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Abstract. This paper studies speed control problem for interior permanent mag-
net synchronous motor (IPMSM) based on a backstepping algorithm. The conven-
tional backstepping control method cannot achieve a robustness controller in the
presence of load torque and uncertain parameters. Thus, a high-gain disturbance
observer (HGDOB) is proposed to improve the controller and obtain fast tran-
sient responses and strong robustness. Consequently, the influence of the distur-
bances on the motor drive transmission for electric vehicles is effectively reduced.
TI C2000 F28377S microcontroller combined with Matlab/Simulink is imple-
mented to demonstrate the effectiveness and feasibility of the proposed control
and observer.

Keywords: IPMSM · Backstepping · High gain observer · Processor in the loop
(PIL)

1 Introduction

Electric cars aremaking bigwaves in the automobile industry. Instead of using an internal
combustion engine (ICE), electric vehicles (EVs) are driven by electric motors. Electric
motors have significant advantages over internal combustion engines in motion control
[1]. These advantages can be summarized as follows: noise-free, pollution-free, high-
performance, and the feasibility of applying advanced control methods. From which,
the dynamic quality of electric vehicles is improved. In particular, Electric Traction
Motors have key characteristics as fast and quick torque response, high torque at low
speed, small size, reduced weight. Adopted traction motors in electric vehicles (EVs)
and hybrid electric vehicles (HEVs) is Interior Permanent Magnet Synchronous Motor
(IPMSM).

To achieve the high performance and high accuracy requirements of PMSM drive
systems, various nonlinear control techniques have been widely applied, such as model
predictive control [2, 3]; backstepping control [4, 5], sliding mode control [6], etc.
to improve motor control efficiency in different aspects. Among the above methods,
backstepping control is a recursive design approach for nonlinear systems. By using
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variable virtual control law, the initial high-order system is simple so that the final
outputs can be systematically computed through suitable Lyapunov functions.

The reality shows that IPMSM drive system faces unavoidable disturbances, such
as uncertain parameters and load torque. In order to improve the control quality as well
as reduce the influence of the above problems on speed response, disturbance observer-
based control systems arewidely studied.Origins of disturbance observerwasmentioned
as Birth of Robust Control (1960s–1980s), and Birth of DOb (1960s–1980s), then the
development ofDOB-based robust controlwas proposedbyK.Ohnishi in 1983, reviewed
in “35th Anniversary Overview” [7]. Up to now, many disturbance observers have been
developed such as linear disturbance and uncertainty estimation (LDUE) techniques,
and nonlinear disturbance/uncertainty estimation (NDUE) techniques [8].

In [9] and [10], nonlinear disturbance observers are used for rotor speed control
loop and current control loop, respectively. In which rotor speed response is greatly
improved. A backstepping control combined with nonlinear disturbance observers for
both outer-loop and inner-loop control are presented in [11] and obtained good results
in the presence of disturbances. In [12], a terminal sliding mode single-loop control is
used with a nonlinear disturbance observer to estimate the lump disturbance. In order
to improve the results further, in this paper, nonlinear high-gain disturbance observers
[13] combined with the backstepping control system based on Lyapunov stability theory
[14] is proposed and achieved better rotor speed response, in which the deviation is
significantly reduced in the presence of load torque disturbance.

The contribution of the paper is: (i) A high-gain disturbance observer is proposed and
achieve high-precision observation results. (ii) The proposed controller is the nonlinear
disturbance observer combined backstepping controller that eliminating the disturbance
of IPMSM included uncertainty parameters and load torque to obtain fast transient
responses and strong robustness.

This paper is structured as follows: the secondpart is the introduction ofmathematical
model of PMSM. In the third part, the nonlinear disturbance observer is presented. The
fourth part, the backstepping controller is built in combinationwith the estimation results
of the nonlinear disturbances obtained in the previous third part. Simulation methods
with the combination of Matlab/Simulink on computer and TI C2000 microcontroller
are presented in the fifth part and finally concluded in the sixth part.

2 Mathematical Model

Assume that the motor’s current loss, hysteresis, and eddy are ignored, and the magnetic
circuit is unsaturated. The three-phase stator windings of AC machines are sinusoidal
in space, then vector control strategy is adopted to obtain decoupled control of motor
torque and flux. By using the Park transforms mathematical model, a three-phase system
in a reference frame abc is converted to a rotating reference frame dq0 included direct,
quadrature, and zero components. The stator flux equations of IPMSM in the d and q
axis is given in [15]: {

φd = Ld id + φ

φq = Lqiq
(1)
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where Ld , Lq denote the d-q axis stator inductances (mH ), φ is rotor permanent magnet
flux (Wb); id , iq are the d-q axis currents. According to field-oriented theory, the d-q
axis voltages are expressed as [16]:

⎧⎪⎨
⎪⎩
ud = Rsid + Ld

did
dt

− npωLqiq

uq = Rsiq + Lq
diq
dt

− npωLd id + npωφ

(2)

where Rs is stator resistance (�); np is the pole-pair number;ω is the rotor speed. Torque
equations of IPMSM is given as follows:

Te = 3

2
np

(
φd iq − φqid

)
(3)

Te = Jm
dω

dt
+ Bω + τL (4)

where Jm is the rotor moment of inertia (kgm2); B is the viscous friction coefficient
(Nms);τL is load torque (Nm). From the Eqs. (1)–(4), themathematical model of IPMSM
in the rotor rotation reference system (dq) can be expressed as follows [11]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dω

dt
= 1

Jm

(
np

((
Ld − Lq

)
id iq + φiq

) − Bω
)

+d1
diq
dt

= 1

Lq

(−Rsiq − npωφ − npωLd id
)

+ 1

Lq
uq + d2

did
dt

= −Rsid + npωLqiq
Ld

+ 1

Ld
ud + d3

(5)

where d1, d2, d3 represent disturbances caused by uncertainty parameters and load
torque that are defined as follows [11]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1 = − 1

Jm

⎛
⎝ �Jm

dω

dt
+ �Bω + τL

−np
(
�Ld − �Lq

)
id iq − np�φiq

⎞
⎠

d2 = − 1

Lq

⎛
⎝ �Rsiq + �Ldnpωid + �φnpω

+�Lq
diq
dt

⎞
⎠

d3 = − 1

Ld

(
�Rsid − �Lqnpωiq + �Ld

did
dt

)
(6)

where �Rs = Rst − Rs, �Ld = Ldt − Ld , �Lq = Lqt − Lq, �φ = φt − φ, �Jm =
Jmt − Jm, �B = Bt − B with Rs, Ld , Lq, φ, Jm, B are the nominal parameter values;
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Rst,Ldt,Lqt, φt, Jmt andBt are the actual parameter values. Letω = x1, iq = x2, id = x3,
Eq. (5) is rewritten as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = −Bx1
Jm

+ np
((
Ld − Lq

)
x3 + φ

)
Jm

x2 + d1

ẋ2 = −Rsx2 − npx1φ − npx1Ldx3
Lq

+ 1

Lq
uq + d2

ẋ3 = −Rsx3 + npx1Lqx2
Ld

+ 1

Ld
ud + d3

(7)

Assumption 1. The state variables ω, iq, id are physically bounded, exist that:

|ω| < ωmax,
∣∣iq∣∣ < iq,max, |id | < id ,max (8)

where ωmax, iq,max, id ,max are constants. Besides, the unknown disturbances d1, d2, and
d3 vary slowly and are bounded. Thus, exist such that the constraint constants δ1, δ2, δ3
satisfy [10]: ∣∣ḋ1∣∣ ≤ δ1,

∣∣ḋ2∣∣ ≤ δ2,
∣∣ḋ3∣∣ ≤ δ3 (9)

3 Robust Backstepping Controller Design

3.1 Speed Controller Design

In order to maintain constant flux operations of the motor, the d-axis current id is usually
set to be zero. From which, the motor model given in Eq. (5) can be modified as follow:

ẋ1 = npφx2 − Bx1
Jm

+ d1 (10)

Define speed error as e1 = x∗
1 − x1, where x∗

1 is the reference speed. The derivative
of speed error is:

ė1 = ẋ∗
1 − ẋ1 = ẋ∗

1 − npφx2
Jm

+ Bx1
Jm

− d1 (11)

Choose the Lyapunov candidate function as V1 = (1/2)e21. The time derivative of
V1 is:

V̇1 = − e1
Jm

(−Jmẋ
∗
1 + npφx2 − Bx1 + Jmd1

)
(12)

To force the derivative of V1 to become negative definite, the virtual control x∗
2 is

designed as follows:

x∗
2 = 1

npφ

(
Bx1 − Jmd1 + Jmẋ

∗
1 + k1Jme1

)
(13)

Substituting Eq. (13) into Eq. (12): V̇1 = −k1e21 ≤ 0, where k1 > 0. When the
derivative of V1 is negative definite, the error of the speed controller will increasingly
approach zero.
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3.2 Current Controller Design

The reference q-axis current is the virtual control variable fromEq. (13), and the reference
d-axis current x∗

3 is normally set to zero to maintain constant flux. The current error on
the d-q axis is determined as follows:

e2 = x∗
2 − x2

e3 = x∗
3 − x3

(14)

The time derivative of e2, e3 are given as:

ė2 = 1

npφ

⎛
⎜⎝B

(
npφx2 − Bx1

Jm
+ d1

)
+ Jmẍ

∗
1

+k1
(
Jmẋ

∗
1 − npφx2 + Bx1 − Jmd1

)
⎞
⎟⎠

+Rsx2 + npx1Ldx3 + npx1φ − uq
Lq

− d2

ė3 = Rsx3 − npx1Lqx2
Ld

− 1

Ld
ud − d3

(15)

Define Lyapunov candidate function:

V2 = V1 + 1

2
e22 + 1

2
e23 (16)

Then,

V̇2 = −k1e
2
1 + e3

(
Rsx3 − npx1Lqx2

Ld
− 1

Ld
ud − d3

)

+e2

⎛
⎜⎜⎜⎜⎜⎝

1

npφ

⎛
⎜⎝B

(
npφx2 − Bx1

Jm
+ d1

)
+ Jmẍ

∗
1

+k1
(
Jmẋ

∗
1 − npφx2 + Bx1 − Jmd1

)
⎞
⎟⎠

+Rsx2 + npx1Ldx3 + npx1φ − uq
Lq

− d2

⎞
⎟⎟⎟⎟⎟⎠

(17)

The current errors can be stabilized if the control laws are designed as follows:

uq = Lq
npφ

⎛
⎜⎝B

(
npφiq − Bω

Jm
+ d1

)
+ Jmω̈∗

+k1
(
Jmω̇∗ − npφiq + Bω − Jmd1

)
⎞
⎟⎠

+Rsiq + npωLd id + npωφ − Lqd2 + k2e2

ud = Ld

(
Rsid − npωLqiq

Ld
− d3 + k3e3

)
(18)

where k2, k3 > 0. Substituting Eq. (18) into the derivative of Lyapunov function V̇2, we
get:

V̇2 = −k1e
2
1 − k2e

2
2 − k3e

2
3 ≤ 0 (19)
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Remark 1. In order to achieve this convergence as Eq. (19), then the disturbances
d1, d2, d3 must be explicitly known or zero. However, in practice, the disturbances of
IPMSM are always existed and are unknown. Thus, the derivative of Lyapunov function
V̇2 results in:

V̇2 = −k1e
2
1 − k2e

2
2 − k3e

2
3 + e1d1 + e2d2 + e3d3 (20)

Let, {
ς = e1d1 + e2d2 + e3d3
χ = min{k1, k2, k3} (21)

Then, Eq. (20) is rewritten as:

V̇ ≤ −2χV + ς (22)

From the Eq. (22) can realize that the deviation of the control system is strongly
influenced by the disturbances d1, d2, d3. Thus, to improve the control system, a high-
gain disturbance observer is proposed that provides disturbance information such as
uncertainty parameters and load torque to the controller.

3.3 Disturbance Observer Design

Define the estimated disturbances as d̂1, d̂2, d̂3 the estimated errors are defined as
follows:

d̃1 = d1 − d̂1, d̃2 = d2 − d̂2, d̃3 = d3 − d̂3 (23)

With ε1, ε2, ε3 are the observation coefficients, dynamic equations of the estimated
disturbances are designed as follows:

˙̂d1 = 1

ε1

⎛
⎜⎝ ẋ1 + Bx1

Jm
− np

((
Ld − Lq

)
x3 + φ

)
Jm

x2

−d̂1

⎞
⎟⎠

˙̂d2 = 1

ε2

⎛
⎜⎜⎝
ẋ1 − −Rsx2 − npx1φ − npx1Ldx3

Lq

− 1

Lq
uq − d̂2

⎞
⎟⎟⎠

˙̂d3 = 1

ε3

⎛
⎜⎝ ẋ3 − −Rsx3 + npx1Lqx2

Ld
− 1

Ld
ud

−d̂3

⎞
⎟⎠

(24)

Define the auxiliary state variables:

ξi = d̂i − xi
εi

, i = [1, 3] (25)
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The dynamic equations of the auxiliary state variables are:

ξ̇1 = − 1

ε1

(
−Bx1

Jm
+ np

((
Ld − Lq

)
x3 + φ

)
Jm

x2

)

− 1

ε1

(
ξ1 + x1

ε1

)

ξ̇2 = − 1

ε2

(
1

Lq
uq + −Rsx2 − npx1φ − npx1Ldx3

Lq

)

− 1

ε2

(
ξ2 + x2

ε2

)

ξ̇3 = − 1

ε3

(
1

Ld
ud + −Rsx3 + npx1Lqx2

Ld

)

− 1

ε3

(
ξ3 + x3

ε3

)

(26)

Theorem 1. For the nonlinear system of the interior permanent magnet synchronous
motor in Eqs. (1)–(7), the unknown disturbances are bounded and shown in Eqs. (6),
(9) can be observed by using the high-gain disturbance observers as Eq. (26) combined
the auxiliary state variables in Eq. (25).

Proof of Theorem 1. The following disturbance estimation error dynamics is obtained
as [13]:

ξ̇i = ˙̃di − ẋi
εi

(27)

From Eqs. (26) and (27), estimation error dynamics of the observers is obtained as:

˙̃di = ḋi −
(
1

εi

)
d̃i (28)

Consequently, ∣∣∣d̃i∣∣∣ ≤ e−(1/εi)t
∣∣∣d̃i(0)∣∣∣ + εiρi(t) (29)

Then, the upper bound of
∣∣∣d̃i(∞)

∣∣∣ becomes smaller by εi gets smaller.

Remark 2. In Eq. (26), observers with auxiliary state variables do not need to use
derivatives of ω, id , iq as in Eq. (24). Then the measurement noise amplification by
using the high gain 1/εi will be reduced, thus observers will be more feasible when
applied in practice.
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In order to improve the efficiency of the backstepping controller, the observed values
d̂1, d̂2, d̂3 from the Eq. (26) are substituted into Eqs. (13) and (18) as follows:

x∗
2 = 1

npφ

(
Bx1 − Jmd̂1 + Jmẋ

∗
1 + k1Jme1

)

uq = Lq
npφ

⎛
⎜⎝B

(
npφiq − Bω

Jm
+ d̂1

)
+ Jmω̈∗

+k1
(
Jmω̇∗ − npφiq + Bω − Jmd̂1

)
⎞
⎟⎠

+Rsiq + npωLd id + npωφ − Lqd̂2 + k2e2

ud = Ld

(
Rsid − npωLqiq

Ld
− d̂3 + k3e3

)
(30)

Compared with the conventional backstepping control law in Eqs. (13) and (18), the
novel control law Eq. (30) is more convenient to be adjusted with the observed values
d̂1, d̂2, d̂3 from Eqs. (25) and (26) that are continually updated for the control system.

4 Stability Analysis

Theorem 2.Consider the interior permanent magnet synchronous motor form as Eq. (5)
under the bounded disturbance as Assumption 1. By using the control law in Eq. (30)
with the positive constants.

k1, k2, k3 and the observer gains 1/ε1, 1/ε2, 1/ε3 of the high-gain disturbance
observer Eqs. (25) and (26) guarantee the Input-to-State Stability [17] of the closed-
control system.

Proof of Theorem 2. Define the Lyapunov candidate function as follows:

V = 1

2
e21 + 1

2
d̃2
1 + 1

2
e22 + 1

2
d̃2
2 + 1

2
e23 + 1

2
d̃2
3 (31)

Taking derivative of Eq. (31) with respect to time yields:

V̇ = e1ė1 + d̃1
˙̃d1 + e2ė2 + d̃2

˙̃d2 + e3ė3 + d̃3
˙̃d3 (32)
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Substituting the disturbance estimation error dynamics Eq. (28) into Eq. (32) results
in:

V̇ = e1

(
ẋ∗
1 − npφx2

Jm
+ Bx1

Jm
− d1

)
+ d̃1

(
ḋ1 −

(
1

ε1

)
d̃1

)

+e2

⎛
⎜⎜⎜⎜⎜⎝

1

npφ

⎛
⎜⎝B

(
npφx2 − Bx1

Jm
+ d1

)
+ Jmẍ

∗
1

+k1
(
Jmẋ

∗
1 − npφx2 + Bx1 − Jmd1

)
⎞
⎟⎠

+Rsx2 + npx1Ldx3 + npx1φ − uq
Lq

− d2

⎞
⎟⎟⎟⎟⎟⎠

+e3

(
Rsx3 − npx1Lqx2

Ld
− 1

Ld
ud − d3

)

+d̃2

(
ḋ2 −

(
1

ε2

)
d̃2

)
+ d̃3

(
ḋ3 −

(
1

ε3

)
d̃3

)

(33)

With the control laws in Eq. (30), the time derivative of Lyapunov candidate function
V is obtained as follows:

V̇ = e1
(
−k1e1 − d̃1

)
+ d̃1

(
ḋ1 −

(
1

ε1

)
d̃1

)

+e2
(
−k2e2 − d̃2

)
+ d̃2

(
ḋ2 −

(
1

ε2

)
d̃2

)

+e3
(
−k3e3 − d̃3

)
+ d̃3

(
ḋ3 −

(
1

ε3

)
d̃3

)

=
3∑

i=1

(
−kie

2
i − e1d̃i − 1

εi
d̃i + d̃iḋi

)
(34)

Using the inequality |a||b| ≥ ab, Eq. (34) is obtained as follows:

V̇ ≤ −
3∑

i=1

(
ki

(
ei
αi

+ αi

2ki
d̃i

)2

+ τi

(∣∣∣d̃i∣∣∣ − 1

2τi

∣∣ḋi∣∣
)2

)

−
3∑

i=1

((
1 − 1

α2
i

)
kie

2
i + β2

i

4ki
d2
i

)
+

3∑
i=1

(
1

4τi

∣∣ḋi∣∣2
) (35)

where τi =
(

1
εi

− α2
i +β2

i
4ki

)
;αi > 0;βi �= 0. Exist that:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

γ =
3∑

i=1

(
1

4τi
δ2i

)

κ = min

{(
1 − 1

α2
i

)
ki,

β2
i

4ki

} (36)
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Then, Eq. (35) can be rewritten as:

V̇ ≤ −2κV + γ (37)

Consequently,

V (t) ≤ V (0)e−2κt + γ

2κ

(
1 − e−2κt

)
(38)

Remark 3. The Eq. (38) shows that the tracking errors e1, e2, e3, and estimation errors
d̃1, d̃2, d̃3 exponentially converge to an arbitrarily small ball γ /2κ that can be shrunk
by γ via the high observer gains 1/ε1, 1/ε2, 1/ε3 [18]. This adjustment is different
from when using only the conventional backstepping as in Remark 1, which is greatly
influenced by the disturbances.

5 PIL Simulation and Results

5.1 PIL Simulation

This paper uses PIL test technique [19], i.e., Texas Instrument’s TI C2000 F28377S
microcontroller to validate the controller,while the plantwill be built onMatlab/Simulink
environment. The specifics of the 0.72 kW 3-pole IPMSM are given as [20] rated speed
is 3000 r/min; rated torque is 2.3Nm; Rs = 4.8�; Ld = 19.5mH; Lq = 27.5mH;
φ = 0.15Wb; Jm = 0.001 kgm2. The general PIL simulation diagram of the control
system for IPMSM is shown in Fig. 1. Choose constants as: k1 = 5000, k2 = 9000,
k3 = 3000, observation coefficients: ε1 = ε2= ε3 = 0.0001. Furthermore, actual
parameter values are set with an error of about 10% compared to nominal values.

Fig. 1. Overview simulation diagram
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5.2 Simulation Results

To demonstrate the efficiency of the proposed backstepping algorithm and the high-gain
observer, the speed value and load torque are set to the controller as in Fig. 2 (a), (b).

Figure 3 shows the rotor speed response using the controllers as PID, the conven-
tional backstepping control, and the high-gain disturbance observer-based backstepping
control. When the load torque changes suddenly at 2 s, the rotor speed response using
the PID controller is significantly overshot, and the conventional backstepping is the
appearance of steady state error, as shown in Figs. 3 and 4(a). The steady state error of
the traditional backstepping is caused by the disturbances as given in Remark 1. In order
to deal with these problems, the control system using the high-gain disturbance observer-
based backstepping control is proposed and obtains fast transient responses and strong
robustness. The deviation of the proposed controller is minimal, and the control quality
is clearly improved compared to the PID controller and the conventional backstepping,
as in Figs. 3 and 4.

Fig. 2. Reference load torque.

Fig. 3. Rotor speed response of IPMSM.
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Figures 5, 6 and 7 show the estimation performance of the disturbances d1, d2, and
d3, respectively. The disturbance included uncertainty parameters, and the load torque of
IPMSM is accurately estimated using the high-gain disturbance observer. The estimation
errors d̃1, d̃2 and d̃3 are minimal, as shown in Figs. 5(b), 6(b), and 7(b), from which
the controller has the information of the disturbance to improve the accuracy of the
closed-control system.

Fig. 4. (a) Speed error without disturbance observer. (b) Speed error using disturbance observer.
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Fig. 5. Disturbance estimation d1

Fig. 6. Disturbance estimation d2
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Fig. 7. Disturbance estimation d3

6 Conclusion

This paper presents the robust speed control for IPMSM using a backstepping con-
troller combinedwith a high-gain disturbance observer.Disturbances include uncertainty
parameters and external load torque. In order to improve the accuracy of the controller,
the nonlinear observer is applied to calculate the disturbance components in the system.
The controller combines the advantages of a backstepping controller and the high-gain
observer. The effectiveness and feasibility of the proposed control and observer are
demonstrated by using the PIL test technique.
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