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Abstract

In recent years, a rapid expansion in the field of RNAomics has led to a steep rise
in data regarding expressed genes. This expansion in data has necessitated a
consequent increase in the breadth and depth of tools which may be used for the
study of RNA types. Gene fusions are considered hallmarks of many cancer types
and may occur through chromosomal rearrangement or through noncanonical
mechanisms in which chimeric RNA forms without rearrangement of the
genome. To more effectively identify, validate, and understand the function of
these novel RNA molecules, we present this chapter as a resource. In it, we
discuss the role of fusion transcripts, identification of fusion transcripts, relevant
software packages, and databases.

6.1 Introduction

Gene fusions are often considered to be a common feature present in cancer cells and
present with rare cytogenetic signatures which may offer applications for disease
identification, characterization, and treatment. Gene fusions are genes that possess
DNA sequences from two different parental genes and may be created through
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several mechanisms including chromosomal translocations, inversions, deletions,
and duplications. This may lead to proteins with domains derived from two genes in
a novel fusion protein, a shift in reading frame, rearrangements of gene regulatory
elements, and so on.

There has been a wide array of efforts to understand their prevalence, mechanism
of creation, and function which have in turn lead to improvements in the ability to
study several cancer subtypes. Broadly, well-studied examples of such gene fusions
in cancer cells are described below:

• The first identified chromosome abnormality which was found to be strongly
associated with cancer is BCR-ABL1, or the Philadelphia chromosome. This
fusion of the BCR and ABL1 genes resulting from a reciprocal translocation
event leads to the creation of a constitutively active tyrosine kinase (Ren 2005).

• In Burkitt’s lymphoma, an aggressive mature B-cell neoplasia, chromosomal
rearrangement leads to the creation of the IGH-MYC fusion and subsequent
overexpression of the c-myc oncogene, a transcription factor which in turn
leads to lymphomagenesis as well as accumulation of double-strand breaks in
DNA (Yan et al. 2007).

While recurrent fusion genes are often associated with cancer phenotypes, fusion
events are not necessarily limited to oncogenic processes. The formation of fusion
genes in normal, noncancerous cells has been identified and has been shown to
contribute to the development of more complex, multidomain proteins. This, in turn,
contributes to protein evolution over longitudinal time scales.

While fusion genes are defined by the combination of DNA sequences, their
precursor, chimeric RNAs, are hybrid RNA transcripts which contain nucleotides
from different parental genes. These chimeric RNAs are not necessarily produced
through the creation of the fusion of genes at the genomic level, and instead refer
more broadly to any hybrid transcript based on gene annotations (Elfman et al.
2020). A critical reason for this distinction is that many means of chimeric RNA
production in which there are no changes to the corresponding genome have been
elucidated.

• Chimeric RNAs may be produced through the process of intergenic splicing. This
most commonly occurs through a read-through of genes which lie in cis to create
a hybrid mRNA. This is referred to as cis-splicing of adjacent genes (cis-SAGe)
and has been found to be the primary way in which chimeric RNA production
forms in noncancer cells (Singh et al. 2020).

• Chimeric RNA may form from parental genes which are found on different
chromosomes. This process may be referred to as trans-splicing and is theorized
to take place through splicing of precursor mRNAs (Jia et al. 2016).

• Parental genes may be separated by large linear distances on the same
chromosomes.

• Trans-splicing of sense and antisense transcripts may occur between sense and
antisense transcripts of a single gene.
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• “Back-splicing” in which a downstream gene is transcribed prior to an upstream
gene, leading to the creation of a circular fusion chimera (Wu et al. 2019).

Broadly, due to their ubiquity, varying mechanisms of formation, and diversity,
chimeric RNAs are seen as a way in which the body expands the functional genome.
Our understanding of chimer RNA identification and function has been expanded
through large-scale analysis of datasets (GTEx, TCGA, Ensembl, etc.). The creation
of such datasets has rapidly expanded in recent years given the advent of novel
sequencing technologies which have improved researchers’ access to critical
insights. Despite this veritable explosion of databases and associated software
tools, our knowledge of chimeric RNAs remains incomplete. Challenges which
arise in the study of chimeric RNA are numerous, but not insurmountable. These
are as follows:

• Relatively low levels of chimeric RNA expression may lead to biased statistical
analyses leading to over or underestimation of certain sequences.

• The possibility of chimeric RNA developing from template switching events
during RT-PCR.

• The only unique sequence in the chimeric RNA lies at the relatively small
junction between the two parent sequences.

• Homology between chimeric RNA and parental genes causes bioinformatic
predictive tools, biochemical techniques such as sequence-targeted assays, and
the like to be particularly challenging.

Despite the barriers to studying this novel class of molecules, chimeric RNA is a
fertile field of study for geneticists at all levels. To better support future generations
of researchers in exploring this field, this chapter will explore software tools which
may be applied to effectively identify and characterize chimeric RNA.

6.1.1 Identification of Chimeric RNA

A wide array of chimeric RNA prediction tools exists to support researchers in their
search for potential candidates. These tools employ RNA-Seq datasets as purely
genomic DNA datasets do not encompass the full potential for chimeric RNA
production. This is since genomic instability is a hallmark of cancer cells. Further,
RNA seq captures only the expressed parts of the genome (exome) which are
transcriptionally active. This reduces the cost of the entire process to detect fusion
transcripts in cancer. Datasets may be obtained from online databases such as
TCGA. TCGA offers the GDC Data Transfer Tool to download raw sequencing
data and we suggest that readers attempt to apply these tools for themselves. Raw
data must first be processed by applying basic software tools to ensure their usage for
various detection software.
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• First, it is necessary to engage in quality control of raw sequencing reads.
Example tools for this purpose are described below:

• ClinQC: This a highly accessible pipeline which may be used for converting
between raw data formats, quality control, and trimming of raw sequencing data
from both Sanger and NGS sequencing platforms. Data are converted to FASTQ
format, which is among the most accepted formats for chimeric RNA prediction
software which will be described later. The software prepares a quality control
report which further facilitates downstream analysis (Pandey et al. 2016).

• NGSQC Toolkit: The NGSQC toolkit allows for highly efficient processing of
NGS data with filtration of high-quality results as well as quality checking. It is an
open-source application freely available online and implemented in perl. The
toolkit offers high ease of use and is effective for sequencing data sourced from
Rorche 454 and Illumina platforms (Patel and Jain 2012).

• FastQC: FastQC is one of the most applied tools to perform quality control
screens on raw data from high-throughput sequencing methods. It allows for
the import of data as BAM, SAM, or FastQ formats, creates summary graphics to
assess data, and allows for export of data as various file types (Andrews n.d.).

Following quality control steps and conversion to file types appropriate for
downstream analysis, it is possible to pass the data to fusion transcript prediction
tools. There are over 35 software tools that are implicated in the identification of
fusion transcripts. Fusion detection occurs in three stages, namely, (1) mapping and
filtering, (2) fusion junction detection, and (3) fusion assembly and selection.

These mechanisms establish the categorical basis of division of tools for the
identification of fusion transcripts.

1. Mapping and filtering: This is the initiation step in the identification of fusion
transcripts and much software are based solely on this principle. After mapping is
completed, pairs are evaluated for alignment and the irrelevant reads are removed.
This is referred to as split mapping. Example software which applies split
mapping are FusionMap and TopHat-Fusion. While some software, for example
SnowShoes-FTD, utilizes spanning reads in which all mapped reads are pre-
served without filtration. Further incorrect reads are discarded by filtering
techniques, as exemplified by FusionSeq with ten filters to remove illegitimate
fusions. One such filter is when the fusion is intrachromosomal, such that the two
genes are located on the same chromosome, and they can be recognized as a read-
through transcript. This is applied by tools such FusionMap, FusionHunter,
ShortFuse, SnowShoes-FTD, and TopHat-Fusion.

2. Fusion junction detection: This is the second step in fusion junction detection via
“split read” mapping. It involves the independent alignment of first and last
segments of the each “split read” that are generated by the discarding of
unmapped reads in the previous stage. Alignment patterns are recognized,
boundaries of the original fragments are adjusted, and realignment is performed
to accurately identify fusion transcripts. Split read mapping is influenced by the
size of partitioned segments. Small fragments not only sensitize the process but
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are also more likely to provide false-positive results. To combat this, either the
read is further split into two segments or a fixed “proposed” segment is utilized.
Spanning reads facilitate the detection of fusion breakpoints followed by extrac-
tion of candidates by split read.

3. Fusion assembly and selection: In this step, mapped reads are referred to as
“supporting reads”. Owing to the presence of fusion junctions in the insert
sequences, spanning reads also are good supporting modalities. Supporting
reads are beneficial in the sense that they help in eliminating false candidates;
however, the risk of true-positive results which are simply expressed at low levels
being removed increases at the same rate. This problem is tackled by the
availability of scoring functions in the tools. These functions are dependent on
factors like, read depth, mapping quality, and number of supporting reads. Final
scores are derived via empirical analysis (FusionSeq) or machine learning
modalities (deFuse).

Here we describe the basic applications for commonly used tools.

6.1.1.1 FusionSeq
FusionSeq is a computational suite designed to detect candidate chimeric RNA/gene
fusions through analysis of paired-end RNA seq data and offers high ease-of-use
given that it is able to function irrespective of the mapping approach. The output of
FusionSeq is a list of high confidence fusion candidates which are scored to provide
for ease of follow-up validation studies. The results are accessible through a web
browser. Drawbacks to the use of FusionSeq arise when considering the high CPU
time and memory usage, particularly when analyzing large numbers of samples in
parallel. This is because FusionSeq selects for all possible exons involved in the
junction sequence and produces a junction library from all possible pairs of “tiles”
which cover the exons and are each offset by one nucleotide. RNA-seq reads are
mapped to these junctions but particularly with higher exon counts, this approach
can be time consuming due to somewhat inefficient screening of false-positives
(Sboner et al. 2010).

6.1.1.2 TopHat
TopHat is an algorithm to identify chimeric RNA transcripts representing fusion
gene products. TopHat-Fusion is the most recent and updated version of this tool and
offers the ability to align reads across fusion junctions. The software accepts and
aligns RNA-seq reads but critically, does not rely on gene annotation. This is
relevant as it allows for the tool to identify novel fusions which are derived from
parental genes which are known, unknown, or unannotated variants of known genes
(Kim and Salzberg 2011).

6.1.1.3 JAFFA
Frequently, methods used for the identification of chimeric RNA are designed for
use with short read lengths. JAFFA is a software tool which compares cancer
transcriptomes to references, as opposed to the genome and is optimized for read
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lengths that are 100 bp or greater. The cancer transcriptome is inferred through long
reads or de novo assembly of short reads.

JAFFA operates through a pipeline in which RNA-seq reads serve as the input
and candidate fusion genes with breakpoint sequences are the output. Features
include the presence of three modes which vary in appropriateness based on input
read length: Assembly (wherein short reads are assembled de novo into contigs prior
to detecting fusions), Direct (RNA-seq reads which do not map to known transcripts
are employed), and Hybrid (combination of direct and assembly approaches)
(Davidson et al. 2015).

6.1.1.4 EricScript
EricScript (chimERIC tranSCRIPT detection algorithm) is a tool for the detection of
chimeric transcripts in paired-end RNA seq data (Benelli et al. 2012). This software
differs from other prediction tools in that it is highly efficient due to its use of an exon
junction reference which allows for reduced run times. Importantly, the package
presents scores that allow for highly efficient detection of true from false-positive
transcripts, which is a common challenge when distinguishing between potential
fusions. For researchers, this scoring mechanism allows for efficient screening of
potential output transcripts and allows for a reduced number of targets for data
analyses. A study performed by Kumar et al. identified that EricScript was distin-
guished in its balance between time and memory requirements relative to sensitivity
(Kumar et al. 2016).

6.1.1.5 SOAPfuse
SOAPfuse is an open-source tool that may be applied for the detection of fusion
transcripts from paired-end RNA-seq data inputs. It can identify features of
RNA-seq datasets such as insert size and read length, so full homogeneity of the
dataset is less critical. This software was developed in perl and is limited in that it is
only executable in Linux OS. SOAPfuse functions through alignment of RNA-seq
paired-end reads against human reference sequences to detect candidate fusions. It
employs both discordant mapping paired end reads as well as junction reads to
confirm the sites. A junction library is constructed and is used to filter out false-
positive fusions. The output of the program is a list of high likelihood fusions as well
as their locations, junction sequences with single-nucleotide resolution, and
diagrams displaying the varying location of reads relative to junction sequences
and exon expression levels. This output data allows for effective follow-up analysis
(Jia et al. 2013).

6.1.1.6 STARChip
A rapidly expanding field of research states that circular isoforms of RNA are
expressed across the genome and may be correlated with disease. The value in
detecting such nonlinear RNA alignments lies in the fact that it allows for more
rapid detection of chromosomal rearrangements which are commonly associated
with cancer. STAR Chimeric Post (STARChip) is a software package which applies
the STAR aligner to chimeric alignments in order to produce annotated circRNA and
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fusions. This tool is effective for high-dimensional datasets and offers high perfor-
mance at relatively low computing time (Akers et al. 2018).

6.1.1.7 FuSeq
FuSeq is a fusion detection method which applies a recent quasi-mapping method for
alignment which allows it to operate with far lower computational time than many
other tools. The tool functions through a pipeline for mapped read-pairs and another
junction split-reads. Following the process, false-positive results are minimized
through application of a range of filters (Vu et al. 2018). Additional tools are
summarized in Table 6.1.

6.2 Fusion Transcripts Databases

There are several fusion transcripts databases available for scientific community.
Almost all these resources are freely available, harboring the information of fusion
coordinates, tissue, condition, sample information, cancer type, etc. Our research
group also developed a database of fusion transcripts for model plant Arabidopsis
thaliana. Most popular fusion transcripts databases are mentioned in the Table 6.2.

6.3 Validation of Transcripts

Following the generation of potential fusion transcript lists, there is a wide range of
possible approaches to validating the chimeric RNA and ensuring that they are not
false-positive results. Some of the most readily applied approaches are described
below:

• In-Silico Validation: By utilizing the predicted junction sequence at the
breakpoint between parental gene sequences, it is possible to identify commonly
expressed chimeric RNA. This is performed by searching for the junction
sequence in the raw RNA sequencing reads using string-matching software.

• Validation Through Query of Online Databases: Databases containing chimeric
expressed sequence tags and junction sequences and may be queried for certain
sequences to determine if they have been previously validated. Table 6.2
describes some of these databases.

• Application of Wet Lab Approaches: Reverse-transcription polymerase chain
reaction (RT-PCR) may be used to detect and measure the expression of chimeric
RNA transcripts. After isolating RNA from a sample and creating cDNA, PCR
may be applied specifically to the junction sequence to determine expression
levels. Primers may be designed such that they flank this unique junction
sequence and allow the researcher to amplify the sequence if present.
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Table 6.1 Summarizes the tools available to identify fusion transcripts along with their
methodologies

Method Brief overview of methodology

Arriba (Uhrig 2019) Arriba extracts gene fusions from the chimeric alignments
reported by STAR (Dobin et al. 2013) by applying a collection of
filters which recognize frequent types of artifacts found in
RNA-Seq data

ChimeraScan (Iyer et al.
2011)

Identifies candidate fusions from discordant Bowtie (Langmead
et al. 2009) genome alignments. Unmapped reads are trimmed and
realigned. Junction breakpoint reads are resolved by aligning to
candidate fused exons. Fusions are filtered based on an abundance
of fusion-supporting reads

ChimPipe (Rodriguez-
Martin et al. 2017)

The GEMtools RNA-seq pipeline (GEMTools 2019) and GEM
alignment utility (Marco-Sola et al. 2012) are used to capture
discordant and chimeric read alignments, and fusion candidates
are filtered according to fusion evidence and additional gene-
based filters

deFuse (McPherson et al.
2011)

Aligns reads to spliced and unspliced gene sequences using
Bowtie (Langmead et al. 2009), resolves split read junctions using
a novel dynamic programming algorithm, and uses an AdaBoost
classifier to discriminate between likely true versus false fusions

EricScript (Benelli et al.
2012)

BWA (Li and Durbin 2009) is used to align reads to the genome.
Discordant reads are used to identify candidate gene fusions.
BLAT (Kent 2002) is then used in an iterative local alignment step
to define precise fusion breakpoints by aligning to customized
targets of fused exons. An AdaBoost classifier trained with
synthetic data is used to score and rank fusion predictions

FusionCatcher (Nicorici
et al. 2014)

Leverages a collection of alignment utilities including Bowtie
(Langmead et al. 2009), Bowtie2 (Langmead and Salzberg 2012),
BLAT (Kent 2002), and STAR (Dobin et al. 2013) with a
collection of customized target databases to identify and
characterize fusion candidates. Rigorous filtering of fusion
predictions according to gene and fusion annotations is employed

FusionHunter (Li et al.
2011)

First uses Bowtie to align reads to the genome and identify
candidate fusions based on discordant read pairs. Then creates a
“pseudoreference” by positioning candidate fusion genes with
canonical ordering, realigns reads using a custom algorithm, and
identifies both split and spanning reads providing evidence for
gene fusions

InFusion (Okonechnikov
et al. 2016)

Reads are first aligned to the reference transcriptome using
Bowtie2. Unaligned and discordantly aligned reads are further
examined in the context of the genome and transcriptome to
cluster evidence and define candidate fusions

JAFFA-Assembly
(Davidson et al. 2015)

After removing intronic and intergenic region aligning reads
defined by Bowtie genome alignments, the remaining reads are
assembled using Oases (Schulz et al. 2012) and the assembled
contigs are mapped directly to the transcriptome using BLAT.
Chimeric BLAT alignments are further assessed as fusion
candidates

(continued)
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Table 6.1 (continued)

Method Brief overview of methodology

JAFFA-Direct (Davidson
et al. 2015)

After removing intronic and intergenic region aligning reads
defined by Bowtie genome alignments, the remaining reads are
mapped directly to the transcriptome using BLAT. Chimeric
BLAT alignments are further assessed as fusion candidates

JAFFA-Hybrid (Davidson
et al. 2015)

After removing intronic and intergenic region aligning reads
defined by Bowtie genome alignments, the remaining reads are
assembled using Oases. Both the assembled transcripts and the
original reads that failed to map to the genome are then mapped
directly to the transcriptome using BLAT. Chimeric BLAT
alignments are further assessed as fusion candidates

MapSplice (Wang et al.
2010)

An RNA-seq aligner based on Bowtie similar to TopHat (Trapnell
et al. 2009) and includes fusion-finding capabilities, although
specific algorithmic details are lacking

nFuse (McPherson et al.
2012)

Designed for use with WGS-seq and RNA-seq but can be
executed with RNA-seq only, leveraging its included deFuse with
Bowtie2

Pizzly (Melsted et al. 2017) Uses a k-mer-based strategy to examine reads that do not map to
isoforms consistently via kallisto (Bray et al. 2016)
pseudoalignment

PRADA (Torres-Garcia
et al. 2014)

Reads are aligned to a combined genome and transcriptome
reference using BWA. Discordant reads identify fusion
candidates, and junction reads are identified by mapping to a
database of all possible 50-30 chimeric exon junction database

SOAP-fuse (Jia et al. 2013) The SOAP2 aligner (Hurgobin 2016) is used to map reads to
genomes and spliced transcripts to identify fusion candidates

STARChip (Akers et al.
2018)

Uses chimeric reads reported by STAR aimed primarily at
identifying circular RNAs but also reports fusion candidates

STAR-Fusion (Haas 2019a) Uses chimeric read alignments reported by STAR in its Chimeric.
out.junction file to identify candidate fusions followed by
extensive filtering of likely artifacts

STAR-SEQR (STAR-
SEQR 2019)

Uses chimeric reads reported by STAR to find fusions

TopHat-Fusion (Kim and
Salzberg 2011)

A modified execution of the TopHat aligner (Trapnell et al. 2009;
Kim et al. 2013) to examine initially unmapped reads as
supporting fusion events

TrinityFusion-C (Haas
2019b)

De novo assembles only the chimeric reads defined by STAR
using the Trinity assembler (Tomczak et al. 2015), and
subsequently leverages GMAP (Jang et al. 2020; Kim and Zhou
2019) for chimera candidate detection

TrinityFusion-D (Haas
2019b)

De novo assembles all input reads using Trinity, and subsequently
leverages GMAP for chimera candidate detection

TrinityFusion-UC (Haas
2019b)

De novo assembles both chimeric and unmapped reads defined by
STAR using the Trinity assembler, and subsequently leverages
GMAP for chimera candidate
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6.4 Conclusion

In the years following the discovery of the Philadelphia chromosome, there has been
an explosion of evidence supporting gene rearrangements as correlates and/or
causative agents of oncogenesis. This has led to databases, software tools, and
biochemical techniques which have allowed for increasingly efficient and effective
analysis of the novel field of chimeric RNA production. While the majority chimeric
RNA is of unclear functional significance, advances in genomic editing approaches
may expand the potential for novel explorations of the functional genome.

Table 6.2 Different databases available to identify fusion transcripts along with their
methodologies

Database Brief overview of database

The Cancer Genome Atlas (TCGA)
(Tomczak et al. 2015)

TCGA seeks to create a comprehensive profile of
genomic alterations associated with cancers through
profiling human tumor cohorts

ChimerDB (Jang et al. 2020) ChimerDB is one of the most comprehensive
databases available for the study of gene fusions. It
includes deep sequencing data as well as information
from publications

Fusion Gene Annotation Database
(FusionGDB) (Kim and Zhou 2019)

FusionGDP provides functional annotations as well as
information on protein structure, fusion transcript
amino acid sequences, breakpoint mapping, and the
like for a range of known fusion genes

FusionCancer (Wang et al. 2015) FusionCancer is a database based on gene fusion
identification from RNA-seq datasets in human
cancers. This is a query engine with annotated
information of cancer fusion genes and which offers
high ease of use for researchers

FusionHub (Panigrahi et al. 2018) This is a web platform which allows for querying of
multiple gene fusion databases. It allows for multiple
visualization approaches and allows for ease of
annotation

AtFusionDB (Singh et al. 2019) AtFusionDB is a comprehensive database which
contains fusion transcript information specific to
Arabidopsis thaliana. There are a variety of annotation
tools, search modules, and visualization approaches
which facilitate the study of plant genomes

ChiTaRS (Balamurali et al. 2020) ChiTaRS is an incredibly comprehensive chimeric
transcript database with annotated information from
eight species’ genomes. A number of features exist
within the database including information on
druggable fusion targets and transcripts with clinical
correlates
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