frontier model
in Stata. One can use the official Stata command frontier or utilise
the command sfcross written by Belotti et al. (2013)!! or even set
up the likelihood function using the sfmodel command then estimating
the model using the official Stata routine for the maximum likelihood,
ml max, as described in the handbook of Kumbhakar et al. (2015).12
These commands generate equivalent results for the basic stochastic fron-
tier models and differ only in the formatting and listing of results and the
options available for the different treatments of error distributions for the
one-sided efficiency term and the inclusion of environmental factors.

As we progress in our chapter, we consider a richer set of generali-
sations of the canonical stochastic frontier paradigm. Also, user-written
commands provide us with more flexibility to estimate models that are
not available with the current official Stata commands. Moreover, the
user-written commands by Belotti et al. (2013) and Kumbhakar et al.
(2015) also equip us with options to provide and refine the initial values
for the maximum likelihood estimation, which can be very useful when
dealing with complex likelihood functions.

After estimating the models, the estimates of technical inefficiency
and efficiency can be obtained by using the postestimation routine
predict (for the models estimated in the Stata version 16 by the offi-
cial Stata command and the command written by Belotti et al. [2013])
or sf_predict (for the models estimated by the command written by
Kumbhakar et al. [2015]). As an illustration, a snippet of Stata codes for
implementing the ALS model is provided in Box 3.1.

R software also has several packages to implement the estimation of
the basic stochastic frontier model. For example, one can use the package

1 The sfcross command (and the sfpanel command that we will discuss later for
the panel data context) can be installed by executing the following command lines in
Stata: ssc install sfcross and ssc install sfpanel.

12 The sfmodel and other user-written commands provided in the handbook of
Kumbhakar et al. (2015) can be installed in Stata by executing the following command
lines: net install sfbook_install, from (https://sites.google.com/site/stbook
2014 /home/install/) replace and sfbook_install (see more details in Kumbhakar
et al. 2015 and its website, https://sites.google.com/site /stbook2014 /).


https://sites.google.com/site/sfbook2014/home/install/
https://sites.google.com/site/sfbook2014/home/install/
https://sites.google.com/site/sfbook2014/
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Box 3.1 Illustration for the implementation of the Aigner et al. (1977) model

ook ok ok ok o oK K K K ok ok o oK K R ok oK K o K K R ok o K K R oK K ok oK K R ok K K o oK K R ok o K K R oK o oK K o K K K oK o K K R K o KK R KK

* Illustration for the implementation of the Aigner et al. (1977) model
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/* Note that output and inputs are in log forms and stored in global
Stata variables £y and $xlist, respectively x/

/* Implementation using the standard Stata commands */

frontier $y #xlist, distribution(hnormal)

predict ineff_ ALS_1, u /* Predict inefficiency, i.e., E(ule) x/

predict eff_ALS_1, te /* Predict efficiency, i.e., E(exp(-u)le) */

/* Implementation using the commands from Belotti et al. (2013) x/

sfcross £y #xlist, distribution(hnormal)

predict ineff_ ALS_2, u /* Predict inefficiency, i.e., E(ule) x/

predict eff_ALS_2, bc /* Predict efficiency, i.e., E(exp(-u)le) */

/* Implementation using the commands from Kumbhakar et al. (2015) */

sfmodel £y, prod frontier($xlist) distribution (h)

ml max

sf_predict, jlms(ineff_ ALS_3) /* Predict inefficiency, i.e., E(ule) x/

sf_predict, bc(eff_ALS_3) /* Predict efficiency, i.e., E(exp(-u)le) */

frontier written by Coelli and Henningsen (2020)!% or utilise the
function sfa in the package Benchmarking written by Bogetoft and
Otto (2019).

In order to estimate the basic stochastic frontier model, Matlab users
need to set up the likelihood function and then utilise the optimisation
routines, such as fminunc to optimise the likelihood function. Sickles
and Zelenyuk (2019) provide a suite of Matlab codes to estimate a
variety of stochastic frontier models on the website that accompanies their
book.1*>1> Although they do not include the ALS model, one can easily

13 The package frontier uses the Fortran source codes of Frontier 4.1 originally
developed by Tim Coelli (see more details in the manual of the package available at
https://cran.r-project.org/web/packages/frontier,/frontier.pdt).

14 The website can be found at https://sites.google.com /site /productivityefficiency,/
home.

15 The Matlab codes accompanying Sickles and Zelenyuk (2019) are also converted to
R codes by Sickles et al. (2020), which can be accessed via the link provided on the book
website or directly via https://sites.google.com/site /productivityinr.


https://cran.r-project.org/web/packages/frontier/frontier.pdf
https://sites.google.com/site/productivityefficiency/home
https://sites.google.com/site/productivityefficiency/home
https://sites.google.com/site/productivityinr
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adapt their codes to obtain the estimates for this basic stochastic frontier
model.

EARLY GENERATION OF STOCHASTIC PANEL DATA MODELS

The basic stochastic frontier model discussed in the previous section is
formulated in the cross-sectional setting and suffers from a number of
drawbacks. As discussed in Schmidt and Sickles (1984), the three main
disadvantages of the basic cross-sectional stochastic frontier model are:
(i) there does not exist a consistent estimator of individual efficiency, (ii)
the parametric distributional assumptions are usually required for the two
error components (inefficiency and noise) to estimate the model and to
predict the overall and individual (in)efficiency, and (iii) the assumption
that inefficiency is independent of regressors is usually not plausible.

Over the past four decades, substantial efforts have been made to
address these drawbacks of the cross-sectional stochastic frontier model.
Among those, particular interest hinges on exploiting the advantages of
panel data structure. Schmidt and Sickles (1984) were among the first
who provided a general framework to extend the cross-sectional stochastic
frontier model to the panel data setting, which also encompasses the Pitt
and Lee (1981) full parametric random effects model.

Schmidt and Sickles (1984) Model
The model in Schmidt and Sickles (1984) can be formulated as follows

yie=Po+x,B+vi—u, i=1,..,nt=1,..,T, 3.7)

where y;, € il is the output, x;; € %Y is a vector of p inputs of produc-
tion unit ¢ in time z. v;; is the regular disturbance, while the unobserved
individual heterogeneity, u;, represents technical inefficiency. Model (3.7)
can be rewritten as

yit = By + X[, B+ vir —uf = ci +x/,B + vir, (3.8)

where B = Bo—E(u;), uj = u;—E(u;), E(u;) >0, ¢; = B5—u] = fo—u;.

Model (3.8) turns out to be a usual panel data model and can be esti-
mated using the standard estimation methods in the panel data literature,
such as the within estimator (i.c., in the fixed effects framework), the
generalised least-square estimator (i.c., in the random effects framework),
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and the Hausman-Taylor estimator. After estimating the model, one can
obtain the estimate ¢ of ¢; and follow Schmidt and Sickles (1984) to
construct a consistent estimator of technical inefficiency

ﬁi = max(éi) — éi >0, i=1,...,n. 3.9)

The estimated inefficiency in Eq. (3.9) is measured with respect to the
best practice production unit in the sample, which is implicitly assumed
to be 100% efficient.

Implementation of Schmidt and Sickles (1984) Model

One can estimate the Schmidt and Sickles (1984) model using standard
routines in Stata. Specifically, the official Stata command xtreg can be
utilised to estimate the standard panel data model in Eq. (3.8) and the
postestimation command predict can be used to obtain the estimate ¢;
of ¢;. It is then straightforward to code formula (3.9) into Stata to get the
estimates of technical inefficiency. Alternatively, one can use the command
sfpanel written by Belotti et al. (2013) with the option model (fe) or
model (regls) to estimate Schmidt and Sickles (1984 ) model in a fixed
or random effects framework, respectively. As an illustration, a snippet of
Stata codes for implementing the Schmidt and Sickles (1984) model (in
the fixed effects framework) is provided in Box 3.2.

It is worth noting that model (3.8) and the individual inefficiency in
(3.9) are estimated without any parametric assumptions on the distri-
butions of composed errors. Alternatively, one can impose parametric
assumptions on the distributions of the error components in model (3.7),
¢.g., a half-normal distribution for #; and a normal distribution for v;; as
discussed in Pitt and Lee (1981) and Schmidt and Sickles (1984). The
model then can be estimated using the maximum likelihood estimator and
the individual technical efficiency can be obtained by employing the JLMS
procedure (extended to the panel data setting by Kumbhakar, 1987). This
model is estimated in Stata using the user-written command sfpanel
from Belotti et al. (2013) with the option model (pl181). Alterna-
tively, if one assumes that u; follows a truncated normal distribution, i.e.,
u; ~ N (i, 02), then the official Stata command xtfrontier with the
option ti can be utilised. A snippet of Stata codes for implementing the
Pitt and Lee (1981) model is provided in Box 3.3.
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Box 3.2 Illustration for the implementation of the Schmidt and Sickles (1984)
model in the fixed effects framework
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/* The illustration here is for the fixed effects framework */

/* Note that output and inputs are in log forms and stored in global
Stata variables $y and $xlist, respectively x/

/* Implementation using the standard Stata commands */

xtreg &y #xlist, fe /* Need to declare data to be panel before using
xtreg command*/

predict ci, u /* Obtain the estimate of ci */

quietly summarize ci

gen ineff_SS_1 = r(max) - ci /* Predict inefficiency*/

gen eff_SS_1 = exp(-ineff_SS_1) /* Predict efficiencyx*/

/* Implementation using the commands from Belotti et al. (2013) x/

sfpanel &y #$xlist, model(fe)

predict ineff_SS_2, u /* Predict inefficiencyx*/

gen eff_SS_2 = exp(-ineff_SS_2) /* Predict efficiencyx*/

Box 3.3 Illustration for the implementation of the Pitt and Lee (1981) model
in the random effects framework
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* Illustration for the implementation of the Pitt and Lee (1981) model*
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/* Note that output and inputs are in log forms and stored in global
Stata variables $y and $xlist, respectively x/

/* Implementation using the standard Stata commands */

xtfrontier $y $xlist, ti

predict ineff PL_1, u /* Predict inefficiency, i.e., E(ule) */

predict eff_PL_1, te /* Predict efficiency, i.e., E(exp(-u)le) */

/* Implementation using the commands from Belotti et al. (2013) x/

sfpanel $y $xlist, model(pl81)

predict ineff PL_2, u /* Predict inefficiency, i.e., E(ule) */

predict eff_PL_2, bc /* Predict efficiency, i.e., E(exp(-u)le) */
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Estimation of the Schmidt and Sickles (1984) model also can be
implemented in Matlab and R using the codes provided by Sickles and
Zelenyuk (2019) and Sickles et al. (2020) (see the links in footnotes 14
and 15).

Cornwell et al. (1990) Model

The technical inefficiency estimated within the Schmidt and Sickles
(1984) framework is time-invariant, which may be an unrealistic restric-
tion in many applied settings, especially in a long panel. To allow for
time-varying inefficiency in the Schmidt and Sickles (1984) framework,
one can follow the suggestion in Cornwell et al. (1990) to replace c¢;
by, e.g., cir, where ¢;; is a quadratic function of time trend ¢ with the
parameters (coefficients) being firm-specific, in particular

cir = Boi + 01t + Oxit>. (3.10)

The parameters in Eq. (3.10) can be estimated by regressing the residual
from the model (3.7) for production unit 7 on a constant, time, and time-
squared (see more discussion in Cornwell et al., 1990). The fitted value
from this model provides us with a consistent estimate (for large N) of ¢;;,
denoted as ¢;;. The individual technical inefficiency of production unit ¢
at time ¢ then can be estimated using an analogous procedure to Schmidt
and Sickles (1984), specifically'®

Ui = & — Cir, 3.11)
where

& =max(éj), t=1,...,T. (3.12)
j

16 Cornwell et al. (1990) outlined estimators for a general model in which any set of
regressors could be drivers of efficiency change, if efficiency was interpreted as firm-specific
heterogeneity. These regressors could be time varying. Thus, the Cornwell et al. (1990)
model was the first study about which we are aware to address the issue of environmental
variables influencing efficiency levels.
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Box 3.4 Illustration for the implementation of the Cornwell et al. (1990)
model
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/* Note that output and inputs are in log forms and stored in global
Stata variables $y and $xlist, respectively x/

/* Implementation using the commands from Belotti et al. (2013) x*/

sfpanel #y $xlist, model(fecss)

predict ineff_CSS, u /* Predict inefficiencyx/

gen eff_CSS = exp(-ineff_CSS) /* Predict efficiencyx*/

Implementation of Cornwell et al. (1990) Mode!l

Estimation of the Cornwell et al. (1990) model can be implemented using
standard Stata routines in a set of procedures similar to those we discussed
for the Schmidt and Sickles (1984) model. Alternatively, one can utilise
the user-written command sfpanel from Belotti et al. (2013) with the
option model (fecss). A snippet of codes for implementing the Corn-
well et al. (1990) model using the sfpanel command is provided in
Box 3.4.

Being similar to the Schmidt and Sickles (1984) model, one can esti-
mate the Cornwell et al. (1990) model in Matlab and R using the codes
provided by Sickles and Zelenyuk (2019) and Sickles et al. (2020) (see
the links in footnotes 14 and 15).

Kumbhakar (1990) and Battese and Coelli (1992) Models

If one is willing to impose distributional assumptions on the inefficiency
component (as well as on the random disturbance term), the maximum
likelihood estimation can be utilised to estimate time-varying efficiency
models. Kumbhakar (1990) and Battese and Coelli (1992) appear to be
the most popular models of this type. In the Kumbhakar (1990) model,
time-varying inefficiency is modelled as

-1
Ui = (1 + exp(at + bt2)> T,

o (003). (3.13)
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while in Battese and Coelli (1992), time-varying inefficiency is specified
as

ujr = {exp[—n(t — 7)1},

3.14
T ~iid N+(/L,O'T2>, ( )
where @, b, and 7 are parameters to be estimated, and in both models, the
random disturbance follows a normal distribution, i.e., v;; ~jiqg N (0, O'UZ).
Being similar to the Cornwell et al. (1990) model, the Kumbhakar
(1990) and Battese and Coelli (1992) models extend the Pitt and Lee
(1981) model by allowing the mean of inefficiency to vary over time,
but they are more parsimonious in the sense that temporal patterns only
depend on one or two parameters. The Cornwell et al. (1990) model,
however, has an advantage in that it allows temporal patterns to vary
across production units. Moreover, as discussed above, estimation of the
Cornwell et al. (1990) model does not require parametric assumptions
for the inefficiency term.

Implementation of Kumbhakar (1990) and Battese and Coelli (1992)
Models

The Battese and Coelli (1992) model, also known as a “time decay”
model, can be estimated using Stata commands in its version 16 platform
as well as by using user-written commands. Specifically, the estimation can
be implemented by using the xtfrontier command with the option
tvd or the command sfpanel from Belotti et al. (2013) with the
option model (bc92). The official Stata command xtfrontier cannot
carry out the estimation of the Kumbhakar (1990) model, which is avail-
able using the option model (kumb90) with the command sfpanel
from Belotti et al. (2013). A snippet of Stata codes for implementing
Kumbhakar (1990) and Battese and Coelli (1992) models is provided in
Box 3.5.

The estimation of the Battese and Coelli (1992) model can be imple-
mented in R software by using the package frontier written by Coelli
and Henningsen (2020). Alternatively, R users and Matlab users can
utilise the codes prepared by Sickles and Zelenyuk (2019) and Sickles
et al. (2020) (see the links in footnotes 14 and 15).
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Box 3.5 Illustration for the implementation of the Kumbhakar (1990) and
Battese and Coelli (1992) models
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/* Note that output and inputs are in log forms and stored in global
Stata variables $y and $xlist, respectively x*/

/* Implementation using the standard Stata commands */

xtfrontier $y $xlist, tvd /* the Battese and Coelli (1992) model x/

predict ineff_BC_1, u /* Predict inefficiency, i.e., E(ule) */

predict eff_BC_1, te /* Predict efficiency, i.e., E(exp(-u)le) */

/* Implementation using the commands from Belotti et al. (2013) %/

sfpanel #y $xlist, model(bc92) /* the Battese and Coelli (1992) model x/

predict ineff_BC_2, u /* Predict inefficiency, i.e., E(ule) */

predict eff_BC_2, bc /* Predict efficiency, i.e., E(exp(-u)le) */

sfpanel $y $xlist, model (kumb90) /* the Kumbhakar (1990) model */

predict ineff K, u /% Predict inefficiency, i.e., E(ule) */

predict eff_K, bc /* Predict efficiency, i.e., E(exp(-u)le) */

RECENT ADVANCES OF STOCHASTIC PANEL DATA MODELS

The stochastic panel data models discussed so far have a major drawback
in that technical inefficiency is not distinguishable from the unobserved
individual heterogeneity, and thus, technical inefficiency confounds with
all time-invariant unobserved individual effects. Various approaches have
been proposed in the literature to mitigate this and other issues. Here, we
will focus on a few, namely Greene (2005a, 2005b), Chen et al. (2014),
Colombi et al. (2014), Kumbhakar et al. (2014), and Belotti and Ilardi
(2018).

Greene (2005a, 20056) Models

Greene (2005a, 2005b) proposed a stochastic panel data model in which
unobserved individual heterogeneity separates from (transitory) technical
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efficiency. The model is formulated as

I
Yit = ¢i +Xx;; B + €ir,

Eit = Vit — Uiy,

(3.15)

where vj; as before is a regular disturbance, while u;; > 0 is the source of
inefficiency.

Estimation of the model in Eq. (3.15) is challenging, especially in the
fixed effects framework. The two main challenges are: (i) the estimation of
parameters may be inconsistent due to the incidental parameters problem,
and (ii) there does not exist a closed-form expression of the likelihood
function of the within or first-difference transformation of the composed
error if one follows standard procedures. Greene (2005a) proposed to use
the maximum likelihood dummy variable estimator to estimate the model
in the fixed effects framework and provided simulation evidence showing
that the incidental parameters problem is not serious for relatively large
T.17

Implementation of Greene (20054, 20056) Models

One can implement the estimation of the Greene (2005a, 2005b) models
in Stata by using the user-written command sfpanel from Belotti et al.
(2013) with the option model (tfe) in the fixed effects framework and
with the option model (tre) in the random effects framework.
Recently, Chen et al. (2014) derived a closed-form expression for the
likelihood function of the within and first-difference transformation of the
model by exploiting the properties of the closed-skew normal distribution
class. The model in Eq. (3.15) then can be estimated consistently in the
fixed effects framework using the marginal maximum likelihood estimator.
Belotti and Ilardi (2018) further extend the work of Chen et al. (2014)
by considering the simulated marginal maximum likelihood estimator.
Chen et al. (2014) and Belotti and Ilardi (2018) estimators can
be implemented in Stata using the command sftfe written by
Belotti and Ilardi (2018) with the options estimator (within) and

17 Greene (2005a) also utilised the simulated maximum likelihood approach to estimate
the model in the random effects framework.
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Box 3.6 Illustration for the implementation of the Greene (2005a, 2005b)
models
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/* The illustration here is for the fixed effect framework x*/

/* Note that output and inputs are in log forms and stored in global
Stata variables $yand $xlist, respectively x*/

/* Implementation using the maximum likelihood dummy variable estimator

(the commands from Belotti et al. (2013)) */

sfpanel &y $xlist, distribution(hnormal) model (tfe)

predict ineff_G_1, u /* Predict inefficiency, i.e., E(ule) */

predict eff_G_1, bc /* Predict efficiency, i.e., E(exp(-u)le) */

/* Implementation using the marginal maximum likelihood estimator (the
commands from Belotti and Ilardi (2018)) */

sftfe $y $xlist, distribution(hnormal) estimator(within)

predict ineff_G_2, u /* Predict inefficiency, i.e., E(ule) */

predict eff_G_2, jlms /* Predict efficiency */

/* Implementation using the simulated marginal maximum likelihood
estimator (the commands from Belotti and Ilardi (2018)) */

sftfe $y $xlist, distribution(hnormal) estimator (mmsle)

predict ineff_G_3, u /* Predict inefficiency, i.e., E(ule) */

predict eff_G_3, jlms /* Predict efficiency */

estimator (mmsle), respectively.!® A snippet of Stata codes for imple-
menting the Greene (2005a, 2005b) models is provided in Box 3.6.

To the best of our knowledge, routines to estimate the Greene (2005a,
2005b) model are not yet available in R and Matlab in a public domain.

Colombi et al. (2014) and Kumbhakar et al. (2014) Models

The model specified in Eq. (3.15), although distinguishing between
unobserved individual heterogeneity and technical inefficiency, only
considers transitory inefficiency. Kumbhakar et al. (2014) and Colombi
et al. (2014) further extend the model by decomposing the inefficiency

18 The sftfe command can be installed by executing the following command line in
Stata: net install sftfe.pkg.
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into transitory and persistent components whose formulation is

yie = Bo+ X[, B+ ¢i — ni + vir — uir,

Ci ~iid N(O, UC2>,

ni ~id N (0, 03)7 (3.16)
Vir ~iid N(O, 63),

wis ~iig N (0, %2)’

where ¢; represents the unobserved individual heterogeneity, n; represents
the persistent inefficiency, u;; represents transitory inefficiency, and vj; is
the regular disturbance. The model in Eq. (3.16) can be estimated using
a single-stage maximum likelihood method (Colombi et al., 2014) or a
multi-step procedure (Kumbhakar et al., 2014). The multi-step procedure
although being inefficient relative to the single-stage maximum likeli-
hood estimation, it is simpler and easier to implement. For the multi-step
procedure, the model in Eq. (3.16) can be rewritten as

yir = By + X, B + i + €ir, (3.17)
where
Bo = Bo — Elnil — Eluiq], (3.18)
o =ci —ni + Elnil, (3.19)
gir = Vir — Uiy + Elu;]. (3.20)

The model in Eq. (3.17) turns out to be a standard panel data model
and can be estimated by the usual panel data estimation methods. After
estimating (3.17), one can obtain the predicted values of «; and ¢;;, &;
and &;;, and then, the persistent and transitory inefficiency components
are estimated by applying standard stochastic frontier techniques to (3.19)
and (3.20) with «; and g, replaced by &; and &;;, respectively.
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Implementation of Colombi et al. (2014) and Kumbhakar et al.
(2014) Models

The multi-step procedure to estimate the model specified in Colombi
et al. (2014) and Kumbhakar et al. (2014) can be implemented in Stata
using the command for panel data estimation, xtreg, together with the
routines for basic stochastic frontier model estimation, e.g., frontier
or sfcross. A snippet of Stata codes for implementing the Kumbhakar
et al. (2014) model is provided in Box 3.7.

Similarly, R users can utilise panel data estimation routines (e.g., plm
function) combined with commands for estimation of the basic stochastic
frontier model discussed above (e.g., sfa or frontier) to estimate the
Colombi et al. (2014) and Kumbhakar et al. (2014) models.

The implementation of the procedure in Matlab requires more effort
since it is not easy (as in Stata or R) to perform panel data regression

Box 3.7 Illustration for the implementation of the Kumbhakar et al. (2014)
model

K 3k ok ok K 5k ok 5k 5k 5k 5k 5K 5k 5k K K K K K K K K K K K K Kk *k Kk K 5k %k %k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5 5k 5k 5 5k 5k 5k 5k 5k 3k 5k 5k 5k 3k 5k 5k 5k 5k 5k 5k K K K K K *k K * * *
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kokokkkkkkkkkkxkkkx of the Kumbhakar et al. (2014) model k¥ kkkkkkkkkkkxx*

Kok kokk KKKk KKk KokkkkkkkkkkkkkkkkPartial Stata Codes *k*kkkkkkkkkkkkkkkkkkkkkkxk
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/* The illustration here is for the random effect framework x*/

/* Note that output and inputs are in log forms and stored in global
Stata variables $y and $xlist, respectively x*/

/* Implementation using the standard Stata commands */

xtreg #y $xlist, re

predict alp, u /* Obtain estimates of alpha */

predict esl, e /* Obtain estimates of the composed error */

/* Estimate equation (19) using the basic stochastic frontier model to
obtain persistent (in)efficiency =/

frontier alp, distribution(hnormal)

predict ineff_pers, u /* Predict persistent inefficiency, E(ule) */

predict eff_pers, te /x Predict persistent efficiency, E(exp(-u)le) */

/* Estimate equation (19) using the basic stochastic frontier model to
obtain transitory (in)efficiency */

frontier esl, distribution(hnormal)

predict ineff_trans, u /% Predict transitory inefficiency, E(ule) */

predict eff_trans, te /* Predict transitory efficiency, E(exp(-u)le) */
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with this platform. With Matlab, one needs to write their own code or
download and install the panel data toolbox, e.g., the one written by
Alvarez et al. (2017), to estimate a panel data regression model.

StocHASTIC FRONTIER MODELS
WITH DETERMINANTS OF INEFFICIENCY

An interesting generalisation of the stochastic frontier paradigm is
extending the models to examine the impact of exogenous determinants
on technical inefficiency. It is usually done by parameterising the param-
eters of inefficiency distribution, i.e., the pre-truncated mean and/or
variance, as a function of exogenous variables. The approaches are appli-
cable in both cross-sectional and panel data settings, and since it can be
easily extended to panel data settings, here we focus our discussion on the
cross-sectional context.

Popular Models

Cornwell et al. (1990) were the first to develop a model in which
determinants of efficiency could be included in the stochastic frontier
formulation. However, due to the linear way in which the determinants
of efficiency were included in the regression model, their fixed effect esti-
mator could not point identify both a covariate’s effect on efficiency and
its effect on the level of production. Kumbhakar et al. (1991) addressed
this identification problem by specifying the efficiency determinants as a
nonlinear function, parameterising the pre-truncated mean of inefficiency
as a function of exogenous variable, specifically!'®

i ~ N“L(Mi, rruz),
Wi =z,

(3.21)

where z; € %K is a vector of % exogenous variables (including the constant
term) and 8 is a vector of the parameters to be estimated. Alternatively,
Caudill et al. (1995) proposed specifying the variance of the inefficiency

19 This model specification was cast in the panel data context and popularised by Battese
and Coelli (1995).
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distribution as
u; ~ /\/’+(O, auz[),
2 /
o2 = exp(cd).

(3.22)

One can also, at the same time, parameterise both the pre-truncated
mean and variance of inefficiency as a function of the exogenous variables,
i.e., combining (3.21) and (3.22), as in Wang (2002). These parametric
stochastic frontier models are typically estimated using the maximum like-
lihood estimator in much the same way as the basic stochastic frontier
model.

Wang and Schmidt (2002) suggested a different specification for
modelling the determinants of inefficiency based on a scaling property,?’
specifically

ui ~ g(zi|d)uy, (3.23)

where g(-) is a positive function of the exogenous variables (the scaling
function) and u} is a positive random variable. With this specification,
the distribution of inefficiency is the same for all production units, i.c.,
governed by u}, while the scale of the inefficiency distribution changes
across production units depending on z;. The scaling property was further
explored in Alvarez et al. (2006). Among others, they provided a nice
economic interpretation for the scaling property in that u} represents
the baseline (in)efficiency of a production unit capturing things like the
natural skills of its managers. Meanwhile, the scaling function allows (or
prevents) the production unit to exploit these natural skills through other
variables, z;, such as the experience and education of the managers, or the
environment in which the production unit operates. Moreover, Alvarez
et al. (20006) also devoted their attention to testing the hypothesis of the
scaling property.

20 1t is worth mentioning here that although being popularised by Wang and Schmidt
(2002), Simar et al. (1994) appear to be the first who analysed the scaling property in
detail.
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Implementation of Stochastic Frontier Models with Determinants
of Inefficiency

Most of the parametric models discussed in this section can easily be
implemented using Stata since the estimation routines for the basic
stochastic frontier model in Stata also provide options to specify the
pre-truncated mean and/or variance of inefficiency as a function of the
exogenous variables.

In particular, the Cornwell et al. (1990) estimator can, of course,
be implemented using standard panel techniques and linear projections.
The model specified in Eq. (3.23) can be estimated using nonlinear least
squares without imposing any parametric assumption on the distribution
of uj or by the maximum likelihood based on the parametric distribu-
tion of the composed error. The maximum likelihood approach can be
implemented in Stata by setting up the likelihood using the sfmodel
command from Kumbbhakar et al. (2015) with the option hscale(-) and
the log likelihood can be maximised using the standard Stata routine m1
max.

A snippet of Stata codes for implementing stochastic frontier models
with determinants of inefficiency is provided in Box 3.8.

SEMI-PARAMETRIC STOCHASTIC FRONTIER MODELS

Another generalisation of the stochastic frontier paradigm is to relax
parametric assumptions imposed on the functional form of the produc-
tion frontier and, to some extent, the parametric assumption on the
distribution of inefficiency.

The Variety of Models

Banker and Maindiratta (1992) appear to be among the first attempting
to estimate stochastic frontier models semi-parametrically. They proposed
a framework combining stochastic and deterministic frontier (i.c., data
envelopment analysis) approaches and developed techniques for the
maximum likelihood estimation with nonparametric characterisation of
classes of monotone and concave production frontiers. Other early
attempts belong to Fan et al. (1996) and Kneip and Simar (1996),
who suggested using nonparametric kernel regression methods in the
framework of parametric maximum likelihood estimation. Specifically, Fan
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Box 3.8 Illustration for the implementation of stochastic frontier models with
determinants of inefficiency
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*% Tllustration for the implementation of stochastic frontier models ***
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/* Note that output, inputs, and exogenous variables are stored in
global Stata variables #$y, $xlist, and $zlist, respectively. Output
and inputs are in log forms x*/

/* Implementation of the Kumbhakar et al. (1991) model (using the
commands from Belotti et al. (2013) ) */

sfcross $y $xlist, distribution(tnormal) emean(£zlist)

predict ineff_KGM, u /* Predict inefficiency, i.e., E(ule) =*/

predict eff_KGM, bc /* Predict fficiency, i.e., E(exp(-u)le) */

/* Implementation of the Caudill et al. (1995) model (using the
commands from Belotti et al. (2013) ) */

sfcross #y $xlist, distribution(hnormal) usigma($zlist)

predict ineff _CFG, u /* Predict inefficiency, i.e., E(ule) */

predict eff_CFG, bc /* Predict efficiency, i.e., E(exp(-u)le) */

/* Implementation of the Wang (2002) model (using the commands from
Belotti et al. (2013) ) */

sfcross &y $xlist, distribution(tnormal) emean($zlist) usigma($zlist)

predict ineff_W, u /* Predict inefficiency, i.e., E(ule) */

predict eff_W, bc /* Predict efficiency, i.e., E(exp(-u)le) */

/* Implementation of the Wang and Schmidt (2002) model (using the
commands from Kumbhakar et al. (2015) ) x*/

sfmodel #y, prod dist(t) frontier($xlist) scaling hscale(#zlist) tau cu

ml max

sf_predict, jlms(ineff_WH) /* Predict inefficiency, i.e., E(ule) */

sf_predict, bc(eff_WH) /* Predict efficiency, i.e., E(exp(-u)le) */

et al. (1996) proposed a multi-stage semi-parametric likelihood estima-
tion approach, in which the Nadaraya-Watson nonparametric estimator is
employed in the first stage to estimate the average production relationship
and a full parametric maximum likelihood estimator is used in the next
stage to back out the conditional mean of inefficiency, which is utilised in
the last stage to identify the frontier. Kneip and Simar (1996) followed a
similar strategy to Fan et al. (1996) but in a panel data setting.
Semi-parametric panel frontiers were also considered in a series of
papers by Park et al. (1998, 2003, 2007) wherein firm inefficiency
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effects are endogenous. They constructed the semi-parametric efficiency
bounds and the corresponding semi-parametric efficient estimators for
such models under differing assumptions about the form of endogeneity,
the serial dependence of the idiosyncratic error, and possible dynamic
structures for the panel data model. They used kernel smoothers in
these modelling efforts as did Adams et al. (1997, 1999), and Adams
and Sickles (2007). Current Stata software for these models is in the
development stage in Badunenko et al. (2021), while existing Matlab
and R codes for these semi-nonparametric panel frontier models can be
found on the website that accompanies Sickles and Zelenyuk (2019) (see
the links in footnotes 14 and 15). Model averaging methods utilised in
Sickles (2005), Duygun et al. (2017), and Isaksson et al. (2021) also
can be found on that website and are currently being used in developing
consensus productivity growth estimates for the United Nations Industrial
Development Organization (UNIDO).

Another approach to estimate stochastic frontier models semi-
parametrically was proposed by Kumbhakar et al. (2007), who suggested
employing the local likelihood estimation. The key distinction between
this approach and the parametric likelihood approach is that the estima-
tion is localised in the sense that individual contribution to the likelihood
is determined by the kernel-based weights instead of the equal weights.
Kneip et al. (2015) extended the work of Kumbhakar et al. (2007) by
relaxing the parametric assumption on the distribution of inefficiency,
while Park et al. (2015) suggested an alternative parameterisation of
the local likelihood and outlined a framework for allowing categorical
variables in the local likelihood context.

Semi-parametric methods have also been introduced into the stochastic
frontier paradigm to deal with specifications of inefficiency. Cornwell
et al. (1990) utilised a second-order Taylor series in a time trend to
model time-varying inefficiency while Lee and Schmidt (1993) speci-
fied the time-varying and cross-sectionally varying inefficiency using a
one-factor multiplicative model. Extensions to mixed models and more
general factor models were pursued by Ahn et al. (2007, 2013), Kneip
et al. (2004, 2012), and Kneip and Sickles (2011). The latter model is
programmed in Matlab and R on the software website for Sickles and
Zelenyuk (2019) and Sickles et al. (2020) (see the links in footnotes 14
and 15) and its coding in Stata is in process in Badunenko et al. (2021).
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Finally, the Kneip and Sickles (2011) general cross-sectional and time-
varying factor model is available in the R package from Oualid Bada and
discussed at length in Bada and Liebl (2014).2!

Simar et al. (2017) Model

Recently, Simar et al. (2017) suggested using the local least squares
method as an alternative for the local likelihood approach to estimate
the stochastic frontier models. The local least squares approach is much
simpler to compute and easier to implement compared to the local
likelihood, and we will focus our discussion here on this approach.

The model in Simar et al. (2017) can be formulated as follows

yi=mxi, zi)+vi —uj, i=1,...,n, (3.24)

where m(x;, z;) is the production frontier, y; € ‘)ﬂ_ is the output,
X; € S)if_ is a vector of inputs, and z; € Mk is a vector of k variables
that can influence the production process. v; is statistical noise, which
is assumed to have a zero mean, i.e., E(vi|x;,z;) = 0, and positive
finite variance, i.e., VAR(v;i|x;, z;) € (0, 00). Meanwhile, u; is the inef-
ficiency term following a one-sided distribution, with a positive mean,
ie., E(ui|xi,zi) = uu(xi,zi) € (0,00) and positive finite variance, i.c.,
VAR(u;i|x;, z;) € (0, 00). As in other stochastic frontier models, #; and v;
are also assumed to be independent, conditionally on (x;, z;).
Now, let us define

el = v —ui + pu(xi, zi), (3.25)
and
ri(xi, zi) = m(xi, i) — pu(Xi, Zi). (3.26)
We can rewrite (3.24) as
yi =ri(xi,zi) + & 3.27)
Since E(g¥|x;, z;) = 0, we can use standard nonparametric methods (e.g.,

local polynomial least squares) to estimate r1(x;, z;). In order to estimate

21 Software instructions and downloadable codes are accessible at https:/,/www.jstats
oft.org/article /view /v059i06.


https://www.jstatsoft.org/article/view/v059i06
https://www.jstatsoft.org/article/view/v059i06
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the individual inefficiency, we also need to make a parametric assumption
on the distribution of inefficiency, e.g.,

wilx;, zi ~ N+(0, o2(x;, z,~)). (3.28)

With the distributional assumption, the conditional mean of inefficiency
can be estimated using the following relationships

N T 7
o, (xi,zi) = 7\ 72

4)73()6,‘,Zi), (3.29)

and
2
Pu(Xi, 2i) = 4/ ;ou(xi, Zi), (3.30)

where r3(x;, z;) = E((s;")3|x,-, z,-) is the third moment of the composed

error. Specifically, the residuals from the nonparametric estimation of the
model in Eq. (3.27), &, can be utilised to obtain the nonparametric
estimates of the third moment of the composed error, 73(x;, z;). The
estimates of technical inefficiency then can be obtained by plugging the

73(x;, z;) into Egs. (3.29) and (3.30).22

Implementation of Simar et al. (2017) Model

Estimation of the Simar et al. (2017) model can be implemented using
the standard Stata routines with a bit of additional programming. The key
command is npregress which helps to perform the local least-square
estimation in the Stata environment. As an illustration, we provide here, in
Box 3.9, a part of a Stata do file that implements the procedure discussed
in the previous subsection to estimate the Simar et al. (2017) model.
Similarly, one can implement the estimation of the Simar et al. (2017)
model in R with the local least squares estimation being carried out by the

22 The distributional assumptions on u; and v; allow obtaining a generalised version of
JLMS-type estimates, although more interesting in the semi/non-parametric context are
the estimates of E(u;|x; = x,z; = z), which can be done for any values of interest for
(%, z). The elasticities of E(uj|x; = x,z; = z) can also be obtained, which can be done
without any parametric assumptions on distributions, just by assuming that u; comes from
a one-parameter scale family (see Sect. 4 in Simar et al. 2017 for more details ).
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Box 3.9 Illustration for the implementation of the Simar et al. (2017) model
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* Illustration for the implementation of the Simar et al. (2017) modelx*x*
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e

/* Estimate the model in (27) using local linear estimator and store
predicted value in variable rilhat. Note that output, inputs, and
exogenous variables are stored in global Stata variables &y, #xlist,
and #$zlist, respectively. Output and inputs are in log forms */

/* Note that the default options in the npregress command is to use
Epanechnikov kernel and select bandwidth by cross-validation, i.e.,
by minimizing the integrated mean squared error of the prediction. */

npregress kernel #y %$xlist #zlist, estimator(linear) predict(rilhat)
noderivatives

/* Obtain the residual and the residual cubed from estimation of the
model in equation (27)%*/

gen ehat = &y - rilhat

gen ehat3 = ehat”3

/* Estimate the third moment of the composed error using local linear
estimator and store predicted value in variable r3hat */

npregress kernel ehat3 $xlist $zlist, estimator(linear) predict(r3hat)
noderivatives

/* Calculate sigma u hat cubed using equation (29) */

gen sigmauhat3 = sqrt(_pi/2)*(_pi/(_pi-4))*r3hat

/* Calculate sigma u hat. Note that following Simar et al. (2017), we
set negative values of sigma u hat equal zero */

gen sigmauhat = max(sigmauhat3~(1/3),0)

/* Calculate estimated values of inefficiency using equation (30)x*/

gen muhat = sqrt(2/_pi)*sigmauhat

np package with a bit of additional programming similar to the one we
presented here (and as was done by Parmeter and Zelenyuk [2019]). The
implementation of the model in Matlab requires more effort since one
needs to write his/her own codes for the local least square estimation (as
was done by Simar et al. [2017]). Preparation of user-friendly packages
in R and Matlab is currently in progress.
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EMPIRICAL ILLUSTRATION

In this section, we provide a small empirical illustration of the models
discussed in the previous sections, including the basic stochastic fron-
tier model, the stochastic panel data models, and the semi-parametric
stochastic frontier model.23-2# For this purpose, we use the data set about
rice producers in the Philippines, which was also utilised for the similar
purpose and popularised in the literature by Coelli et al. (2005).2%:26

Specifically, the data set includes the information about 43 rice
producers in the Tarlac region of the Philippines in a period of 8 years
from 1990 to 1997. We extract from the data set the information on
one output and three inputs including the area planted, labour used, and
fertiliser used. The output is measured in tonnes of freshly threshed rice,
while the inputs are measured in hectares, man-days of family and hired
labour, and kilograms of active ingredients, respectively (see more details
about the description of the data in Coelli et al., 2005).

For this empirical illustration, we deliberately apply all the models to
the data and focus our discussion on the estimated inefficiency to reflect
the differences in results across the models. Moreover, for all the models
that require a functional form for the production relationship, we assume
a linear in log production function, i.e., the Cobb-Douglas production
function.?” The Stata codes for implementing this analysis are provided
in the Appendix.

23 For the results to some extent to be comparable, we deliberately do not include in
this empirical illustration the stochastic frontier models with determinants of inefficiency.

24 Also, due to the computational difficulty in optimising the likelihood function, the
result from Kumbhakar (1990) is not available for the dataset used in this empirical
illustration.

25 Downloaded  from http://www.uq.edu.au/economics/cepa/crob2005 /software /
CROB2005.zip.

26 For an illustration with this data with various DEA models sce, e.g., Simar and
Zelenyuk (2020).

27 To estimate the cross-sectional models, e.g., Aigner et al. (1977) and Simar et al.
(2017) models, we pool the data across years.


http://www.uq.edu.au/economics/cepa/crob2005/software/CROB2005.zip
http://www.uq.edu.au/economics/cepa/crob2005/software/CROB2005.zip
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Table 3.1 Summary statistics of the estimated inefficiency

Models Mean  Std. dev.  Min  Ql Median QO3 Max
Aigner et al. (1977) 0.36 0.25 0.04 018 0.29 047 2.00
Schmidt and Sickles (1984) 0.34  0.20 0.00 0.18 0.30 0.50 098
(fixed effects)

Schmidt and Sickles (1984) 0.23  0.12 0.00 013 021 0.33  0.60
(random effects)

Pitt and Lee (1981) 021 0.14 0.05 0.10 0.16 0.31 0.70
Cornwell et al. (1990) 044 027 0.00 027 041 0.57 2.09
Battese and Coelli (1992) 020 0.15 0.04 0.08 0.14 028 092
Greene (2005a, 2005b) 0.33  0.24 0.03 017 0.27 043 1.89
(random effects)

Greene (2005a, 2005b) 0.35 0.23 0.02 0.18 0.30 047 1.87
(fixed effects)

Kumbhakar et al. (2014) 045 0.25 0.10 027 0.38 0.55 2.01
(Total)

Kumbhakar et al. (2014) 0.15 0.10 0.02 0.06 0.13 024 049
(Persistent)

Kumbhakar et al. (2014) 029 020 0.03 0.16 0.24 0.37 1.67
(Transitory)

Simar et al. (2017) 025 0.14 0.00 0.17 0.30 0.35 045

The summary statistics of the estimated inefficiency are provided in
Table 3.1, and their histograms are shown in Fig. 3.1.28 Meanwhile,
the variations of the estimated inefficiency across the years are shown in
Fig. 3.2.

At first glance, we can see that the means of estimated inefficiency vary
significantly across the models, ranging from 0.20 (the Battese and Coelli
[1992] model) to 0.45 (the Kumbhakar et al. [2014] model).?? This is
understandable since each model depends on different sets of assump-
tions. Moreover, it is important for practitioners to be aware of these
differences and carefully justify the assumptions of the model of their
choice before proceeding with their analysis. For example, with this data

28 The estimated distribution of estimated inefficiency from the Simar et al. (2017)
model is showing some mass at zero (i.e., the phenomenon referred to as “wrong skew-
ness” in stochastic frontier analysis) because 79 out 344 observations have Gi(x,', z;) <0
and their inefficiency is set to equal to 0.

29 It is important to clarify here that for all the models, the means we refer to are
averages of the estimates of individual inefficiencies.
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set, the difference in estimated inefficiency between the fixed effects and
random effects frameworks is significant when all the unobserved indi-
vidual heterogeneity is viewed as inefficiency (e.g., in the Schmidt and
Sickles [1984] model), but the difference is minimal when inefficiency is
distinguished from the unobserved individual heterogeneity (e.g., in the
Greene [2005a, 2005b] model).

Furthermore, recall that the temporal pattern of inefficiency is also
specified differently in different models. As illustrated in Fig. 3.2, the
estimated inefficiency is constant over time in the Schmidt and Sickles
(1984) and Pitt and Lee (1981) models, but follows a quadratic trend in
the Cornwell et al. (1990) model and has a linear trend in Battese and
Coelli (1992). Meanwhile, other models, such as Greene (2005a, 2005b)
and Kumbhakar et al. (2014), do not impose any temporal patterns on
the time-varying component of inefficiency.

CONCLUDING REMARKS

This chapter discussed a variety of stochastic frontier models to estimate
the technical efficiency of production units. Our chapter also documented
the estimation routines used to implement these methods for practi-
tioners, especially those who are willing to use Stata, but also with tips
on where to find analogous programs for R and Matlab users.

Although many recent developments in the field were covered in this
chapter, it was still a relatively brief introduction to the stochastic frontier
paradigm with some other generalisations remaining untouched, such as
the Bayesian stochastic frontier,3? stochastic metafrontier,3! spillovers and
spatial frontiers,3? and endogeneity.33 We refer interested readers to more
extensive resources (e.g., Kumbhakar et al., 2021a, 2021Db; Sickles &
Zelenyuk, 2019) for more detailed discussions of these and other topics.

30 For example, see Van den Broeck et al. (1994), Griffin and Steel (2004, 2007), and
Liu et al. (2017).

31 For example, see Battese et al. (2004), O’Donnell et al. (2008), and Huang et al.
(2014).

32 For example, see Glass et al. (2016), Orea and Alvarez (2019).

33 For example, see Amsler et al. (2016), Kutlu (2010), Karakaplan and Kutlu (2015,
2017), and Karakaplan (2017).
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Finally, many other important developments in the field are still in
progress, and thus, we encourage readers to check for updates as well
as contribute themselves to such developments and discoveries.
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APPENDIX

Box A.1: Stata codes for the empirical illustration

set more off
clear all
log using "SFABookChapter_Empirical", text replace
// Load data
import delimited "rice.txt", delimiter (space) varnames(l) ///
encoding (IS0-8859-2)
// Generate variables
foreach X of varlist prod area labor npk {
generate 1°X' = 1n(°X')
}
global y lprod
global xlist llabor larea lnpk /*Cobb-Douglas functionx/
global id fmercode
global t yeardum
xtset #id §t
KoK K oK K oK K K K K K K K K K oK K K K K oK K oK K R K K K Kk K K K oK K oK K K oK K oK K K oK K oK K oK K K oK K K K K K K oK K oK oK o oK K oK K K K K K KK K
/* the Aigner et al. (1977) model */
%k 3k ok ok K 5k 5k K K 5k 5K K K K K K K K K K K K K K K XK XK Xk XK XK X 5k 5k 5k 5k 5k 5k 5k 5k 3k 3k 5k 3k 3k 5k 5k 3k 3k 5k 5k 3k 3k 5k 5k 3k 5K 5k 5k K K K K K K K K K K K K ¥ ¥
sfcross $y #$xlist, distribution(hnormal)
estimates store ALS
predict ineff_ALS, u /* Predict inefficiency, i.e., E(ule) */
label variable ineff_ALS "The Aigner et al. (1977) model"
K 3K ok K K ok ok K 5K ok K K K K K K K K K K K K Kk Kk Kk Kk 5k 5k Kk 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k K K K K K K K K K *k *k * k *
/* the Schmidt and Sickles (1984) model */
KKK KOk K Kk Kok Kk ok kokokkokkkokkkkkkkPartial Stata Codes kkkkkkkkkkkkkkkkkk kK kkkk*x
/* the fixed effect framework x*/
sfpanel #y $xlist, model(fe)
estimates store SS_fe
predict ineff_SS_fe, u /* Predict inefficiencyx*/
label variable ineff_SS_fe ///
"The Schmidt and Sickles (1984) (fixed effects)"
/* the random effect framework x/
sfpanel $y $xlist, model(regls)
estimates store SS_re
predict ineff_SS_re, u /* Predict inefficiencyx*/
label variable ineff_SS_re ///
"The Schmidt and Sickles (1984) (random effects)"
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ook KKK K KKK o o K KK oK o o K KKK o o K KKK o KKK o o o KKK o ok o K KK R o o K KK R o o K KK R o o K KK R o o K KK
/* the Pitt and Lee (1981) model x*/

KKK KK KKK K KK KKK o o K KKK o K KKK K KKK K o o KKK K o K KKK o K KKK o K K KK K o K KKK o K KK
sfpanel #y $xlist, model(pl81)

estimates store PL

predict ineff PL, u /* Predict inefficiency, i.e., E(ule) */

label variable ineff_ PL "The Pitt and Lee (1981) model"

ok KK o KKK o K KK o o K KK R o o K KK R o KK o o o KK o ok o K KK R o o K KR R o KKK R o o K KK R o K KK
/* the Cornwell et al. (1990) model */

KKK K KKK K K K KKK o o K KKK o K KKK o K KKK K o o K KK K o K KKK o K KK K o K K KK K o K KKK o K KK
sfpanel #y $xlist, model(fecss)

estimates store CSS

predict ineff CSS, u /* Predict inefficiency*/

label variable ineff_CSS "The Cornwell et al. (1990) model"

ok ok KK o o KKK o KR o o K K o o o K KR R o KR o o o KKK o ok o K KK R o o KKK R o KKK R o o K KK R o o K KK
/* the Battese and Coelli (1992) model */

oK KK K KKK o K KKK o o K KKK o K KKK o K K KKK o K KKK K o o K KKK o K KK R o K KKK K o o K KKK o K KK
sfpanel %y #$xlist, model(bc92)

estimates store BC

predict ineff_BC, u /* Predict inefficiency, i.e., E(ule) */

label variable ineff_BC "The Battese and Coelli (1992) model"

K ok ok ok ok ok K ok ok ok ok ok ok ok k ok ok k ok ok ok ok ok ok ok ok ok oK ok ok ok ok ok xk ok ok ok %k ok ok 5k Xk 3k ok ok X 5k 5k ok X 3 5k ok Xk 5k ok %k *k 5k 5k % ¥k Kk k¥
/* the Green (2005a,b) models */

oK KKK K KKK o KKK K o o K KKK o K KKK K KKK oK o o K KK K o o K KKK o K K KK R o KKK R o o K KK R o K KK
/* the random effect framework x*/

sfpanel #y $xlist, distribution(hnormal) model(tre)

estimates store G_tre

predict ineff_G_tre, u /* Predict inefficiency, i.e., E(ule) */

label variable ineff_G_tre "The Green (2005a,b) model (random effects)"
/* the fixed effect framework */

/* Implementation using the marginal maximum likelihood estimator x*/
sftfe #y &xlist, distribution(hnormal) estimator (within)

estimates store G_mmle

predict ineff_G_mmle, u /* Predict inefficiency, i.e., E(ule) */

label variable ineff_G_mmle "The Green (2005a,b) model (fixed effects)"
K K ok k ok ok ok Kk k ok ok ok Kk xk ok ok ok k Xk xk K K ok K xk dk ok 3k 5k kK xk Xk dk 3k 3k xk %k Xk 3k 3k 5k %k %k Xk 3k 3k 5 %k Xk Xk 3k 5k K ¥k Xk %k 3k 5k K *k Xk Xk %k Xk *k *k % k k k
/* the Kumbhakar et al. (2014) models */

ook KKK K KKK o o K KK K o o K KKK o K KKK o K KKK oK o o K KK oK ok o K KKK o o K KK R o KKK oK o o K KK K o o K KK
xtreg $y $xlist, re

estimates store KLH

predict alp, u /* Obtain estimates of alpha */

predict esl, e /* Obtain estimates of the composed error */

/* Estimate equation (19) using the basic stochastic frontier model to

obtain persistent (in)efficiency */
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gen constant = 1 /* Generate constant to use in sfcross */

sfcross alp constant, distribution(hnormal) noconstant

predict ineff KHL_pers, u /* Predict inefficiency, i.e., E(ule) x/

label variable ineff_KHL_pers ///

"The Kumbhakar et al. (2014) model (Persistent)"

/* Estimate equation (19) using the basic stochastic frontier model to
obtain transitory (in)efficiency */

sfcross esl constant, distribution(hnormal) noconstant

predict ineff_KHL_trans, u /* Predict inefficiency, i.e., E(ule) */

label variable ineff_KHL_trans ///

"The Kumbhakar et al. (2014) model (Transitory)"

/*Calculate the total inefficiency*/

gen ineff KLH = ineff KHL_pers + ineff KHL_trans

label variable ineff KLH "The Kumbhakar et al. (2014) model (Total)"

ok o oK oK K o oK K K o KK K K o K K K o o K K K o o K K K o oK K K K o K K K o o K K K o oK K K K o oK K K o o oK K K o o oK K K o K K K K o KK K

/* the Simar et al. (2017) */

KoKk oK oK oK KoK KK K K KK K K R K K K R R K K o R SR K K o o K K K R R K K K o oK K K K o oK oK K o o oK K K o KK K K o KK K K o KoK K o K K

/* Estimate model in (27) using local linear estimator and store
predicted value in variable rilhat. Note that output, inputs, and
exogenous variables are stored in global Stata variables $y, #xlist,
and $zlist, respectively */

/* Note that the default options in the npregress command is to use
Epanechnikov kernel and select bandwidth by cross-validation, i.e.,
by minimizing the integrated mean squared error of the prediction. */

npregress kernel #$y $xlist, estimator(linear) predict(rihat) ///

noderivatives

/* Obtain the residual and the residual cubed from the estimation of the

model in equation (27)*/

gen ehat = #y - rilhat

gen ehat3 = ehat”3

/* Estimate the third moment of the composed error using local linear
estimator and store predicted value in variable r3hat */

npregress kernel ehat3 #xlist, estimator(linear) predict(r3hat) ///

noderivatives

/* Calculate sigma u hat cubed using equation (29) */

gen sigmauhat3 = sqrt(_pi/2)*(_pi/(_pi-4))*r3hat

/* Calculate sigma u hat. Note that following Simar et al. (2017), we
set negative values of sigma u hat equal zero */

gen sigmauhat = max(sigmauhat3~(1/3),0)

/* Calculate estimated values of inefficiency using equation (30)%*/

gen ineff SKVZ = sqrt(2/_pi)*sigmauhat

label variable ineff_SKVZ "The Simar et al. (2017) model"
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ok o oK oK K o K K K o KK K K o KK K o o K K K o oK K K K o K K K K o K K K K o K K K o oK K K K o oK K K o o oK K K o o K K K o K K K K o KK K
/* Summarising and exporting the results */
K ok ko o oK oK K o KK K K KK K K R K K K R R K K o R oK K K o o K K K R oK K K o oK oK K K o oK oK K o o oK K K o R K K K o KoK K K o KoK K K ok K
/* The estimated coefficients of the frontiers */
esttab ALS SS_fe SS_re PL CSS BC G_tre G_mmle KLH
esttab ALS SS_fe SS_re PL CSS BC G_tre G_mmle KLH ///
using coefficients.csv, replace
/* The estimated inefficiency */
global myvars ineff_ALS ineff_SS_fe ineff_SS_re ineff_PL ineff_CSS ///
ineff _BC ineff_G_tre ineff_G_mmle ineff KLH ineff KHL_pers ///
ineff KHL_trans ineff SKVZ
estpost summarize #myvars, detail
esttab using inefficiency.csv, ///
cells ("count mean sd min p25 p50 p75 max") replace
K K ok ok ok 3k oK ok oK K K oK K ok ok K K K %k ok k 3k oKk 3K K 3k oK ok 3k oKk ok K X ok K 3k ok 3k oK 3k ok K 3k ok ok 3k K Xk 5K K 5k oK K 3k oK X 3k K X K x5k K %k K K k k¥
/* Histograms of estimated inefficiency */
KoKk oK oK oK KoK KK K K KK K K R K K K R R K K o R SR K K o o K K K R R K K K o oK K K K o oK oK K o o oK K K o KK K K o KK K K o KoK K o K K
foreach X of varlist #myvars {
histogram “X', bin(100) normal “kden'
graph save “X'.gph, replace
}
graph combine ineff_ ALS.gph ineff_SS_fe.gph ineff_SS_re.gph ///
ineff PL.gph ineff_CSS.gph ineff BC.gph ineff_G_tre.gph ///
ineff_G_mmle.gph ineff_KLH.gph ineff_ KHL_pers.gph ///
ineff _KHL_trans.gph ineff_SKVZ.gph, col(3) scale(1)
graph export histogramineff.png, replace
KKK KKK KKK KKK K K K K K K K K K K K K K KKK KKK KKK KKK KK K K K K K K K K K K K K K K K K K K K K K K K K K K
/* Plot estimated inefficiency across years */
3ok ok ok ok ok kK Ok kK ok ok k koK ok Kk ok ok ok ok ok ok dk ok ok ok kK ok ok K ok ok ok ok 3k ok ok dk ok ok Xk ok ok Xk oK ok ok ok oK ok ok K ok ok ok Xk Kk %
sort yeardum
label variable yeardum "year"
foreach X of varlist $#myvars {
by yeardum, sort: egen “X'_Ql = pctile("X'), p(25)
by yeardum, sort: egen “X'_Q2 = pctile("X'), p(50)
by yeardum, sort: egen “X'_Q3 = pctile("X'), p(75)
label variable "X'_Q1 "First quartile"
label variable “X'_Q3 "Third quartile"
label variable “X'_Q2 "Median"
local labeltext : variable label “X'
graph two line “X'_Q1 “X'_Q2 “X'_Q3 yeardum, ///
title (" labeltext', size(small))
graph save “X'_trend.gph, replace
}
graph combine ineff ALS_trend.gph ineff_SS_fe_trend.gph ///
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ineff_SS_re_trend.gph ineff PL_trend.gph ///
ineff_CSS_trend.gph ineff_BC_trend.gph ///
ineff_G_tre_trend.gph ineff_G_mmle_trend.gph ///
ineff_ KLH_trend.gph ineff_KHL_pers_trend.gph ///
ineff_KHL_trans_trend.gph ineff_SKVZ_trend.gph, ///
col(3) scale(1) xcommon ycommon

graph export allineff_trend.png, replace

log close
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(NDEA) models in their connection to what has been called the central-
ized allocation model or industry efficiency model. Both of these models
may be thought as being part of an analytical approach that looks at
productivity and efficiency analysis from a system perspective rather than
the more traditional granular perspective of plant or firm efficiency anal-
ysis. From this point of view, the models can be better connected with
issues of regulation of markets that present strong externalities or distor-
tions, or issues of efficient allocation of limited resources in government
centrally planned operations. The reason why we focus on NDEA models
in particular is due to their astonishing growth in the last 5 to 10 years. A
Google Scholar search dated 24,02 /2021 with either "Network DEA"
or "Network Data Envelopment Analysis" in the title returns 887 research
papers. By limiting the same search to before year 1999, one obtains zero
papers. Between year 2000 and 2005, 9 papers were published. Between
year 2006 and 2010, 87 papers were published. Between 2011 and 2015,
252 papers were published. After 2015 until today, 572 papers have been
published. This is an astonishingly exponential growth of what was a tiny
little detail in productivity analysis. This search does not include papers
that include “Network DEA” or “Network Data Envelopment Analysis”
outside of the title. If we remove the requirement for these two sentences
to appear in the title, 7,520 papers appear from the search, with a similar
temporal distribution: 54 papers before 1999, 92 papers between 2000
and 2005, 419 papers between 2006 and 2010, 1,770 papers between
2011 and 2015, and 5,060 papers between 2016 and 2021. This is a
huge amount of papers for such a specialized topic and, to the best of our
knowledge, no other sub-field in efficiency and productivity analysis has
undergone such miraculous growth. One is therefore left with a feeling of
backwardness, as if the modern researcher in productivity and efficiency
analysis is missing the biggest leap forward in our knowledge of the field.
This motivated us to make a very selective review of this large body of
literature. During this process, we stumbled across the contributions of
Kantorovich (1939, 1965), Koopmans (1951) and Johansen (1972) and
we formed the view that this field of study is far from being a specialized
field within efficiency and productivity analysis, but it is rather the best
effort to make a connection with economic policy issues associated with
central planning and the regulation of markets. Since it is tedious, boring,
and almost impossible to review all of these papers, we decided to focus
on papers that received the highest number of citations, with a special
focus on papers published after 2015. Having a bit of a bigger focus on
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what happened after 2015 would help in mitigating the distortions that
could arise by the citation game. Although this is not necessarily the best
way of reviewing the literature and there could be very good papers that
received a small number of citations, we nevertheless decided to proceed
this way. From the above search, we selected a bit more than 150 papers
that we reviewed in order to gain an understanding of what is happening
in the field. This chapter is an attempt at explaining in a succinct way
our view of this growing body of literature (and we cite, from those 150,
only papers that we think are relevant to our discussion, without having
the ambition of providing an exhaustive literature review). During our
search, we developed our independent modeling strategy to try to recon-
cile these papers. The outcome of this modeling strategy is contained in
Peyrache and Silva (2019).

The origins of system models in efficiency and productivity analysis
can be traced back to Kantorovich (1939). In essence, a system is a set
of interacting or interdependent group of items forming a unified whole.
The system has properties that its parts do not necessarily possess. As
Senge (1990) mentions in his system thinking approach: a plane can fly
while none of its parts can. Under production economics, systems can be
considered groups of firms acting in an industry, or production processes
acting within a firm.

Farrell (1957) is often cited as the father of modern efficiency and
productivity analysis either through parametric or nonparametric tech-
niques. In his seminal paper, he mentions the measurement of industry
efficiency in the following words:

There is, however, a very satisfactory way of getting round this problem:
that is, by comparing an industry’s performance with the efficient produc-
tion function derived from its constituent firms. The ‘technical efficiency’
of an industry measured in this way, will be called its structural efficiency,
and is a very interesting concept. It measures the extent to which an
industry keeps up with the performance of its own best firms. It is a
measure of what is natural to call the structural efficiency of an industry
- or the extent to which its firms are of optimum size, to which its high
cost-firms are squeezed out or reformed, to which production is optimally
allocated between firms in the short run (p.262).

If one replaces in the above citation the word industry with the word firm
and the word firm with the word process, it is clear that the issues arising
in structural efficiency measurement for an industry are the same as those
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arising at the level of the firm when one wants to aggregate the efficiency
of its processes.

In reviewing all this material, we discovered astonishing similarities
between NDEA models and the forgotten contributions of Kantorovich,
Koopmans and Johansen (KKJ). These authors were the first to explicitly
state the problem of the efficient allocation of scarce resources in order
to maximize production. These initial contributions are strictly connected
with the early development of linear programming and the methods of
solutions associated with the simplex method. The similarity goes beyond
the fact that all these models are using linear programming. If one were
to judge this literature in terms of its contribution to optimization theory,
then there would be no much originality. To the optimization method-
ologist, there is nothing really new in any of these contribution, since,
from a mathematical perspective, once you write down a linear program
that is it. If the reader decides to apply the optimization theorist point
of view to this field, then she can stop reading here. On the contrary,
we think that there is an original contribution also in the writing and
interpretation itself of the linear program at hand because this involves
its connection to policy making. In this respect, the contribution of KKJ
is substantial and the fact that it has been basically ignored by modern
researchers in productivity analysis represents a great disservice to the
broader scientific community. In particular, KKJ are using linear program-
ming to give a mathematical and computational representation to policy
problems associated with the optimal allocation of scarce resources in
order to maximize output. These early authors had clearly in mind a
system or network perspective in their approach. These early contributions
were sophisticated enough to provide the basis for most of the system
efficiency analysis that could be conducted on a modern dataset. They
also provided a stringent economic and engineering interpretation of the
model that could have formed the basis for a rich analysis. The fact that in
the ’70s, ’80s and ’90s these contributions were basically ignored, means
that authors started to develop the same model again in the last 10 to 20
years, with the explosion associated with NDEA that we observed in the
last 10 years. The reasons why this happened are certainly complex, but
a great deal of the explanation may come from the fact that economic,
social and cultural thinking in those three decades switched the atten-
tion from central planning and government intervention toward a more
granular view of society. Accordingly, productivity analysis switched the
attention from a system perspective toward a more micro-approach, with
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an extreme focus on the measurement of efficiency and productivity at
the firm level. The complexity of the methodologies associated with the
measurement of firm level efficiency has grown in time to an incredible
level of sophistication. This sophistication required the simplification of
the object of study, and therefore, those early contribution that could have
provided the bridge toward a more realistic system analysis have been basi-
cally disregarded in favor of a simpler object of inference. The best way of
describing this forgotten early literature is to look at the citation count.
For the sake of simplicity, we may consider Charnes et al. (1978) (CCR)
and Banker et al. (1984) (BCC) the founding papers of DEA analysis
and Aigner et al. (1977) the founding paper of stochastic frontier analysis
(SFA). DEA and SFA represent the two main approaches to firm level
efficiency analysis. These papers received respectively 37,556 citations
(Charnes et al.,1978), 21,228 citations (Banker et al. 1984) and 13,213
citations (Aigner et al., 1977). Compare this with the citation count
of KKJ. Kantorovich (1939) was published in English in Kantorovich
(1960) and it received 990 citations. Koopmans (1953) published on the
American Economic Review received 19 citations. The book on which
this paper is based (Koopmans 1951) received 1,638 citations. Johansen
(1972) book received 633 citations. Charnes and Cooper (1962) (32
citations) knew Kantorovich’s and Koopmans’ contributions, yet they
were very critical of Kantorovich’s contribution, focusing their critic on
methodological grounds (the reader should notice that any computational
and methodological issue was relegated by Kantorovich in an appendix).
The Sveriges Riksbank prize committee clearly disagreed with Charnes
and Cooper (1962) when assigning the Nobel Prize in Economics to
Kantorovich and Koopmans for their contributions to the optimal alloca-
tion of scarce resources. This is in line with the reviews of Gardner (1990)
and Isbell and Marlow (1961) that stress the importance of Kantorovich’s
contribution. It is a pity that Johansen was not included in the list of
the prize recipients. Johansen’s contribution to productivity analysis is in
some respects even more important than Kantorovich and Koopmans, in
the sense that Johansen was basically proposing to use the KKJ model
(based on linear programming) as the tool to be used in the definition of
a macro- or aggregate production function based on firm level or micro-
data on production. Johansen has a clear understanding of the use of such
a tool for the micro-foundation of the aggregate production function.
Given that these early contributions are at risk of been completely
forgotten by the modern researcher, we decided to organize our story



178 A. PEYRACHE AND M. C. A. SILVA

by starting with the analysis of the KKJ model. We then make a leap
forward from 1972 to basically 2000, when Fare and Grosskopf (2000)
re-introduced a special case of the KKJ model naming it Network
DEA. In the 30 years, from 1972 to 2001, nothing really happened
in the system approach to productivity analysis except for the fact that
researchers actively involved in this field provided a massive amount of
methodological machinery for the estimation of firm level efficiency. Even
theoretical work on production efficiency mostly focused on the “black
box” approach. To be clear, we are not claiming that these 30 years were
not useful. We are claiming that they did not advance the research agenda
on the system perspective of productivity analysis, which is mostly based
on the idea of efficiently allocating scarce resources. Hopefully, we are
persuasive enough to show that there are still some quite big challenges
in the system approach that are worth more attention than developing
another 8 components stochastic frontier model.

The chapter is organized as follows: in section The Origins of Network
DEA (1939-1975), we provide a description of the early contribu-
tions of Kantorovich, Koopmans and Johansen; in section Shephard,
Farrell and the “Black Box” Technology (1977-1999), we very briefly
describe the methodological development that happened in the years
1977-1999, by stressing the underlying common “black box” produc-
tion approach; in section Rediscovery of KKJ (2000-2020), we describe
recent developments in 3 apparently disconnected pieces of literature:
Network DEA, multi-level or hierarchical models and allocability models;
in section Topics for Future Research, we provide a summary of open
problems that have not been addressed. Section Epilogo concludes.

THE ORIGINS OF NETWORK DEA (1939-1975)

In three separate and independent contributions, Kantorovich (1939),
Koopmans (1951) and Johansen (1972) laid the foundation for the anal-
ysis of efficiency and productivity from a system perspective. Reading
these early papers requires some imaginative effort, since the mathemat-
ical notation and the language are different from what we use today. The
underlying mathematical object is nevertheless the same; therefore, it is
just a matter of executing a good “translation”. We start this section
by describing the model of Kantorovich and introduce the notation in
this subsection. As it should result clear by the end of this section,
Kantorovich proposed efficiency measurement in a system perspective
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without making explicit use of intermediate materials and under either
variable or non-increasing returns to scale. In view of this fact, the major
contribution of Koopmans (1951) is to explicitly account for the use
of intermediate materials under constant returns to scale. The introduc-
tion of intermediate materials clearly makes the model more flexible and
general. Johansen is included in this review because he proposed the
same model of Kantorovich under variable returns to scale. Although
the model is the same, Johansen interpretation of the model is strikingly
different, since Johansen chief interest was in the micro-foundation of
the short-run and long-run production function. Of course, it is impos-
sible to make justice to all the details contained in these early papers and
they should really be considered the classics of efficiency and productivity
analysis that every researcher or practitioner in the field should read care-
fully. For example, Koopmans’ reduction of technology by elimination
of intermediate materials has been subsequently used and rediscovered
independently by Pasinetti (1973) to introduce the notion of a vertically
integrated sector when using input-output tables. We should leave such
details out of our review and only focus on the part that concerns the
analysis of the production system efficiency.

Kantorovich (1939)

In 1939, Kantorovich presented a research paper (in Russian) proposing a
number of mathematical models (and solution methods in the appendix)
to solve problems associated with planning and organization of produc-
tion. The aim of the paper was to help the Soviet centrally planned
economy to reach efficiency in production by allocating resources effi-
ciently. Kantorovich’s paper was published in English for the first time
in 1960 in Management Science (Kantorovich, 1960), and we will
refer to the English version of the paper due to our inability to read
Russian, although we will refer to it as Kantorovich (1939). Kantorovich
introduces his more complicated model (Problem C) in steps by first
introducing two more basic models (Problem A and Problem B). In
problem A, Kantorovich considers p = 1,..., P machines each one
producing m = 1,..., M products. In problem A, the M outputs are
produced non-jointly and each machine is used for a specified amount of
time in the production of the single product m. This information can be
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collected in the following data matrix:

Y = [ymp]

where y., is the quantity of product m that can be produced with
machine p in a given reference unit of time. If a machine specializes in
the production of a subset of the products, then the coefficients associ-
ated with the other products will be equal to zero. It should be noted
that in modern terms we would call Y a data matrix, but we can infer,
by the wording Kantorovich is using, that this may just be information
on the use of the machines that is obtained via consultation with engi-
neers. Viewing the Y matrix as a sample is somehow more restrictive than
what these early authors had in mind. In general, the information can
even come from a booklet of instruction associated with each machine.
Kantorovich states his first planning problem in the following way:

max 6

0, Amp

st 0gm < Zp )meymp , Vm 4.1
YomAmp=1, Vp
Amp =0

In this formulation ), Aup ymp is the overall amount produced of output
m (by all machines jointly) and the coefficients g, are given and used
to determine the mix of the overall output vector produced. Maximizing
0 implies that the overall production is maximized in the given propor-
tions g,,. The constraint on the intensity variables A,, summing up to
one is interpreted by Kantorovich as imposing that all machines must be
used the whole time (A, is the amount of time machine p is used in
the production of product ). In modern terms, this constraint has been
interpreted as a variable returns to scale constraint (Banker et al., 1984),
although the authors proposing such an interpretation don’t make any
mention of Kantorovich’s work. The overall meaning of problem A is
to give the maximal production possible (in the given composition g,,)
by using all machines at their full capacity level (fully loaded). Later on,
in his book, Kantorovich (1965) relaxes this constraint to ), Apm < 1,
therefore allowing for partial use or shut down of machines. The reason
for relaxing this constraint is due to the fact that Kantorovich discusses in
the book problems associated with capital accumulation. This means that
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if used for intertemporal analysis, some machines may become econom-
ically obsolete if there are other factors that are limiting production. To
the best of our knowledge, the use of the model for an analysis of depre-
ciation of capital is still to be implemented along the lines suggested by
Kantorovich. In more recent years, this constraint has been interpreted as
a non-increasing returns to scale constraint. Because of the special setting
of this problem, we want to delve a little bit more into potential inter-
pretations from our point of view (Kantorovich gives several examples
of practical problems that can be solved with this model and some of
them are astonishingly relevant even today). In particular, if we inter-
pret the P machines as being separate production processes, problem A
is, in actual fact, a parallel production network, with a linear output set
and free disposability of outputs and without inputs (in the basic model
Kantorovich assumed that inputs such as energy or labor are available in
the right quantities). In particular, this setting allows for the different P
processes to specialize on different subsets of products, or for them to be
just alternative methods of production of the same set of goods. This is in
line with the modern approach to Network DEA. Each machine can be
allocated to single line production processes, and the only limiting factor
is the amount of time the machine can be used for. This means that the
output set is linear and problem A can also be interpreted as a basic trade
problem where each machine is specializing on the production of the
good (or sub-set of goods) for which it has a comparative advantage. The
connection with the comparative advantage idea went unnoticed as well,
unfortunately, but it is the basis on which one can claim that in general if
production units cooperate (or trade if they are in a complete free market)
they can yield a bigger output. As a final note, we like to point out that the
first constraint in the problem has been stated as an inequality constraint.
Strictly speaking, Kantorovich uses an equality constraint, although he
mentions that one could allow for “unused surpluses” of the products.
Since this is basically a statement of free disposability of outputs, we prefer
to state the constraint in its free disposability form.

In problem A, Kantorovich does not make any mention of inputs in the
production process and only focuses on a given number of machines and
their optimal use in producing given outputs. In problem B, Kantorovich
introduces the use of inputs by including information on the use of each
possible input (only the one input case is presented in the mathematical
problem of Kantorovich’s paper, with a mention that extension to other
factors is easy and left to the production engineers). In the given reference
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period of time of use, machine p will be using a given quantity x,,, of
input (say energy, to follow Kantorovich’s example) in order to produce
Ymp quantity of output m. Generalizing this on the lines proposed by
Kantorovich, if the production process uses n = 1,..., N inputs, then
Xnmp 1s the quantity of input # used by machine p to produce the quantity
of output y,,,. If the overall quantity of input # available for production is
given by x, (notice that this can be equal to the observed overall quantity
in the system, or it can be some other quantity set by the researcher), then
problem B is:

max 6

0, Amp

st Ogy < Zp AmpYmp » Ym
Zl’ Zm )\mpxnmp < Xn, Vn 4.2)
YomAmp=1, Vp
Amp =0

The second constraint on the overall use of inputs means that the inputs
can be a limitational factor for the production of the outputs. Since inputs
may be specific to the use of some of the machines, this also means that
inputs that are specific to the production of some outputs (output-specific
inputs) can be accommodated with Kantorovich problem B. This line of
reasoning was proposed recently in Cherchye et al., (2013). One limita-
tion of problems A and B is given by the fact that no joint production
of outputs is allowed: each machine is dedicated to the production of
a single product at any given time and the overall time for which the
machine is available can be allocated to the production of different prod-
ucts. Kantorovich tackles joint production in problem C (which he deems
being the most difficult and general). In this problem, each machine
p has available j = 1,...,J alternative methods of production for the
joint production of the output vector. Therefore, in the given reference
time period, machine p can use method of production j to produce the
following vector of output quantities (y1p;, ..., yij)T jointly. Clearly,
problems A and B can be embedded as special cases of this more general
model by setting J = M and allowing the 7 matrix to be diagonal.



4 EFFICIENCY AND PRODUCTIVITY ANALYSIS ... 183

Problem C is stated by Kantorovich as follows:

max 0

0.1 pj

st 08m < 3,2 ApjYmpj» Ym
2p 2 hpiXnpj < Xns Vn (4.3)
Zj Apj =dp. Vp
Apj =0

In problem C of Kantorovich, the activation levels 1,; represent the
“quantity of time” each machine p is used with production method j
to produce the outputs jointly. Since each method of production j can
produce different mixes of outputs, the single line production process can
be embedded into this problem as a special case by selecting appropriate
methods of production (i.e., one can list the single production line as an
additional method of production). Kantorovich does not state explicitly
the third constraint on the use of inputs, but by the way the problems are
stated, it is clear that this was the intention. Problem C of Kantorovich
tackles joint production in the sense that inputs are allocated to machines
that can produce joint products.

Since Kantorovich uses in the book the weaker constraint that allows
for partial use or shut down of machines, the overall system proposed
by Kantorovich can be stated in terms of either variable returns to scale
(VRS) or non-increasing returns to scale (NIRS). To the best of our
knowledge, Kantorovich never mentioned the assumption of constant
returns to scale. On page 375, he states: “Let there be n machines (or
groups of machines) on which theve can be turned out m diffevent kinds of
output”. “Groups of machines”? If we allow to have replicates of a given
machine (let’s say we have 100 machines of a given vintage), then this
would sum up to an assumption of replicability and we know that replica-
bility together with the NIRS constraint (i.e., divisibility) implies constant
returns to scale (CRS). Probably, Kantorovich did not have in mind CRS
itself, but rather he was interested in the medium-term output (Soviet
Union had 5 years production plans) in a situation where the number
of machines is given. In his book later on, he talks about investment
and the increase in the production capacity of the economy. Therefore,
even if Kantorovich did not have in mind specifically CRS, he was aware
of the limitational nature of replicability in the short or medium term
and the necessity to deal with expansion in the long term. All in all, one
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could say that Kantorovich went really close to a notion of CRS by listing
the divisibility and replicability assumption. He clearly did not use the
axiomatic language that became dominant in the profession later on, but
he clearly had in mind these notions and was using them in his exam-
ples. In the opening example on page 369 (Table I), Kantorovich gives
a clear account of having more than one machine using the same set of
technological coefficients. This is a clear cut case of what he means by
“groups of machines”: those are replicates of the same machine, i.e., a
given number of the same model of machine. Kantorovich gives this idea
again in a more general setting on page 385 when he talks about the
“Optimum Distribution of Arable Land”. Here, p indexes the different
lots of land and each lot can have a different size g,. Since each lot of
land wvaries in its size, the solution proposed by Kantorovich is equiva-
lent to the constraint }; A,; = g, which implies that each lot of land
needs to be used fully. According to Kantorovich, the g, are either a
natural number representing the number of replicates of machine p, or
the size of the lot of land therefore a set of fixed real numbers. There is
no account in the paper that makes one think that these fixed numbers
can be regarded as decision variables in the optimization problem. If one
were to assume them as non-negative decision variables on the real line,
then this would sum up to a CRS assumption, but such an assumption
is not explicitly stated. In the book, he proposed to relax the constraint
to a lower inequality constraint that allows for partial use of the machine.
This would amount to the following program:

max 0

0.2 pj

st 0gm <3, 2 ApjYmpj, Ym
2p 2 jrpjxnpj = Xn, Vn “4
i pi S4p. VP
hpj =0

What can we say in terms of interpretation of the Kantorovich model?
The first point to make clear is that the model has two levels of decision
making in problem C. One can easily grasp that the intensity variables A ;
depend both on the machine used and on the selected method of produc-
tion. Now, if we rename “machines” as “processes” and “methods of
production” as “firms”, in all effects we have a model which is producing
M outputs, using N inputs and each firm s is using P production
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processes to accomplish this production. This is the very first example
of an attempt to open the black box of production, even before the
black box of production idea was proposed. Kantorovich’s model is a
fully fledged parallel production network under alternative specifications
of returns to scale.

At this point, we should also notice that the data structure that
Kantorovich had in mind is three dimensional. By looking at the input
data, we have P matrices X, where the inputs are listed in the rows and
the production methods in the columns. If we overlap all these matrices,
we obtain a three-dimensional data structure:

We shall see in the next subsection that Koopmans (1951) is using
the same data structure by stacking these matrices into a large two-
dimensional matrix. Kantorovich does not discuss explicitly how many
replicates of each machine we should use, but if we were to assume a
long-term view and make the number of replicates a variable, then we
could solve the previous problem for several values of ¢, and choose the
ones that maximize production for the given level of inputs available. This
would make the number of “firms” in the industry a variable of choice like
in Ray and Hu (1997) or Peyrache (2013, 2015). Moreover, the model
also includes output-specific inputs (Cherchye et al., 2013) by designing
the data (ymp i Xnp j) appropriately in order to make them specific to some
of the processes.

If we account for the fact that this paper was published in Russian in
1939 and in English in 1960, this means that many production models
recently proposed in the literature can be embedded as special cases of
Kantorovich model and have been floating around for at least 60 years.
The bottom line of this analysis is that in Kantorovich modeling J is the
number of methods of production (this can be observed firms) and P
is the entities we are evaluating. The coefficients (ym,,j, Xnp j) will deter-
mine the particular interpretation we want. Therefore, we can also obtain
the widely celebrated output-oriented DEA models under VRS, NIRS
(or CRS if we include replicability of the machines) by setting P = 1
and (ympj, xnpj) = (ymj, xnj) where the dependence on the process has
been dropped in the notation because P = 1 and one is evaluating the
efficiency of the production plan (yo, Xo). Output orientation is obtained
as a special case by setting g, = yom. In fact, this is even more general
than the output-oriented model because the projection is dictated by the
gm coefficients. One is left to wonder if the 37,000 citations of the CCR
model or the 21,000 citations of the BCC model are better deserved than
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the less than 1,000 citations of Kantorovich’s work, especially considering
the exponential growth in Network DEA that we observed over the past
5-10 years.

The chief interest of Kantorovich is into optimal allocation of resources
in order to maximize the output of the system. He does not show any
interest in the efficiency at a more granular level and he takes for granted
that if a machine is not used efficiently then it should be used at the
efficient level (this is implicit in the formulation of the problem). Since
the objective function is maximizing the overall output produced, this
corresponds to an industry model where firms have a network production
structure and the production runs in parallel without any flow of interme-
diate materials from one process to another. The words of Kantorovich
himself are better than any explanation:

There are two ways of increasing the efficiency of the work of a shop, an
enterprise, or a whole branch of industry. One way is by various improve-
ments in technology; that is, new attachments for individual machines,
changes in technological processes, and the discovery of new, better kinds
of raw materials. The other way - thus far much less used - is improve-
ment in the organization of planning and production. Here are included,
for instance, such questions as the distribution of work among individual
machines of the enterprise or among mechanisms, the correct distribution
of orders among enterprises, the correct distribution of raw materials, fuel,
and other factors. (p. 367)

... I discovered that a whole range of problems of the most diverse
character relating to the scientific organization of production (questions
of the optimum distribution of the work of machines and mechanisms,
the minimization of scrap, the best utilization of raw materials and local
materials, fuel, transportation, and so on) lead to the formulation of a
single group of mathematical problems.

I want to emphasize again that the greater part of the problems of
which T shall speak, relating to the organization and planning of produc-
tion, are connected specifically with the Soviet system of economy and in
the majority of cases do not arise in the economy of a capitalist society.
There the choice of output is determined not by the plan but by the
interests and profits of individual capitalists. The owner of the enterprise
chooses for production those goods which at a given moment have the
highest price, can most ecasily be sold, and therefore give the largest profit.
The raw material used is not that of which there are huge supplies in the
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country, but that which the entrepreneur can buy most cheaply. The ques-
tion of the maximum utilization of equipment is not raised; in any case,
the majority of enterprises work at half capacity.

Next I want to indicate the significance of this problem for the coop-
eration between enterprises. In the example used above of producing two
parts (Section I), we found different relationships between the output of
products on different machines. It may happen that in one enterprise, A, it
is necessary to make such a number of the second part or the relationship
of the machines available is such that the automatic machine, on which it
is most advantageous to produce the second part, must be loaded partially
with the first part. On the other hand, in a second enterprise, B, it may
be necessary to load the turret lather partially with the second part, even
though this machine is most productive in turning out the first part. Then
it is clearly advantageous for these plants to cooperate in such a way that
some output of the first part is transferred from plant A to plant B, and
some output of the second part is transferred from plant B to plant A.
In a simple case these questions are decided in an elementary way, but
in a complex case the question of when it is advantageous for plants to
co-operate and how they should do so can be solved exactly on the basis
of our method.

This is an incredibly fascinating sentence in all respects, but Kantorovich
goes on:

The distribution of the plan of a given combine among different enter-
prises is the same sort of problem. It is possible to increase the output of
a product significantly if this distribution is made correctly; that is, if we
assign to each enterprise those items which are most suitable to its equip-
ment. This is of course generally known and recognized, but is usually
pronounced without any precise indications as to how to resolve the ques-
tion of what equipment is most suitable for the given item. As long as
there are adequate data, our methods will give a definite procedure for the
exact resolution of such questions. (p. 366, Kantorovich, 1939).

This is a clear statement and description of what we would call today an
industry model, centralized allocation model or network model. More-
over, the statement is so clear (and does not involve formulas) that makes
one wonder why we write the same sort of problems in a much more
intrigued and cryptic fashion. Kantorovich goes on and discusses: optimal
utilization of machinery, maximum utilization of a complex raw material,
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most rational utilization of fuel, optimum fullfilment of a construc-
tion plan with given construction materials, optimum distribution of
arable land and best plan of freight shipments. Only a researcher fixated
with finding the next generation of complicated models that will deliver
improbable estimates of individual firm efficiencies could deny the prac-
tical and empirical relevance of these problems for the modern economy,
half of which is run with centrally planned operations and the other half
is regulated to solve some sort of market failure.

Kantorovich’s work was a major breakthrough in productivity and effi-
ciency analysis. The solution methods for the associated linear programs
developed around the same time by Dantzing in the west resulted to
be more powerful. But from the perspective of organizing an economy,
sector, industry or company in the best possible way (which is at the
end the core of productivity analysis), Kantorovich’s contribution stands
as being the most significant contribution of the last 80 years. It lays
clearly the foundation for work related to optimal allocation of resources
in order to maximize system output. In fact, computational issues are
relegated by Kantorovich into an appendix. It is somehow puzzling that
Charnes and Cooper (1962) were so critical of Kantorovich’s work and
were focusing almost exclusively on the computational aspects rather than
looking into the ways that the model could be used for empirical analysis
and policy making. Johansen (1976) and Koopmans (1960) clearly recog-
nize the importance of Kantorovich’s work. The “critique” of Charnes
and Cooper (1962) is even more astonishing considering that some of
the models proposed by these authors later on were actually embedded as
special cases of Kantorovich’s model. Given the influence of the CCR
and BCC models in efficiency analysis, it would have made sense to
include Kantorovich work as one of the seminal papers that introduced
a more intriguing production structure. In fact, Koopmans (1960) words
on Kantorovich’s work are the best way of describing the importance of
this contribution:

The application of problems “A”, “B” and “C” envisaged by the author
include assignment of items or tasks to machines in metalworking, in the
plywood industry, and in earth moving; trimming problems of sheet metal,
lumber, paper, etc.; oil refinery operations; allocation of fuels to different
uses; allocation of land to crops, and of transportation equipment to freight
flows. One does not need to concur in the authors’ introductory remarks
comparing the operation of the Soviet and capitalist systems to see that
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the wide range of applications perceived by the author make his paper an
early classic in the science of management under any economic system. For
instance, the concluding discussion anticipating objections to the methods
of linear programming has a flavor independent of time and place.

There is little in either the Soviet or the Western literature in manage-
ment, planning, or economics available in 1939, that could have served as a
source for the ideas in this paper, in the concrete form in which they were
presented. From its own internal evidence, the paper stands as a highly
original contribution of the mathematical mind to problems which few at
that time would have perceived as mathematical in nature - on a par with
the earlier work of von Neumann on the proportional economic growth in
a competitive market economy, and the later work of Dantzing well know
to the readers of Management Science.

The Nobel Prize committee clearly listened to Koopmans® words when
assigning the 1975 economic prize to both of them for their major
contribution in the science of the optimal allocation of scarce resources.

Koopmans

Kantorovich’s examples always involve one particular industry or a partic-
ular group of machines. In his 1965 book, there is a more general
discussion on how one could potentially extend these ideas to the whole
economy as well. As we shall see in this subsection, from the point of
view of system efficiency, Koopmans’ most important contribution was
to actually provide a way of measuring efficiency for the whole economy,
by taking into explicit account the use and flows of intermediate mate-
rials across the different nodes of the network (the different sectors or
activities of the economy). In 1951, Koopmans collected the proceeding
of a conference in a book titled “Activity analysis of Production and
Allocation”. In the opening statement of the book, Koopmans states:

The contributions to this book are devoted, directly or indirectly, to
various aspects of a fundamental problem of normative economics: the
best allocation of limited means toward desired ends.

There are various ways of presenting Koopmans’ contribution. The way
we want to approach the presentation here is to have it in connection
with the model of Kantorovich. Although the paper of Kantorovich was
not known to Koopmans in 1951 (therefore Koopmans’ contribution
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is completely independent from Kantorovich’s contribution), the two
papers approach the same empirical problem using very similar methods.
Therefore, we see the two contributions as complementary rather than
competing with each other.

As noted in Charnes and Cooper (1962), Kantorovich is ambiguous
about the sign of the data. Quite in stark contrast, Koopmans is very
clear about the underlying conditions under which the “efficient produc-
tion set” is non-empty and this is a necessary condition for the model
presented by Kantorovich to have a basic feasible solution. Koopmans
presents all his results under the CRS assumption (although he mentions
that CRS is not necessary and results can be generalized to variable
returns to scale). If we make the coefficients ¢, free non-negative decision
variables in problem (4.3), then the intensity constraint }_ ,4,; = gp is
redundant and we can omit it (which is the equivalent to assume CRS).
Before we proceed and write the model explicitly, it is useful to provide
the classification of inputs and outputs proposed by Koopmans. Koop-
mans uses the same matrices of data for the inputs and the outputs,
but he introduces an additional set of matrices, which are the matrices
of intermediate materials. We will indicate intermediate products as zj,;
with / = 1,..., L. While Koopmans assumes that all input and output
quantities are positive, the L intermediate materials can be both positive
or negative. If z;,; is negative, then it represents the quantity of inter-
mediate / used as an input in process p with production method j. If
2Ipj 1s positive, then it represents the quantity of intermediate / produced
as an output in process p using method of production j. This is equiv-
alent to adopting a netput notation for the intermediates. In particular,
Koopmans is assuming that for each intermediate /, there is at least one
process that is using it as an input (z;,; < 0 for at least one p and one
J) and is produced as an output by at least one process (z;,; > 0 for at
least one p and one j). If this condition does not hold, then the inter-
mediate should be classified as either an input or an output (depending
on its sign). Intermediate materials are produced within the system to be
used within the system. Koopmans imposes explicitly that the overall net
production of every given intermediate must be non-negative (otherwise
production would be impossible because it would require some flow of
the intermediate from outside the system), which amounts to adding the



4 EFFICIENCY AND PRODUCTIVITY ANALYSIS ... 191

following constraint to model (4.3):

ZZ)‘PJZIPjEUI, vi=1,...,L 4.5)
P

In actual fact, Koopmans allows this constraints to be tightened by the
quantities (7;), by proposing that some of the intermediate materials may
be flowing into the system. In other words, these coefficients allow for
situations in which some intermediate materials must be available before
starting production, or some intermediate materials must be produced as
final outputs to be used in future production. The sign of the n; coef-
ficients is negative if the intermediate is an input that must be available
before starting production, and they are positive if the intermediate must
be produced above a certain quantity as a final output. These quanti-
ties play the same role here as the overall quantities x, in Kantorovich’s
model. Adding this constraint to problem (4.3) and omitting the inten-
sity variable constraint to allow for CRS, returns the Koopmans’ model
of production.

Koopmans introduces a more parsimonious way of representing the
system and the underlying data of the problem. The best way of
introducing such notation is by looking at the stacking of the three-
dimensional matrices of Kantorovich. If we stack all the input matrices
together and transpose them, we obtain:

X=[X,...,Xp] 4.6)

Although this makes the notation a bit more confusing, we will refer to
X, as one particular two-dimensional matrix of inputs for process p as in
the representation of Kantorovich. And we will refer to X as the stacked
two-dimensional matrix composed of the stacking of all of the P input
matrices. Notice that each row of matrix X represents now a particular
input; that is, the dimension of the matrix is N x (J + P). We can define
in the same way the output matrix

Y =1[Y1...,Yp] “4.7)
and the matrix of intermediates

7Z=1[72,,...,7Zp] (4.8)
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We can now stack these large matrices into the following one:

X
A=| z 4.9)
Y

In this matrix, each column represents the netput of a given produc-
tion process. Koopmans calls the columns of this matrix “basic activities”.
Notice that if the three-dimensional matrix of Kantorovich is sparse, then
Koopmans’ representation provides a more parsimonious way of repre-
senting the data, since one can eliminate all the columns that have zero
for all inputs and outputs (all columns filled with zeros only). In Koop-
mans, the technology matrix is dense, while in Kantorovich it could be
sparse. On the other hand, if one were to introduce VRS constraints on
the intensity variables for all processes, then Kantorovich’s representation
is more exhaustive and general, since the processes are accounted for in a
more explicit way. To do the same with the more succinct way of Koop-
mans, one need to introduce an indicator matrix with as many columns
as the number of intensity variables and as many rows as the number of
processes. This matrix will only contain indicator variables, i.e., zeros and
ones. Then, the intensity variable constraints can be represented as:

WA =1p (4.10)

where 1p is a column vector of ones of dimension P. If we call & a generic
(N + M + L) netput vector, then we can obtain the very parsimonious
representation of the production possibilities set proposed by Koopmans:

T=AA, A >0 “.11)

where A has all the X ,; coefficients stacked together. If we call the inten-
sity variables of process p, A = [Ap1,.... Ap J]T, then the stacked vector

of intensity variables for the system is:
Al
A= : 4.12)
Ap

Although this is a parsimonious representation, Koopmans’ suggestion
of introducing limitations on the primary factors of production is better
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written in formal terms by looking at the individual input, output
and intermediate matrices. It should also be stressed that Koopmans’
interest is in determining efficient sets and he does not really propose
(contrary to Kantorovich) an objective function to determine maximal or
optimal production. If we were to choose the same objective function of
Kantorovich, then we would write the optimization model as (where we
omit non-negativity constraints on the decision variables A > 0):

max 0

st g <YA (4.13)
n <17
X=X\

As said earlier, this program is expressed under the assumption of CRS
(as in Koopmans). One can introduce VRS by adding the constraint
WX = 1p, or NIRS by adding the constraint WA < 1p. Alternatively,
one can take the notion of replicability of Kantorovich and write this
constraint as WA = q where q are pre-specified levels of replication. The
new explicit constraint on the intermediates states that given the acti-
vation levels represented by the intensity variables A,;, the overall net
production of intermediate material / of the system must be non-negative.
This means that the system is producing enough intermediate material to
satisfy the use of it in all production processes that require it as an input. It
should be noted that under CRS the notation is simplified further because
there are no restrictions on the 4,;, apart from non-negativity constraints.

What can we say about Koopmans’ model in connection with system
efficiency? The intelligent reader will convince herself that Koopmans’
technology can embed a whole lot of network structures (actually the
large majority) that have been produced in the last few years. We shall
discuss this briefly in the next few sections, by giving some examples.
We should also point out that Koopmans has an explicit discussion on
the prices associated with the efficient subset of the production set. This
set of prices (which is nothing more that the separating hyperplane at
the optimal solution of problem 4.13) is discussed by Koopmans in
connection with planning problems that involve decentralized decisions.
In this sense, the price vector is used by Koopmans to incentivize indi-
vidual production units to reach the optimal plan set out by the central
planner. Kantorovich (1965) in his book takes up this discussion even
in a more explicit way, by suggesting that this set of supporting prices
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would permit the fulfillment of the 5 year plan, by making the best use of
the limited economic resources at hand. Of course, neither Koopmans or
Kantorovich introduced the dual problem that would set the optimization
problem directly in terms of supporting shadow prices. But both of them
had clearly in mind that such a vector of supporting prices could play a
key role in practice. Koopmans discussed this explicitly and Kantorovich
implicitly by proposing his solution method based on the “resolving
multipliers”. The issue of decentralization of the plan by providing indi-
vidual production units with a set level of prices at which they could trade
their inputs and outputs has not been used as a tool for implementation
of the optimal solution.

Allin all, Koopmans’ contribution, especially if read in connection with
Kantorovich’s paper, represents another big leap forward in our ability
to represent production systems. The introduction of the CRS assump-
tion and the constraints associated with the use and flows of intermediate
materials open up wide possibilities of applications and actually nest many
of the current proposals in Network DEA analysis. Although Koopmans’
paper is well known within the productivity community (contrary to
Kantorovich’s paper), his general representation of the technology set
that basically includes network models has been widely neglected, with
the scientific community posing excessive attention on the definition that
Koopmans gives of an efficient set. This is a misplaced interpretation and
minimizes the contribution of Koopmans to productivity and efficiency
analysis, since the notion of efficiency of Koopmans was already proposed
by Pareto. The main point of Koopmans’ analysis regards (in line with
Kantorovich) the efficient allocation of a limited amount of resources to
produce the maximal possible output. His representation of the tech-
nology set associated with this problem is so general and simple that
puts to shame many modern representations (including the one of the
authors, Peyrache and Silva, 2019). Everyone should read Koopmans’
book if interested in efficiency and productivity analysis in order to expe-
rience that feeling of satisfaction and fulfillment that only the reading (and
studying) of the great classical thinkers of our time can provide—a feeling
(to say this using Koopmans’ words) that “has a flavour independent of
time and place”.
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Johansen

Johansen (1972) had a chief interest in the micro-foundation of the
aggregate production function. Johansen’s setting of the problem was an
aggregation from the firm production function to the industry produc-
tion function. If we call f(x) the firm production function and there are
J firms in the industry, then Johansen defines the industry production
function as:

F> xj =n}CaXZf(Xj) (4.14)
j T

This means that if the overall quantity of input of the industry is x =
> Xj, then the industry overall maximal production is obtained by allo-
cating the industry input x to individual firms optimally by choosing
the appropriate allocations x;. Johansen notices that if the firm level
production function is approximated by a piece-wise linear envelope of
the observed data points, the previous maximization problem becomes a
linear program. In fact, the linear program associated with such a specifi-
cation is the same as in Kantorovich’s specification. This is not surprising
since the objective of Johansen’s problem is to choose the allocation
of resources (inputs) to the various firms in a way that maximizes the
overall output produced by the industry. Johansen calls this approach
the nonparametric approach to the micro-foundation of the aggregate
production function. He goes on discussing notions of short-run vs long-
run choices, and most importantly, he notices that if one is willing to
make additional assumptions on how the inputs are distributed across
firms one can make more explicit the parametric form of the aggregate
production function. For example, he notices that the contribution of
Houthakker (1955) is an example of such an approach: if one assumes
that the inputs are distributed as a generalized Pareto, then the aggre-
gate production function is Cobb-Douglas. Interestingly, Houthakker was
making an explicit connection to the activity analysis model of Koop-
mans. This fact has been recently used by Jones (2005) in macroeconomic
modeling.

Johansen further discusses issues associated with technical change and
how to introduce it into the model. Johansen’s book is a source of inspi-
ration for work in productivity analysis that still has to happen. All in all,
Johansen is providing an explicit link to economics and he is suggesting a
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way of proceeding that makes use of the activity analysis model by looking
at the distribution of inputs across firms. Interestingly, this did not give
rise to a proper research program exploring how to use statistical methods
to estimate density functions on data in order to obtain the industry
production function. This work is still far from being accomplished, and in
this sense, Johansen’s (1972) book is an important source of inspiration.
This could help the scientific community in efficiency and productivity
analysis to make a more explicit connection and build a bridge and a
methodology that can be used in macroeconomic modeling. Among the
three authors that we reviewed so far, Johansen is definitely extremely
original and also the most neglected of the three.

Summing Up: The KKJ (Kantovovich-Koopmans-Johansen) Model

We shall refer to these early contributions as the Kantorovich-Koopmans-
Johansen (KKJ) model and consider the specification of program (4.13)
with the associated discussion on the constraints on the intensity vari-
ables to characterize returns to scale as the benchmark model. This model
allows for various forms of returns to scale, and at the same time, it makes
use of intermediate materials, therefore making it suitable to represent
networks system, where the nodes of the system are connected by the
flow of intermediate materials.

Before we close this long section on the KKJ model, it is useful to show
its application to some of the current models proposed in the literature,
just to give a flavor of the flexibility and generality of the KKJ model.
Let us assume for simplicity that there are only two processes, 3 firms (or
methods of production), two inputs and two outputs. If the two processes
are independent, with input 1 producing output 1 in process 1, and input
2 producing output 2 in process 2, then the associated input and output
matrices would be:

Xz[xmxmxus 0 0 0}
0 0 0 xp21 x222 X223

Y=[)’111y112y113 0 0 0:|
0 0 0 y»oryn yn3

The first 3 columns of these matrices represent process 1, and the second
3 columns process 2. Since input 1 enters with zeros in process 2 and
so does output 1, this means that process 1 is producing output 1 using
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input 1; that is, input 1 is specific to the production of output 1. This
is true for process 2 as well. This is an example of two single produc-
tion lines working in parallel. If we wanted these two production lines
to work sequentially in a series two-stage network, then the matrix of
intermediates would be:

Z={zi11 7112 2113 2123 2123 2123

with the caveat that the first 3 entries of this matrix would be positive
(the intermediate material is an output of process 1) and the second 3
entries would be negative (the intermediate material is an input of process
2). This provides the KKJ representation of the widely “celebrated” two-
stage Network DEA model. One can easily see that by building these
basic matrices in an appropriate manner, it is possible to cover such a wide
variety of network structure that we are not even sure any of the current
proposals falls out of this representation. For example, the joint inputs
model of Cherchye et al. (2013) requires that if an input is provided in a
given quantity to one process, then it is available in the same quantity to
all other processes (it is a public good). Suppose a third input is available,
then we would change the input matrix to:

x111 x12x113 0 0 0
X — 0 0 0 xp21x222 X223
x31x32x33 0 0 0
0 0 0 Xx311x312 X313

and as the reader can verify the quantity of input available to process 2 is
the same as process 1. Even if rows 3 and 4 represent the same physical
input, we separated them so that when summing up the total quantity of
input available to the system, these quantities are not double counted. By
splitting and creating additional rows and columns and creating fictitious
inputs and outputs, one can accommodate so many structures that the
only limitation is the creativity and imagination of the applied researcher.
This would, for example, allow us to keep the level of the interme-
diate flows at the observed level, rather than making them change in
the optimal solution, de facto nesting so-called fixed link Network DEA
models. This can be accomplished by adding a fictitious number of rows
to the matrices in order to preserve the current allocation.

Koopmans published his work in 1951, Kantorivich in English in
1960 and Johansen his book in 1972. The Nobel Prize was assigned
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to Kantorovich and Koopmans in 1975. Therefore, if a martian were
to come to planet earth in 1976, she would have been provided with
a strong mathematical model to deal with problems associated with the
optimal allocation of resources in production systems. It is very likely that
the martian would have started to look at issues associated with the use
of such a model and the associated collection of data, and she would have
delved into a list of issues that we are going to describe at the end of
this chapter. But this is not what we have done on planet earth. With the
contributions of Charnes et al. (1978), Banker et al. (1984), Aigner et al.
(1977), Fare and Lovell (1978) and the associated work on duality theory
of Ronald Shephard, the scene was set for studying production using the
black box technology approach. To be fair, we should also point to the
fact that at that time the available data was more limited and this may have
contribute to shift the attention toward firm level analysis. Certainly, the
boom in NDEA publications in the last 10 years has partly to do with the
availability of more refined datasets that contain information at a lower
level of aggregation and actually permit to go beyond black box analysis.
Even so, it is puzzling that researchers focused on firm level efficiency,
given that a firm level dataset allows at least the possibility of carrying out
the industry model analysis so well presented and discussed in Johansen.
At the very least, the Johansen model should have had become a basic
analytical tool in the efficiency and productivity community.

In any event, starting in the late ’70s for about 30 years, an entire
generation of researchers in efficiency and productivity analysis has
worked on the basic assumption that input data and output data are
available at the firm level and the main focus of the analysis should be
the one of measuring the efficiency and productivity of individual firms.
This paradigm laid the foundation for all subsequent work on stochastic
frontier analysis, DEA, index numbers, economic theory of production
and aggregation and duality. Very little if anything has been done during
these 30 years in terms of looking “inside” the black box, which was what
the KKJ model basically does. By saying this, we don’t want to minimize
the impact of what has been done in terms of research in efficiency and
productivity analysis. We just want to point out to the fact that in one
way or another the memory of the KKJ model has been lost, and a lot
of the effort that went into building Network DEA models could have
been saved if the KKJ model were to be credited the correct amount of
attention and importance in this field of study. In some sense, we lost a
lot of the creativity and understanding of how to optimally organize and



4 EFFICIENCY AND PRODUCTIVITY ANALYSIS ... 199

measure the efficiency of a system of production that these early authors
so forcefully and elegantly described. In exchange for it, we greatly simpli-
fied the object of our study. After simplifying it, the research problem has
been reduced to the measurement of the efficiency of a single individual
firm. Starting at the end of the ’70s, the scene was set to research and
deliver an impressive methodological machinery that keeps growing at
the present day and allows the modern researcher to have very flexible
strategies to estimate the black box production technology.

SHEPHARD, FARRELL AND THE “BLACK
Box” TECHNOLOGY (1977-1999)

In two independent contributions, Farrell (1957) and Shephard (1970)
laid the foundation for what would become the “black box” technology
and the basis of the successive 30 years of research in efficiency and
productivity analysis. This is clearly the case if one looks at the citation
count of Farrell: with 23,879 citations, this is definitely the founding
paper of modern productivity analysis. Shephard’s 1970 book received
4,887, but one should keep in mind that this is a theoretical contribution,
and for being a theoretical contribution, this represents a high number
of citations. From the perspective of our discussion, the main outcome
of these two contributions is to set the scene for a simplified object of
inquiry, shifting the attention from the optimal allocation of resources and
the associated problems of measurement, toward the optimal use of those
resources at the firm level. The firm is considered the basic unit of the
analysis, and problems associated with reallocation of inputs and produc-
tion across production units are rarely taken into consideration. These two
contributions formed the basis for successive work on production fron-
tier estimation, inference and theoretical development. The reference to
the firm as the basic unit of analysis, without reference to the component
production processes or the allocation problems across different firms, has
given rise to the definition of such an approach as a “black box” approach.
The firm is a “black box” in the sense that we only observe the inputs that
are entering production and the outputs that are exiting as products, but
we do not observe what happens inside the firm. This is in sharp contrast
to both the KKJ approach and the Network DEA approach.

The best way of describing this is to look once again at citation count
as a rough measure of the popularity of the main contributions in the
field. Aigner et al. (1977) and Meeusen and van Den Broeck (1977)
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received respectively 13,229 and 7,811 citations, laying the foundation
for the research program on stochastic frontier production function esti-
mation and inference. Subsequent work (continuing today) made the
model more and more flexible considering issues associated with func-
tional form specification, panel data, additional error components and all
the methodological machinery that is still under development, providing a
large body of models and methods for estimation and inference. Charnes
et al. (1978) and Banker et al. (1984) (after renaming the linear activity
analysis model DEA) received respectively 37,581 and 21,240 citations,
setting the agenda for research in DEA and estimation of production fron-
tiers and technical efficiency at the firm level. This stream of literature saw
the development of a plethora of efficiency measures (radial, slack based,
directional, etc.) and alternative ways of specifying returns to scale, and
relaxation of the convexity assumption. Fare and Lovell (1978), with a
citation count of 1,459 (high for a theoretical contribution), made the
connection between economic theory, duality and efficiency and produc-
tivity analysis; subsequent work will see the Shephard duality approach
extended to various alternative notions of technical, cost, revenue and
profit efficiency.

All of those contributions have a commonality in the fact that they
are based on the black box technology and they lack any interest in the
problems of allocation of resources that was the core of the early devel-
opment of the KKJ model. Therefore, the subsequent work in efficiency
analysis, at least until the first decade of this century, basically “forgot”
the problem of optimal allocation of resources and took the route of
simplifying the policy problem to the analysis of the firm and its effi-
ciency in various forms. By no means, we are implying that this work
was not useful: quite on the contrary, this work equipped the modern
researcher with a tremendous set of tools to analyze firm level dataset
and the various measures of efficiency associated with the black box tech-
nology idea. The side effect of this massive amount of work that went
into estimation, inference and theoretical development of the black box
technology is that the latest generation of researchers in productivity anal-
ysis has no memory of the early developments associated with the KKJ
model. Starting with the contribution of Fare and Grosskopf (2000), the
field started re-discovering the problem of optimal resource allocation,
without the knowledge of the work of the KKJ model.
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REDISCOVERY OF KKJ (2000—2020)

The literature on system efficiency has grown disperse, and in fact, the
name “production system” is rarely used. Instead, there are the following
strands of the efficiency measurement literature that can be considered
within this production system perspective:

e Netowork DEA models;
e Multi-Level or Hierarchical models;
e Input-output allocability models.

It should be noted that in the literature we found a variety of names
trying to describe the same sort of problems—for example, “industry
models” have also been called “centralized allocation models”. The ratio-
nale we follow for our classification is based mainly on the separation
between the decision problem of allocating resources to the different
nodes of the system, from the efficient use of these resources in produc-
tion. In Network DEA models, the focus is typically oriented toward the
firm and its internal structure. Clearly, there are two layers of decision
making here, and in this sense, these models could also be discussed under
the multi-level models. We keep Network DEA models separated from the
rest because of the large strand of the literature dealing with the internal
structure of the firm. In multi-level models, there are various layers of
decision making delivering the observed allocation of resources. In fact,
in such a system, decision making happens at all the various levels: at the
level of the production process, at the level of the firm and at the level of
the industry or the economy as a whole (we include industry models in
this class). When studying production system models, it is important to
categorize the types of inputs and outputs that are used and produced.
The literature has, most often than not, ignored this classification, except
for certain cases where explicitly some inputs are considered allocatable
and the optimal allocation is to be determined; or some cases where the
specificity of some inputs in the production of only one or a subset of
outputs is considered. As a result, we also consider this strand of litera-
ture separated from the rest because it explicitly deals with the definition
itself of inputs and outputs. We call this stream “Input-output allocability
models”. Note that this division or classification is arbitrary, as indeed
are all classifications that can be found in the literature. This may be
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confusing, and in a sense, this could be one of the reasons why these
different streams of literature are developing independently.

The KKJ model looks at optimality conditions for the system as
a whole: the associated efficiency measure is computed for the whole
system, being it an industry, a firm or the whole economy. One of the
merits of the last 20 years of research on this topic has stressed the impor-
tance of assigning the overall inefficiency of the system to the different
components. We shall not discuss these contributions in too much detail
because that would be out of the scope of this chapter and would take
excessive space. One could even make the argument that assigning effi-
ciency to the different components of the system is not really useful,
since the KKJ model is already providing targets for the different compo-
nents that would make the whole system efficient. We rather focus on the
connection between the KKJ model and this recent literature in terms of
the structure of the underlying system.

In what follows, we will explain what each of the aforementioned
strands of the literature aims to do in terms of efficiency measurement
and we will explain how these various strands are in fact interconnected
(and how they relate to the KKJ model). As a matter of fact, the relation-
ship between the various strands of the literature is hardly acknowledged
in the literature.

Network Models

Many network models (in particular those that do not allow for interme-
diate materials) are in all aspects similar to industry models, but authors
have not recognized this link. This has happened mainly because the two
types of analysis have somehow different objectives. Whereas in the multi-
level model literature, it has been recognized that the aggregate is more
than the sum of its parts because of allocation inefficiencies, in network
models, most often than not, allocation issues are not even mentioned
and the problem is mainly mathematical: that of providing an efficiency
of the parts and of the whole and aggregating the parts to form the whole
or disaggregating the whole into its parts. In this mathematical exercise,
authors have missed the most important issue: that the whole is different
from the sum of its parts and possesses characteristics that parts do not.
In particular, as we saw with the KKJ model, allocation inefficiencies are
somehow the core of this type of analysis.
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As mentioned in the introduction, the Network DEA literature is
growing at a very fast pace. Kao (2014) provides a review of Network
DEA models and includes them into 7 types (basic two-stage structure,
general two-stage structure, series structure, parallel structure, mixed
structure, hierarchical structure and dynamic structure). It is interesting
to verify that more than 170 studies in his Table 1 (pages 11 and 12)
are two-stage models (representing more than 50% of the total number
of studies). Another important remark is that allocation issues are not
addressed in this literature. In the same year, Castelli and Pesenti (2014)
also reviewed the Network DEA literature and classified papers into 3
categories: Network DEA; shared flow models; and multi-level models.
Interestingly, Castelli and Pesenti (2014) claim that in Network DEA the
subunits do not have the ability to allocate resources, and therefore, they
assume that when this assumption is dropped models fall into the shared
flow models (which are essentially network models where allocation of
resources is allowed). Castelli and Pesenti (2014) basically recognized the
fact that most network models are ignoring the resource allocation issue
and solve the problem by assuming that the word “network” is unrelated
with resource allocation issues. In addition, Castelli and Pesenti (2014)
interpret dynamic models as network models, and therefore, no reallo-
cation of resources is allowed. On the contrary, Kao (2014) considers
dynamic models as a separate type of network model. Dynamic models
have, indeed, been treated as a separate type of network models as the
review by Fallah-Fini et al. (2014) testifies. In this review, the authors
distinguish between alternative dynamic models by the way intertemporal
dependencies are treated (as production delays, as inventories, as capital
related variables, as adjustment costs and as incremental improvement and
learning processes). Agrell et al. (2013) also reviewed series or supply
chain network models in depth, pointing out the prevalence of two-stage
network models and the fact that “most models lack a clear economic or
technical motivation for the intermediate measures” (p. 581).

To the best of our knowledge, the term “Network DEA” was intro-
duced in the literature with the work of Fare and Grosskopf (2000). This
work is a follow up of Fare (1986), where dynamic models have been
modeled as a network structure for the first time. In these models, a firm
observed in different periods of time is analyzed as a whole entity since it
is assumed that certain factors pass from period to period and work as a
link between time periods. This means that the same firm in different time
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periods should be assessed as a whole entity, or as a system that is tempo-
rally interconnected. Clearly, this bears connections with supply chain or
series models where some factors flow from one process to the next as
intermediate factors. Therefore, dynamic models can be seen as series
models of network structures. In what follows, we start by presenting
dynamic network models. This choice is dictated by the fact that dynamic
network models can be viewed as the more general class, of which the
series and parallel network structures are special cases. This choice will
also make the connection to the KKJ model more clear.

Dynamic Network DEA Models

Fare (1986) proposed models with separate reference technologies for
each time period. The author classifies inputs into two categories: (i)
inputs that are observed and allocated to each time period and (ii) inputs
whose total amount (across all time periods) is given, but not its time
allocation. The second class of inputs is also considered in some multi-
level models, where the allocation of some inputs is not observed. Fare
and Grosskopt (1996) take up on this work, and introduce the idea of
intermediate factors linking time periods. This idea is at the basis of most
series network models (dynamic or not).

One of the first models to be employed for dynamic network models
was that of Fare and Grosskopf (2000) (shown below in program 4.15).
In this paper the authors propose the division of total output into a
part that is final and a part that is kept in the system to be used in
subsequent time periods. In this specification, we use a radial output
expansion factor. Note that Fare and Grosskopf (2000) only propose a
technology for dynamic models and do not discuss an efficiency measure.
The use of the output radial expansion with this technology set has
been proposed by Kao (2013), and we decided to follow this strategy
to make the discussion more clear. If we were to evaluate the efficiency of
the input-output combination (Xupo, Ympo, Zipo) (Where o is indexing the
DMU under evaluation), the program would be:

max 6

Jopj 0

st Z‘/ ApjXnpj < Xnpo, VN, p
Zj )‘pjympj > 9)’)11[70 , Ym, p
2 ApiZip-1)j < 2(p—1yo- VL. p
2_j MpiZipj Z ZUpo» VL. p

(4.15)
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In this program, the process index p can be interpreted as time and the
intermediate factor (z;) enters the network at the beginning node 0 and
exits at node P. The index p can stand for time or for process, since
dynamic models are identical to series models. Therefore, the flow of the
intermediate in this network is sequential, flowing from p =1 to p = 2,
p = 2 to p = 3 and so on, until reaching node P where it exits as an
output. The last two constraints on the intermediates allow for production
feasibility by making sure that the activation level at node p is not using
more intermediate input (z;(p—1)0) than is available and is producing at
least the observed amount of intermediate output (z;50). The reader can
convince herself that by appropriately expanding Koopmans’ matrices to
make all inputs and outputs process specific, program (4.15) becomes a
special case of the KKJ model.

In program (4.15), output is maximized by keeping the level of
the inputs at the observed level without allowing for reallocation of
resources across the different nodes of the system. In Bogetoft et al.
(2009) or Fire et al. (2018) the authors call model (4.15) the static
model, where intermediates are treated as normal inputs and outputs.
When they are considered as decision variables the dynamic nature of
the system emerges, given that optimal allocation is determined. Kao
(2013) proposes an alternative model in which the system is optimized as
a whole, given constraints on the overall quantities of inputs. This means
that reallocation of resources across the different nodes is possible and the
program becomes:

max 6

Apjs0

st Zp Zj ApjXnpj < prnpo, Vn 4.16)
2 op 2 rpiYmpj Z 02, Ympo . Ym
>, 2 A (@ps = zp-1)j) = 21Po — 21005 VI

We should notice here that Kao (2013) is actually calling 6 the “system
efficiency”. This means that the author is actually recognizing that these
are “system efficiency” models. This specification can clearly be embedded
into the KKJ model by noting that the intermediate material is really
nothing more than a resource stock that can be depleted in time. Note
that in this specification there is no constraint stating that the interme-
diate input that enters node p (3. ; Apjz(p—1);) must be lower than the
output exiting node p—1 (3_; A(p—1)jZ(p—1);)- This is fine, as long as the
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overall underlying stock variable is big enough to compensate any short-
ages in a given time period (see Kao’s paper for an empirical example).
Nevertheless, the most important characteristic of this model is that there
is a measure of efficiency from the system perspective. In all respects,
this model is a special case of the KKJ model, where the intermediate
materials are interpreted as a depleting stock. In fact, as we shall see,
if we omit the constraint on the depleting resources, this program is
equivalent to the industry efficiency model (see model 4.19 in the next
section). Such a model is also proposed in Kao (2012) for parallel produc-
tion systems (which resemble in all respects industry models). Note that
models (4.15) and (4.16) evaluate efficiency relative to different technolo-
gies. While in (4.15), technology is process/time dependent—i.e., there
is a technology considered individually for each process or time period, in
(4.16) a process meta-technology is employed, where the objective func-
tion does not yield process/time-specific efficiencies, but the efficiency of
the system as a whole, like in the KKJ model. In order to recover process
efficiency scores from the system efficiency score, Kao (2013) proposes to
use the multiplier form and the associated optimal multipliers for deriving
process/time period-specific efficiencies. This results in some problems
of the approach, one of which related to the fact that multipliers are
not unique and another being the inconsistency between targets obtained
from the envelopment model and the efficiency scores obtained from the
multiplier model.

Series Network Models

Series models are a special case of dynamic models where different
processes within the same firm are connected through intermediate factors
and inputs and outputs consumed at different stages may be different.
For some reason, the literature has given particular emphasis to two-stage
series models where the main focus has been the analysis of the aggre-
gation of process efficiency scores. The general model presented in Kao
(2014) for handling multi-stage series models is similar to model (4.16)
for dynamic models. In the Kao (2014) model (4.15) is also proposed as
an alternative method for solving series network models where “the tech-
nologies of all processes are allowed to be different” (p. 2). Note that the
differences between these two models do not relate only to different tech-
nologies, but also different treatment of intermediates. Tone and Tsutsui
(2009) noted that one can have two assumptions on the intermediate
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variables. The fixed link assumption is stating constraints on the inter-
mediates as in program (4.15) by constraining these variables to their
observed level. In the free link approach, they assume that the interme-
diate variables can be freely chosen (given some feasibility constraints as
in the KKJ model). The model proposed by Tone and Tsutsui (2009)
is similar to model (4.15), except that they use a slack-based efficiency
measure and use equality variables for the intermediates, where under
the free link intermediate factor targets from the succeeding stage are
set equal to targets for the preceding stage, and under the fixed link
the targets for intermediates are set equal to observed values. Fukuyama
and Mirdehghan (2012) analyzed this model and concluded that the
approach of Tone and Tsutsui (2009) did not account for inefficiencies
from intermediate factors.

Kao and Hwang (2010) were among the first to propose two-stage
network models. Under this special case of series network, the structures
of models in the literature are very similar to those of models (4.15) and
(4.16). The difference is that in this case where inputs and outputs are
different across stages the use of the meta-technology is not possible and
most models resemble model (4.15), with differences mainly in the treat-
ment of intermediates. For example, Lim and Zhu (2016) or Chen et al.
(2013) propose two-stage models where intermediates are decision vari-
ables, similarly to what is proposed in Nemoto and Goto (2003) (and
similar to the free link approach).

The literature on the two-stage models is mainly concerned with
decomposing the overall efficiency of the firm into stage 1 and stage 2
efficiencies. Kao (2013) provides some decomposition between process
efficiencies and firm efficiency for the case of series systems. Various types
of decompositions exist in the literature with the additive and multiplica-
tive ones being the prevalent. Despotis et al. (2016) and Sotiros et al.
(2019) point out existing problems and inconsistencies with the orig-
inal decomposition such as the fact that the maximum firm efficiency
score can be obtained from process efficiency scores that are not on
the Pareto-frontier, and that could therefore be improved. They propose
alternative approaches to solve the problem based on multi-objective
linear programming. Li et al. (2018) also analyze two-stage models and
provide alternative models for defining which of the processes is the leader
or the follower.
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Parallel Network Models

Parallel network models can be seen as a set of processes within a
DMU that may share some resources. The main feature that distin-
guishes parallel networks is that there is no flow of intermediate materials
between the processes. As a result, parallel networks can be represented
using model (4.16), where the constraints regarding intermediates are
deleted. Kao (2012) proposed this definition of parallel network models
and studied them using the following multiplier form:

IE}}?Z; Zm Un Zp Xnpo

st Zm UmYmpj — Zn UnXppj = 0, Vp,J 4.17)
Zn Um Zp Ympo = 1

This is the dual of program (4.16), with the caveat that interme-
diate constraints have been omitted since we are dealing with a parallel
network. The only difference with the program presented in Kao (2012)
is that we are using output orientation instead of input orientation: this
choice simplifies the discussion and makes the connection to the previous
sections more transparent. In program (4.17), u,, is the weight assigned
to output m and v, is the input weight assigned to input z—weights are
considered the same across subunits (i.e., the implicit value attributed to
each input and output should be the same in each sub-unit). Note that the
original model of Kao (2012) has more constraints, but some are redun-
dant. As a result, we simplified it by excluding redundant constraints and
ignoring slacks. This results in model (4.17).

According to Kao (2012), model (4.17) results in efficiency scores for
cach DMU, ( E}). The efficiency of sub-unit p in DMU j (e,;) is deter-
mined using the optimal weights of model (4.17) (indexed with a * that
means they are the optimal values from program [4.17]):

* .
e = L Ummpj (4.18)

* .
n UnXnpj

The computation of subunit efficiencies in this way allows the DMU
efficiency to be decomposed into the efficiency of the subunits, using
appropriate weights. Being the dual of a model that is nested in the KKJ
model implies that Kao (2012) is basically proposing to use the shadow
prices associated with the KKJ model to assess the efficiency of the indi-
vidual production units. This is in line with the intuitions provided by
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Kantorovich in his book and the use of shadow pricing as a decentraliza-
tion mechanism to reach efficiency in Koopmans. If one were to allow
production units to trade at the Kao (2012) prices, this would implement
the central plan in a decentralized manner (as suggested by Kantorovich
and Koopmans).

The use of a meta-technology in the parallel network model has some
implicit assumptions, not always explicitly discussed. In particular the
assumption that all inputs are perfectly allocatable. Under CRS, this
assumption implies that the meta-frontier will be constituted by the most
productive process, which implies at the optimal solution that ineffi-
cient processes are advised to closure (see also Pachkova, 2009). This
provides inconsistencies between the multiplier and envelopment formu-
lations since in the multiplier model all processes will have an efficiency
score, where in the envelopment model targets for some processes will
be zero. Most of these problems derive from misconceptions regarding
what model (4.17) is supposed to measure. It is a firm model, assessing
the average unit and assuming that complete reallocation of resources is
possible (e.g., closure of some processes to replace them by the most effi-
cient ones). In the disaggregation of the system efficiency proposed in
(4.18) the reallocation of resources within firms is disregarded and the
whole is considered the sum of the parts. In Peyrache and Silva (2019),
these issues are discussed and the authors maintain that firm efficiencies
are not simply the sum (or product) of processes efficiencies but include
a reallocation component that is mostly disregarded in the literature.

Note that an alternative to solving parallel models would be to
use model (4.15) without the intermediate constraints. This solution
is not without problems too. In fact, a single expansion factor is used
across processes in this model, implying that the solution equals the
maximum of process efficiencies as assessed independently (which may
be an inadequate aggregate measure for the firm).

As we will see in the next sections, the application of model (4.15) to
parallel network models is closely linked with the literature on output-
specific inputs and the application of model (4.16) is closely linked with
the literature on industry models.

Multi-Level or Hieravchical Models

The term multi-level model has been used by Castelli et al. (2010) and
Castelli and Pesenti (2014) to mean the assessment of production units
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at different levels of decision making. Another term has been used by
Cook et al. (1998) and Kao (2014) to mean the same thing: hierarchical
models. In this sort of models, firms are grouped into hierarchies, where
for example different factories belong to the same plant, and different
plants belong to the same company, and different companies belong to
the same industry. In this type of models, the problem is that of aggre-
gating the efficiency of factories to obtain the efficiency of plants and
then aggregate the efficiency of plants to obtain the efficiency of compa-
nies, given that there may be inputs and outputs that are level specific. So
these models include the industry models or centralized allocation model,
where the problem is exactly the same: to aggregate firm efficiency to get
the industry global or structural efficiency.

Multi-level structured data (data that are observed at a system level
and cannot be disaggregated in lower levels) may arise in many settings.
For example, in education grades are available at the student level, but
the number of teachers is available at the school level. Multi-level data is
in fact related to group frontiers and meta-frontiers (see, e.g., O’Donnell
et al., 2008) where individual firms are usually grouped according to a
higher-level characteristic (students may be grouped in private schools
and public schools, firms may be grouped according to location or district,
etc.). In this type of models, higher-level variables enter the analysis in the
constitution of the homogeneous groups, but not as inputs or outputs of
the higher-level production process.

In Cook et al. (1998), the authors consider different levels for the
variables and solve multiplier models with different multiplier factors asso-
ciated with each level. When solving the higher-level model, they include
constraints for that level and also for the other levels, such that the optimal
solution of multipliers for the higher level can also be applicable at lower
levels. They assume that the higher-level variables are not allocatable.
Cook and Green (2005), or Cook and Green (2004), assumed that these
higher-level variables are allocatable, and the model resembles the one
presented in Beasley (1995) (which we will refer to later on under [iii]).
Castelli et al. (2004) also proposed models for hierarchical structures,
but rather than being multi-level models, these are models with a series
structure within a parallel structure.
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Industry Models

The literature on industry models tries to aggregate the efficiency of
each constituent firm to form the efficiency of the industry (or struc-
tural efficiency). It started as early as the work of Farrell (1957) and has
been discussed also by Forsund and Hjalmarsson (1979) who advocate
the use of the average firm for measuring structural efficiency. Ylvinger
(2000) advocates that the average unit assessment is not equivalent to
the efficiency of the industry, and Li and Cheng (2007), showed that
the weighted average of firm efficiencies and the efficiency of the average
unit are equivalent concepts under an identical convex individual tech-
nology set, and that differences between the two are related to allocative
efficiency. Karagiannis (2015) explored in more depth the relationship
between the efficiency of the average unit and structural efficiency. The
authors conclude that the two concepts of efficiency will coincide only if
size is uncorrelated with efficiency and if there are no reallocation ineffi-
ciencies. The efficiency of the average DMU has been explored by several
authors under the denomination of “Industry models” (e.g., Lozano &
Villa 2004; Peyrache & Zago (2016; Peyrache (2013, 2015), where allo-
cation issues between firms in the industry are usually at the center of
the discussion. Kuosmanen et al. (2006) also proposed similar models
for analyzing the industry cost efficiency and named them top-down
approaches. Note that industry models are also related to input-output
tables which can be seen as industry models where the industry is an
economy composed of various sectors of activity (see Prieto & Zofio,
2007).

The centralized resource allocation model discussed by Lozano and
Villa (2004) somehow epitomizes the core of both the industry models
and the multi-level models. We therefore discuss it a little more in depth.
The model is presented in Lozano and Villa (2004) in input orienta-
tion under VRS. If we were, for sake of comparison, switch to output
orientation, then the model would be:

max 6

Apj.0

St 0, 2 Apjdnj S D0 Xnj s Vn (4.19)
Z[’ Zj ApjYmj = 0 Zj Ymj, Ym

where the P nodes of the system are the firms (which are also used in the
definition of the technology). Model (4.19) is equivalent to Kantorovich’s
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problem C, reported in equation (4.3), by noting that we impose the
restriction X,p; = Xuj, Ynpj = Ynj on the data matrices (i.e., all processes
uses the same technology) and by setting gm = 3, Ymj> Xn = X_; Xnj
and g, = 1. In other words, the three-dimensional Kantorovich matrix
of data is simplified by assuming x,,; = x,; and yup; = ymj, With
P = J. This specification is also equivalent to a model where the effi-
ciency of a virtual DMU with average inputs and outputs is assessed. In
fact by dividing all constraints (left and right hand sides) by the number
of firms J, one would obtain the average firm interpretation. The assess-
ment of this average unit was first proposed by Forsund and Hjalmarsson
(1979) for measuring the structural efficiency of an industry (see also
Ylvinger, 2000). The solution of the model under this specification can
yield results that are prima facie contradictory, since it is possible for an
industry to be composed of only technically efficiency units (i.e., when
assessed individually they all lie on the frontier) and, at the same time,
the industry (composed by these technically efficient units) may be inef-
ficiently organized (see, e.g., Ylvinger, 2000). Indeed, what happens is
that when the average unit is used for assessing the industry, realloca-
tion of resources is implicitly considered possible and therefore each firm
may individually be performing at its best, but reallocations within the
industry could still improve its overall efficiency (i.e., output). This is
supposedly one of the reasons for Lozano and Villa (2004) calling their
models centralized resource allocation models—since resource allocation
between firms is at the heart of such models (see also Mar Molinero et al.,
2014). Issues of aggregation and decomposition are also addressed in
these models, particularly when they are used to assess industry structural
efficiency. For example, Li and NG (1995) show that structural efficiency
equals the product of aggregate efficiency and a component of realloca-
tion efficiency, and Karagiannis (2015) decomposed additively structural
efficiency into aggregate efficiency (or average efficiency) and a covari-
ance term relating deviation in output shares and technical efficiencies
from their averages.

Allocability Models

The last class of models that we want to discuss deals with the explicit
definition of different types of inputs and/or outputs. This is a major
issue in network models, since once the black box of production is open,
one has to state which inputs can be allocated, which ones cannot and
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which ones are only available at higher level of aggregation. The precursor
of these models can be considered the work of Fare (1986) since the
author assumes that for some inputs time allocation is not known, and
this allocation could be derived. The idea of unknown allocation of other-
wise allocatable inputs was used by Beasley (1995). Castelli and Pesenti
(2014) call this model the shared flow model. Beasley (1995) assesses the
efficiency for two types of university functions (teaching and research)
that have specific inputs and outputs but also share some inputs whose
allocation is unknown. The author assesses the two functions separately
and then considers the determination of the optimal allocation of the
shared resource between the two functions (see Ding et al. 2015) for a
recent review of this strand of literature). The most important feature of
this models is that it implies a (a priori) classification of inputs (some
are allocatable or shared between functions/processes and others are
not). Following the same idea, in the output-specific input literature,
different technologies are associated with different sets of inputs and
outputs, and one cannot assume that all inputs are used in the produc-
tion of all outputs. Cherchye et al. (2013) and Cherchye et al. (2017)
propose models that can handle process-specific and shared inputs (or
“joint inputs” as they named them). These models assume that joint
inputs are simultaneously used by all processes and cannot be distributed
(or allocated) to the different processes. Recently, Podinovski et al. (2018)
propose a Multiple Hybrid Returns to Scale (MHRS) technology where it
is assumed that shared inputs are allocated to different processes (in spite
of the allocation not being observed).

Shared flow models imply the existence of shared allocatable resources,
but the allocation is not observed (or there is no a prior: information on
the allocation). These models yield an efficiency score that is different
from what would be obtained if one assumed that the shared resource
was fully available to each process. But this difference only exists because
prior information on allocation is provided through the form of weight
constraints. Therefore, these models seem to classify shared resources into
one category that is somewhere in the middle between “Full informa-
tion on resource allocation is observed” and “No information on resource
allocation is observed”, which should be the category “Partial informa-
tion on resource allocation is known/desired”. The literature has also
been very confusing on this matter as no such classification exists so far.
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Summing Up

In general terms, we may characterize existing system models according
to the technology employed, the treatment of intermediates and the type
of efficiency measure proposed. For example, industry models and parallel
network structures may be defined in relation to a meta-technology (the
intersection of processes technologies), or in relation to process-specific
technologies. Indeed, the model of Kao (2009) for parallel networks
resembles the centralized industry model presented in Lozano and Villa
(2004). In this type of model, the assessment is equivalent to “finding
common input and output weights that maximize the efficiency of a
virtual DMU with average inputs and outputs” (Lozano & Villa, 2004,
p. 149). On the contrary, process-specific technologies, as those applied in
output-specific input settings, in general yield the efficiency of the DMU
as being the same as the maximum efficiency across its processes (and
therefore, disregard completely inefficient processes).

Process-specific technologies can be also encountered in series models.
The reason is in general obvious—if we have two stages, one consuming
inputs and another producing outputs, then the assessment of each stage
implies the consideration of process-specific technologies since variables
are different in each stage. Interestingly, this does not happen in dynamic
models, where in fact the variables repeat in each stage. This is the main
reason behind two main ways available in the literature for assessing the
efficiency under dynamic models: the Fare and Grosskopf (2000) model
and the Kao (2013) model. Most existing models for dynamic network
structures use the Fare and Grosskopf (2000) process technologies (or
time-specific technologies) like those of Nemoto and Goto (2003) or
Tone and Tsutsui (2014), but Kao (2013) models aggregate across time
the DMUs inputs and outputs (and therefore use a meta-technology).

Another major distinction that one can find between models in
the literature is on the treatment of intermediates. Tone and Tsutsui
(2009) provide an interesting classification for intermediates: the free link
approach and the fixed link approach. Most of the existing models use
one way or another for dealing with intermediates. The main difference
between them lies in the consideration of inefficiency sources on the use
of intermediates in the overall efficiency of the DMU or not. Fukuyama
and Mirdehghan (2012) noted this problem in relation to the Tone and
Tsutsui (2009) model that did not include inefficiencies from intermedi-
ates and provided a way to fix that. Indeed, the type of efficiency measure
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considered is probably the major difference between models in the liter-
ature (e.g., in series models several papers exist that show different ways
of computing overall efficiency and aggregating processes efficiencies as
testifies Cook et al. [2010] in their review).

All in all, from our review of this large body of literature, we found
that the distinctions between the KKJ model and the various strands of
literature described in the previous sections are really minor. Most (if not
all) of these differences reside in the definition of the efficiency measure.
All of the other issues associated with allocability or not of inputs and
outputs are really relegated in the building of appropriate data matrices
in the KKJ model.

Torics FOR FUTURE RESEARCH

As we saw in the previous sections, one way of rationalizing the growing
body of literature on Network DEA models is to look at it from the
perspective of the KKJ model. In this sense, the main problem is shifted
from the measurement of firm level efficiency to the measurement of the
efficiency of the system as a whole and attributing efficiency to possibly
the different levels or hierarchies in the system. By looking at this liter-
ature from this perspective, one has also the advantage point of making
connections to other methodologies in engineering that deal with allo-
cation of resources. In fact, the KKJ model is useful to determine the
level of inefficiency of the system, but the input and output targets set
by the model can have multiple solutions. The literature is quite silent
on how we choose among these alternative allocations, and ideas from
the system thinking may help in selecting appropriate and realistic targets
in each particular situation. In the rest of this section, we will look into
what we think are the open problems associated with the KKJ model and
therefore Network DEA models. As we saw, the field of productivity and
efficiency analysis developed in the first 30 years (1939-1972) around
the KKJ model; it then turned its attention to firm level efficiency esti-
mation for another 30 years (1977-2001); although some papers dealt
with resource allocation during this time, it is really only in the last 20
years that the field has been re-discovering the KKJ model and started
progressing to solve some inherent problems associated with that type of
modeling. In what follows, we are going to present an overview on the
main problems associated with the KKJ model.
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Efficiency Measuvement vs Structure of the Network

It is possible to design the data matrices of the KKJ model in order to
accommodate a great deal of network structures. In principle, one should
separate the building of the technology reference set, from the measure
of efficiency that can be used to measure the inefficiency of the system.
Given that the reference set can be represented in a compact way by
designing the associated input and output data matrices appropriately, in
this section we consider what type of efficiency measure one should use.
The literature developing in the last 20 years, as one would expect, has
used both radial and slack-based measures of efficiency. From the point of
view of our argument, the choice between these two classes of measures
does not present any additional challenges compared to a simple and stan-
dard DEA model. Russell and Schworm (2009, 2011) have shown that
from an axiomatic point of view the two measures of efficiency can be
rationalized by looking at the axioms that they satisfy. In particular, radial
measures will satisfy continuity, while slack-based measures will satisty
indication (Pareto efficiency). Depending on the particular application,
one may choose one measure or the other, but the fact that we are dealing
with a network structure is not really adding any additional arguments in
favor of one or the other. The only additional argument one has to keep in
mind is that hierarchical network models have decision making happening
at various levels. Therefore, there is an issue of simplicity of aggregation
of the measure of efficiency. In this sense, using a measure of efficiency
which is simpler to aggregate will provide an easier way of assessing the
efficiency of the system and its components.

Unobserved Allocations

In the KKJ model and in general in the recent Network DEA models, it is
assumed that the allocation of the various inputs and outputs is observed.
For example, if a firm is composed of P production plants, one observes
in the dataset the allocation of each input and the production of each
output at each node of the system. What happens if these allocations are
not observed or only partially observed? Suppose that the allocation of
raw materials to each different node p is observed, but the allocation of
labor is not observed. In other words, suppose that we have a case where
we know that a given input (labor for example) is allocatable, but we do
not observe its allocation. Although this is likely to be a very common
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case in practice, the literature is quite silent on this point. Once could
treat the input as a public good (a joint input), but this is clearly intro-
ducing a bias in the measurement of efficiency. Podinovski et al. (2018)
propose a solution to this problem for the case of CRS technologies. The
reader should refer to this very important contribution to gain a better
perspective of the modeling strategy. For our purposes, it suffices to say
that the Podinovski et al. (2018) model provides a technology reference
set that is contained in the one that one would obtain if the allocations
were observed. This has the great advantage of providing a conservative
estimate of the inefficiency of the system. Extensions to VRS and other
scale characterizations are yet to be made. In the absence of a model that
extends the ideas of Podinovski et al. (2018) to the VRS case, one could
use a suggestion of Farrell (1957). This consists of dividing up the dataset
in clusters of observations that have the same “size” and then apply the
Podinovski et al. (2018) model to these classes. Although this is less satis-
factory than an extension of Podinovski et al. (2018) to the VRS case, it
is really the only viable option to deal with unobserved allocations, unless
one is willing to interpret the input as a public good (joint input).

In a very recent paper, Gong and Sickles (2021) adapt the stochastic
frontier model to the case of a simple parallel network (they use a different
wording). This paper is important in itself just because is the first attempt
to propose a network model in the stochastic frontier tradition. But for
our discussion it is also important because it is dealing with unobserved
allocations of allocatable inputs. In particular, the authors make use of
input price information to make inferences about the possible allocation
of inputs across the different processes. Although the study assumes that
price information is available, this is a first attempt at dealing with the
problem in a stochastic frontier framework.

Costly Reallocation

In the KKJ model and subsequent work on Network DEA, it is implic-
itly assumed that either reallocation of inputs is not possible (i.e., inputs
are process specific), or reallocation of inputs can happen at no cost.
What if the reallocation is costly, but not prohibitively so? To the best
of our knowledge, there is only one paper dealing with costly realloca-
tions (Pachkova, 2009). This is likely to be a very important problem in
practice, since reallocation of resources is likely to happen at some cost. In
particular, one can look at inputs that are specific to a particular process
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as a resource that is allocatable but the cost of reallocation is either very
high or prohibitive. For example, if we think of beds in a hospital, they
are likely to be allocatable at negligible cost (i.e., the cost of transporting
them from one department to another or one hospital to another). On the
contrary, doctors, given their specialization, are unlikely to be allocatable
at no cost. Even if one could retrain a cardiologist to become a radiolo-
gist, this is likely to take a lot of time, money and effort. Therefore, in the
short run, at least the number of doctors in a hospital represents an input
that is prohibitively costly to reallocate. In general terms, if information
on the cost of reallocation is available, one should be able to introduce
it into the KKJ model in order to take it into account. In this way, the
model becomes a hybrid transportation-production model, where opti-
mality is reached taking into account the actual possibilities and costs of
reallocation of resources.

Connection Between Networvk Analysis and the Black Box Analysis

What happens if we run the analysis at the black box level rather than the
network level? One formal way of stating this is the following. Call T,
the production possibilities set of process p and each process is allocated
input x, to produce output y,. The total for the firm is X = }_ x,
and Y = ) v,. The firm production possibilities set is given by all the
possible allocations of the inputs across the different P processes:

T = {(Xp:x,,, Xp:y,,> :(xpy yp) € T,,} (4.20)

Suppose now that we run the analysis at the firm level and we build
the production possibilities set using the total inputs and outputs of the
firm. Call this set Tr. What is the relationship between T and Tr? In
other words, if we know that the firm is composed of different depart-
ments (cardiology, radiology, etc.) but we run the analysis at the firm
level ignoring the allocations to the various departments, can we still
obtain meaningful efficiency scores? Is it possible to make general state-
ments about their relationship? For example is the black box technology
always underestimating efficiency? In general, we think the answer is no,
and convexity plays a big role in addressing this issue. Is it possible to
have general results? We found only one theoretical paper by Buccola and
Fare (2008) dealing with this issue. This is actually an important area of
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research, since it is connected with the simplification of the analysis and
it makes an explicit connection between the black box technology and
the underlying process-specific technologies. In general, one may want to
build 7F in such a way that it is contained in 7. If so, the estimation of
efficiency at the firm level using the black box technology is higher than
the one estimated using 7" and this means that the KKJ model helps to
increase discrimination power. In general, conditions for this to happen
will involve some restrictive assumptions that we still don’t know.

Network Stochastic Frontiers

This is possibly the biggest missing point in the literature. With the excep-
tion of Gong and Sickles (2021), we could not find a single stochastic
frontier paper that is dealing with some form of network structure.
Stochastic frontier analysis applied to network production structures can
bring about many benefits. Although the standard narrative is to say
that the difference between SFA and DEA is coming from the noise
component, it is important to stress that SFA allows the introduction of
functional forms. If the dataset has a small number of observations, then it
makes sense to parameterize the production frontier function and assume
that it has some known parametric form. In general, SFA analysis may
provide an advantage in this sense. One may use SFA as a noise-canceling
device and once estimation is done, use the estimated coefficients to
determine the optimal allocation of resources. As long as the functional
form is convex, the KKJ would become a convex program rather than
a linear program. Convex programming made some strong progress in
computational terms. If one wants to stick with linear programming, then
it is possible to follow the suggestion of Koopmans (1951) of approx-
imating the known functional form with a piece-wise function. In fact,
one could go a step further and estimate directly a spline function in a
SFA framework and use it to retain a linear program specification for the
KKJ model.

Micro-foundation of the Aggregate Production Function

Johansen (1972) had a chief interest in the micro-foundation of the
macro- or aggregate production function. The KKJ model was interpreted
by Johansen as a tool to describe the aggregate production possibili-
ties set starting with observations at the micro-level or, in other words,
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from observation of the firm level input-output combinations. In this
respect, the KKJ model is a nonparametric way of determining the
aggregate production function. By making specific assumptions on the
statistical distribution of the inputs and outputs across firms, one can infer
specific functional forms for the aggregate production function. Johansen
discusses a number of them. If we were to take this approach to its logical
consequences, then one should start with the estimation of the distribu-
tion functions of the inputs and outputs and once these distributions are
known determine the aggregate production function. This would open
up the way to the use of flexible ways of estimating multivariate distribu-
tion functions such as copulas. Work in this space is very much limited,
to the best of our knowledge, to the proposals of Johansen. Given the
progress that has been made in the last 50 years in terms of estimation of
multivariate distribution functions, it is quite clear that this is now a viable
and potentially very fruitful avenue of research that is underexplored. The
intuition of Johansen can be given more explicit content and it would be
possible to specify a number of alternative ways of extending this idea to
the more general setting of the KKJ model.

Er1iLoGgo

The previous pages provide a number of important unexplored topics that
are relevant to the modern researcher in efficiency and productivity anal-
ysis, especially if she is willing to focus on problems associated with central
planning and regulation of markets. We also provided a brief history of
this field of study, and hopefully, we have provided evidence that many
of the NDEA models developed in the last 10 years or so are just special
cases of the KKJ model that can be dealt with by adjusting in a proper
way the data matrices as presented in Koopmans and Kantorovich. As a
result of separate developments, each of the above strands of literature
tends to look at the same problem from different perspectives, like in
the Indian elephant parable where each blind man guessed a different
object depending on the body part of the elephant they were sensing (see
Fig. 4.1)

Given the current status of this field of research, the themes proposed
in the last section to progress forward this field are unlikely to be explored
at the same pace at which the NDEA literature has been growing in the
last 10 years. This may be due to a number of factors, many of them
having to do with the way research is structured today. A question one
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Fig. 4.1 DParable of the blind men and an elephant originated in India

should really ask is why the sub-fields described in section Summing Up
have been growing into almost completely separate streams of literature,
even if they all are under the umbrella of system efficiency analysis (and
mostly just variations of the KKJ model). In this last subsection, we should
speculate on how the field arrived at such a state of affairs.

Clearly, the working environment of the modern researcher is very
different from the one in which academics used to work in the past. The
pressure to publish papers has become bigger and bigger. Universities
value research output based on quantity rather than quality, in most cases.
This means that researchers have a strong incentive to engage in salami
slicing (the practice of taking a single piece of research and fragment it
into smaller pieces that can be published). This prompted Wikipedia to
have a page describing what this is (search on Wikipedia for “least publish-
able unit”). The “least publishable unit” has become definitely smaller in
time. The interested reader can make a quick Google Scholar search with
the keyword “publish or perish” to see that there are already a number of
papers concerned with the distortions that this system is producing.

Universities require academics to be “leader” in their own field of
research. This means that academics have a strong incentive and a
tendency to create sub-fields and over-represent their contribution within
these sub-fields. In particular, many of these sub-fields are not even so
different from each other, at least for what we saw in the previous few
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sections. This state of things is creating a dangerous mentality, and we
are breeding an entire generation of researcher that hyper-specialize, by
teaching them how to best market their research in order for it to look
original, so they can be “leader” in their respective fields of research. The
quest for truth and knowledge has been replaced by the quest for publica-
tion at any cost. The collegiality and intellectual honesty of the scientific
international community have been replaced by a grim citation count.
This basically transformed international conferences from places where
academics share and progress knowledge, into places where researchers
put forward aggressive marketing campaigns (sometimes on the edge of
bullying and harassment) to increase their citation count, h-index and
impact factor. Journals have followed this trend, transforming editorial
boards into lobbies that look after the “insiders”, instead of having their
more traditional function of recognizing original and relevant work irre-
spective of where it is coming from. The ingenuity and fascination of
true knowledge that drives many people into the search for academic
jobs (and is so much needed for the advancement of truth and knowl-
edge) are quickly replaced by a more mundane need to be competitive
on the market for academic jobs. Instead of leaving small details associ-
ated with the development of models and results out of the papers, we
create entire new papers out of these details. It is quite amusing that
by reading Kantorovich work, many small details and intuition were left
to “the production engineers” (this resembles the traditional role of the
teacher that is leaving some details to be sorted out by the student as
homework). Sorting out such details would of course imply that the “pro-
duction engineers” (to stick with Kantorovich) have a good education
in the first place that allows them to do so. Out of these details, we
now build entire journals that are trying to “fill the gaps” in the liter-
ature. Roger Koenker, notably one of the most creative and prominent
econometrician and statistician of our time (and the proponent of quan-
tile regression; another field to which productivity analysis should have
closer connections...), has suggested that we should all be part of the
“Society for the Preservation of Gaps in the Literature” (the interested
reader can visit: https://www.econ.uiuc.edu/roger/gaps.html). To use
his words:

Gaps in the literature constitute the essential breathing spaces of academic
life. The research and publication process poses an increasing threat to
the well being of disciplines by gradually filling these gaps with meritless
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interpolation of existing results. The Society for the Preservation of Gaps
in the Literature is dedicated to the preservation of the “intellectual green
space” afforded by these gaps.

Rather than filling gaps in the literature one of the great accomplish-
ments of serious research is to create gaps in the literature by debunking
the nonsense of the past. Nowhere is this objective better formulated than
in the introduction to the bibliography of Keynes’ (1921) Treatise on
Probability:

“I have not read all these books myself, but I have read more of them
than it would be good for any one to read again. There are here enumer-
ated many dead treatises and ghostly memoirs. The list is too long, and I
have not always successfully resisted the impulse to add to it in the spirit
of a collector. There are not above a hundred of these which it would be
worth while to preserve,~if only it were securely ascertained which these
hundred are. At present a bibliographer takes pride in numerous entries;
but he would be a more useful fellow, and the labours of research would be
lightened, if he could practise deletion and bring into existence an accred-
ited Index Expurgatorius. But this can only be accomplished by the slow
mills of the collective judgment of the learned; and I have already indi-
cated my own favorite authors in copious footnotes to the main body of
the text.

There are no better words to describe the state of the literature on
the system perspective in efficiency and productivity analysis (maybe to
describe the state of the literature in general?). We definitely did not read
all papers in NDEA and we have no intention to do so in the future,
given that the ones we found are only minor incremental progresses to
the KKJ model. In fact, it is hard enough to acknowledge that some of
the models proposed by one of the authors of this chapter (Peyrache,
2013, 2015) are so close to the KKJ model to make one wonder if they
were to be published in the first place or if they should have been left
as homework exercises. We are starting to think that we have ourselves
destroyed another gap in the literature and made our academic life less
green by adding noise to noise (Peyrache & Silva, 2019).

How is it possible that the literature has grown so fragmented, by
producing such an exponential growth in the number of published papers
that basically deal with the same underlying problem? If every single
author were to walk in the same conference room and read their paper,
everyone would be reading the same material in a different “language”,
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creating a lot of chatter. We thought that we may call this effect “pub-
lication chatter”, like the chatter in the conference room. But this time
we were smart enough to look out for a paper instead of re-inventing the
wheel. We were surprised to find at least 4 papers on this topic (maybe
these papers are also filling a gap in our knowledge?). Kozlov and Hurl-
bert (2006), in the Journal of Fundamental Biology, pushed the idea that
we should learn from mistakes of the past; otherwise, we are going to
reproduce the same mistakes in the current literature (we could not have
said this better!). They cite the 1984 Dean of the Graduate School, Yale
University:

Nowhere in all of scholarship has the book or shorter contribution (the
’paper’) become more thoroughly debased than in science ... the principal
remedy is for everyone to write fewer and more significant works ... It
seems to be a deeply held, quasi-philosophical position among contempo-
rary scientists that publication, and lots of it, is an inalienable right ... it is
no longer an honor to get a paper published ... publication of any and all
results has become the norm ... the publication process has largely ceased
to act as a quality control mechanism ... It is terribly important for students
to appreciate the older literature in their field ... For scientists there is a
danger that the vast tide of chatter in the current literature may isolate us
from our intellectual underpinnings.

Given that researchers themselves don’t have incentives to limit the
number of published papers, can we still hope for this to be accom-
plished by the refereeing process? Is this process really conducive to
eliminate papers that only marginally contribute to the literature and
really incentivize innovation? Lloyd (1985), in The Florida Entomologist,
states:

Read on: “We share the opinion of Hall (1979), Stumpf (1980), and
others that anonymous peer reviews may be more costly than benefi-
cial. A system that could allow a reviewer to say unreasonable, insulting,
irrelevant, and misinformed things about you and your work without
being accountable hardly seems equitable. To some degree the reviewer
is indeed accountable- to the editor-but the potential for abuse is still too
great to be ignored" (Peters and Ceci 1982); Rules based on "empirical
research,” for manuscript acceptance are as follows: “Authors should: (1)
not pick an important problem, (2) not challenge existing beliefs, (3) not
obtain surprising results, (4) not use simple methods, (5) not provide full
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disclosure, and (6) not write clearly” (Armstrong 1982; see also Harlow
1962).

To sum up, our peer/referee system, the piers of our academic
sand castle, can sometimes amount to nothing more than an adversarial
confrontation where the defendant is presumed guilty, has no counsel or
friend in court by arrangement, cannot face his accusers, and there are
no qualifications for judges. At other times, it can be the reverse, and a
conspiracy of peers in a field to promote the field (and one another), or a
network of master(s) and disciples. Shouldn’t we find out how bad it really
is and try to fix it, and try to anticipate what will happen next to pervert
it?

Thomson (1984 ) writes on the American Scientist:

Evidently our way of coping with the flow of minor publications is to
ignore them, thereby making them even more trivial. All this work there-
fore represents the most senseless waste, especially when the occasional
gem by an unknown author gets lost in the crowd. In short, nowhere in all
of scholarship has the book or shorter contribution (the “paper”) become
more thoroughly devased than in science (although apparently other fields
are doing their best to catch up).

These are harsh words, and logically it will behooves any author to add
another paper to the list in order to make the point, when the principal
remedy is for everyone to write fewer and more significant works (physi-
cian, help thyself). But “less is more” may be hard to attain in this area.
Publish or perish is deeply embedded in the subculture of science (and
God forbid that we should have to find some more valid criterion in order
to judge promotions).

It is somehow sad to see that many good researchers in efficiency and
productivity analysis are so deeply entrenched with playing a game that is
holding the field from progressing at the pace it should. While closing
with this pessimistic note, we also notice that a new generation of
researchers in productivity analysis is coming to the scene. With the old
guard retiring from editorial boards, this will make it harder to publish,
but maybe this will re-orient the research effort of the latest generation
of researcher in productivity and efficiency analysis toward a more fruitful
and useful path. We really hope so. Even if anecdotal evidence suggests
the opposite.
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INTRODUCTION

It is generally recognized that poverty and excessive inequality are
socially undesirable. Reducing global poverty so that fewer individuals
are deprived of basic needs is a major objective of international agen-
cies. While what constitutes too much inequality is debatable, there is
concern about the negative effects of rising inequality on health, crime
and other aspects of society. Also, in extreme cases, inequality has led to
the overthrow of governments and changes in the international order.
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It is important, therefore, be able to monitor changes in inequality
and poverty using suitable measurement techniques. For this purpose,
modelling and estimation of income distributions and Lorenz curves play
an important role. Data available for modelling and estimation can be
available in many forms. They may come from taxation data or from a
variety of surveys. We focus on modelling and estimation when the data
are limited in the sense that they come in grouped form, typically as
the proportion of total income allocated to each of a number of groups,
ordered according to increasing income, and with a specified proportion
of the population within each group. These so-called income and popu-
lation shares form the basis for estimating inequality through the Lorenz
curve.! When share data are combined with data on mean incomes,
income distributions can also be estimated, and their relationship with
Lorenz curves can be exploited.

Data in grouped form are often utilized for large scale projects where
inequality and poverty on a regional or global scale are being measured,
and where compilation and dissemination of data in a more disaggregated
form would be overly resource intensive. An example of such a study is
Chotikapanich et al. (2012). Examples of locations where grouped share
data are available for researchers are the World Bank’s PovcalNet website?
and that of the World Institute for Development Economic Research.?

Our objective is to summarize methods for estimating parametric
income distributions using grouped data, to specify the functions needed
for estimation for a number of popular parametric forms, and to provide
formulae that can be used to compute inequality and poverty measures
from the parameters of each of the distributions. In section Concepts,
we introduce notation and concepts to be utilized later in the paper.
The density, distribution and moment distribution functions that play
an important role are introduced, along with poverty and inequality
measures whose values can be calculated from estimates of the param-
eters of income distributions. We also describe the nature of the data
that we assume are available. Section Estimation is devoted to estima-
tion. Choice of estimation technique is influenced by whether or not

1 We will continue to refer to income distributions and income shares, but recognize
that data are often for expenditure that can be treated in the same way.

2 http:/ /iresearch.worldbank.org/PovcalNet /povOnDemand.aspx.
3 https://www.wider.unu.edu/database /wiid.
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group bounds are provided in the available data and on how the data
are grouped: fixed group bounds and random population proportions or
fixed population proportions and random group bounds. Both minimum
distance (MD) and maximum likelihood (ML) estimators are considered,
and results are provided for variants of the MD estimators which depend
on which “distance” is being minimized. In section Specification of
Distributions, Inequality and Poverty Measures, we tabulate the common
parametric distributions that have been used to model income distri-
butions; their density, distribution and moment distribution functions,
and moments, are provided. Expressions that can be used to calculate
inequality measures from the parameters of the different distributions
are also tabulated. Expressions for some poverty measures are given in
section Concepts; those for the Watts poverty index are tabulated in
section Specification of Distributions, Inequality and Poverty Measures.
In large projects, involving many countries and many years, MD and
ML estimation can be daunting tasks. In section Simple Recipes for Two
Distributions, we describe two relatively simple estimators for two specific
distributions: the lognormal and the Pareto-lognormal. Some concluding
remarks follow in section Concluding Remarks.

CONCEPTS

We assume a population of incomes y, with y > 0, can be represented by a
probability density function (pdf) f(y; ) where 6 is a vector of unknown
parameters. Our objective is to review several alternative functional forms
that have been suggested for f(y; ), to describe methods for estimating
0 from grouped data, and to provide expressions that can be used to
compute estimates of inequality and poverty measures from estimates for
6.

o
We further assume y has a finite mean pu = [y f(y;0)dy. Its
0

cumulative distribution function (cdf) will be denoted by

y
A=F(y;0) = / f (@ 0)dt (.
0
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and its first moment distribution function (fmdf) by

y
n=FWD(y;0) = L / t f(1;60)dt (5.2)
"
0

We will also utilize the second moment distribution function (smdf)

o0

v =rFO00 = o [ 2o (53)
"
0

o
where 1@ is the second moment u® = i y2 £ (y;6)dy. The Lorenz
0

curve, relating the cumulative proportion of income to the cumulative
proportion of population, is given by*

n=Lk0) = FD (F’l (1 6): 9) (5.4)

When modelling begins with the specification of a Lorenz curve, the
quantile function y = F~! (; 0) can be found from it via differentiation,

dL (A;0)

=Flo0) =
y r0) =pn '

(5.5)

Inequality Measurves

The most commonly cited inequality measure is the Gini coefficient g
which is given by twice the area between the Lorenz curve and the line
of equality where n = . That is,

1

1 —ZfL(A;Q)dA
0

o9
I

2 o0
-1+ ;/yF(y;G)f(y; 0)dy (5.6)
0

4 See Gastwirth (1971).
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Two further inequality measures that we consider are the Theil indices
which are special cases of a generalized entropy class of measures. Unlike
the Gini coefficient, members of this class have the advantage of being
additively decomposable into population subgroups. The general class is
given by

1 T\
GE() = —— /(%) f(y:0)dy — 1 v#£0, 1 (5.7)
0

The parameter v controls the sensitivity of the index to income differences
in different parts of the income distribution; larger positive values imply
greater sensitivity to income differences in the upper part of the distribu-
tion and more negative values imply greater sensitivity to differences in
the lower part of the distribution. The Theil special cases are those for
v — 0 and v — 1. They are given by

oo

To = GE(0) — f In (%)f(y;e)dy (5.8)
0

Ti = GE(l) = / (1> ln(l)f(y;e)dy (5.9)
)\ 0

The last inequality measure that we consider is the Pietra index which
is equal to the maximum distance between the Lorenz curve and the
equality line n = XA. It can be written as the difference between the cdf
and the fmdf, evaluated at u.

P =F(uw0) — FY(u;0) (5.10)

Poverty Measures

Modelling and estimating income distributions are also useful for eval-
uating poverty. We consider four poverty measures, the headcount ratio
HC, the poverty gap PG, the FGT index with the inequality aversion
parameter set at 2 and the Watts index, W 1. For convenience, we express
HC, PG and FGT in terms of distribution and moment distribution
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functions, and moments, which are tabulated for specific distributions in
section Specification of Distributions, Inequality