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Abstract

Cancer is a heterogeneous disease concerning molecular, functional and clinical
behaviour, and poses a challenge for timely detection and treatment. Early
detection and prognosis of cancer type may facilitate refined clinical management
of cancer treatment. Recent technological development, such as next-generation
sequencing, generated a large number of omics datasets in cancer genomics. The
genome-wide biological information, such as cancer driver mutations, aberrantly
methylated regions, gene, and miRNA expression profiles, is helpful for
predicting the cancer onset, subtypes, and treatment response and is valuable
for improving diagnosis and therapeutic and clinical decisions. In this context,
machine learning (ML) algorithms and artificial intelligence have been beneficial
and essential for the better accuracy of cancer-related predictions. Here, we
mainly focus on research based on these omics data, paying close attention to
machine learning methods. We summarize various kinds of omics data and
different ML algorithms effective in cancer prediction. We also highlighted the
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applications of the ML algorithm on genomic information in cancer, including
cancer classification, therapy response, survival, metastasis, and biomarker iden-
tification. Further we discussed the novel approaches in machine learning for
improving cancer prediction. These data-driven approaches can potentially pro-
vide a new solution for enhancing the precise treatment of cancer.

2.1 Introduction

Cancer shows significant disease burden globally due to its high prevalence and
death rate. It occurs due to the development of atypical cells that divide in an
uncontrolled manner. A central feature of cancer malignancy is metastasis. In the
metastasis stage, cancerous cells leave their pre-neoplastic lesions, enter the blood-
stream, disseminate throughout the body, and acclimate to new cellular surroundings
in a secondary site, ultimately destroying the normal body tissue (Kang and Pantel
2013; Welch and Hurst 2019). These abilities of cancer cells viz., dissemination and
invasion, eventually prove fatal to the host.

Cancer is a multistep and progressive disease in which gene expression alters
because of the accretion of numerous genetic and epigenetic aberrations within a
genome. The genomic complexity of cancer cells arises due to intrinsic factors
and/or extrinsic factors that cause gross-scale abnormalities, i.e., variation in chro-
mosome numbers (including aneuploidy and whole-genome duplication) (Hasty and
Montagna 2014). Also, small-scale/local changes, i.e., genome rearrangements
(consist of gene amplification, deletions, and non-reciprocal translocations), occurs
due to causative agents and are responsible for genomic complexity. In addition to
this, aberrant alterations in genes encoding epigenetic players that control epigenetic
mechanisms are also responsible for increasing the complexity of cancer by causing
the inappropriate onset (initiation/inhibition) of genetic expressions and promoting
tumorigenesis. The epigenetic changes modify DNA (via methylation), histones
(by post-translational modifications PTMs, namely methylation, acetylation, and
phosphorylation, etc.), and non-coding RNAs (small and long ncRNAs) regulations
and nucleosome remodeling, to form a regulatory system that controls accessibility
between DNA elements and histones/non-coding RNAs (Ilango et al. 2020; Lu et al.
2020). The epigenetic players that participate in these modifications are susceptible
to extrinsic factors, and changes caused by these players are reversible. These
genetic and epigenetic alterations are often found in two kinds of genes, namely,
proto-oncogenes and tumor suppressor genes. The activation changes like gain-of-
function mutations and hypomethylation converts the proto-oncogenes into
oncogenes (OGs), which are overactive positive cell cycle regulators responsible
for cell survival, growth, and division, ultimately leading to cancer progression. The
changes like loss-of-function mutations, epigenetic silencing like hypermethylation,
proteasomal degradation by ubiquitination, and abnormal cellular localization of
tumor suppressor genes (TSGs) leads to their inactivation. As a consequence of this,
tumor development occurs due to elimination of negative regulatory proteins that
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usually restrict cell growth (by apoptosis or activating DNA repair and cell cycle
checkpoint) (Wang et al. 2018; Kontomanolis et al. 2020). Numerous studies have
been done for identifying the genetic and epigenetic changes in different cancer
types. For example, glioblastoma is associated with genetic alterations in the number
of tumor suppressors, viz., PTEN, TP53, PIK3R1, NF1, RB1, and oncogenes, i.e.,
EGFR, PIK3CA, and IDH1 (Zhang et al. 2019a). The other tumor suppressor genes
such as BRCA1/2, P53, PTEN, ATM, Rb, LKB, Nm23, P16, and oncogenes like
HER2, c-MYC, and ERBB2, MYC, PIK3CA are very frequently mutated in breast
cancer (Oliveira et al. 2005; Perera and Bardeesy 2012).

The complexity of cancer is further enhanced due to tumor heterogeneity that can
occur during cancer evolution. Tumor heterogeneity is of two types as follows:
(a) Intra-tumor heterogeneity, in which subsets of cancer cells within a tumor of a
single patient possess discrete phenotypic and molecular characteristics and
(b) Inter-tumor heterogeneity, which comprises tumor genotype variations among
tumors of the same histological type between different patients (Meacham and
Morrison 2013). This heterogeneity can arise from genetic, epigenetic,
transcriptomic, or phenotypic changes (McQuerry et al. 2017). Genomic-level
studies of tumor heterogeneity showed that cells in a tumor are highly diverse,
spatio-temporally by analyzing their genetic variations like single-nucleotide
variants (SNV), insertion–deletion mutations (indels), and copy number variation
(CNV) (Murtaza et al. 2015; Li et al. 2017). Several studies provided information on
epigenetic heterogeneity by inspecting DNA methylome and micro-RNA (miRNA)
pools (Liu et al. 2018; Dietz et al. 2019; Wang et al. 2019; Guo et al. 2019; Alfardus
et al. 2021). Studies of tumor heterogeneity at the transcriptome level revealed
variation in the gene expression pattern of particular pathways like cell cycle,
MAPK signaling pathway, immune/complement system pathways, and biological
programs, namely hypoxia and epithelial–mesenchymal transition (EMT) (Patel
et al. 2014; Zhang et al. 2016). Some studies supported the proteomic heterogeneity
of tumors, but it is less prominent than genomic and transcriptomic heterogeneity
(Ahmed et al. 2016; Sood et al. 2016). Tumor heterogeneity also includes heteroge-
neity of the tumor microenvironment (consists of endothelial cells, fibroblasts,
adipocytes, immune cells, mesenchymal stroma/stem-like cells, and extracellular
matrix), that sends physical and chemical signals to tumor cells and influences
epigenetic machinery (Hass et al. 2020). Such a dynamic and highly variable nature
of cancer hinders diagnosis and prognosis and leads to treatment resistance, relapse,
and eventually death (Dagogo-Jack and Shaw 2018; Marusyk et al. 2020). Hence,
understanding the mechanism of cancer development at different biological levels
and early prediction of cancer may help in designing better therapeutic strategies.

2.2 Omics Data in Cancer Research

Advancements of high-throughput sequencing (or next-generation sequencing,
NGS) techniques and the availability of omics data provide genome-wide
measurements of genomic features (including genetic variants, DNA methylation,
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and transcripts etc.) at various levels and resulted in remarkable progress in cancer
research. Several databases are available online which provide free access to geno-
mic information related to cancer. Among these, a few popular and important
resources are listed in Table 2.1.

In order to properly analyze various kinds of omics data and to perform explor-
atory analysis, several computational tools are freely available online (see
Table 2.1). Integration of different omics data will decode interrelationships between
these features and their functions. This holistic approach seems to be promising to
understand cancer development, recurrence, therapy response, and patient survival.
The subsequent sections will discuss different types of omics data produced by
various high-throughput sequencing approaches.

2.2.1 Genomic Data

Genomic information helps to unravel functional information present in DNA
sequences.

2.2.1.1 Genomic Variation Data
Genetic variation is an alteration in the nucleotide order of DNA sequences that
occur either due to mutation or genetic recombination. It can be grouped into
following classes on the basis of size: (1) Small-scale sequence variation (<1 kb)
consists of single-nucleotide variants (SNV), single nucleotide insertions/deletions
(indels), etc., (2) Large-scale structural variation includes copy number variations
(CNV) (loss or gain) and chromosomal rearrangement (genomic inversions,
translocations) (Cardoso et al. 2015). SNVs are the most prevalent variants and
can be present in different genomic locations: (1) protein-coding sequences,
(2) non-coding regions like splice sites, promoters, ribosome binding sites, etc.
Indels cause frameshift mutations within a coding region, whereas chromosomal
rearrangements affect the spatial organization of chromosomes and cause nuclear
reorganization. This kind of genomic variation is a fundamental constituent of
genomics data and provides an opportunity to explore associations between genes,
tissues, individuals, and phenotypes. DNA-sequencing (DNA-seq) techniques have
been used to study genomic alterations, which include whole-genome sequencing
(WGS), whole-exome sequencing (WES), and targeted massively parallel sequenc-
ing (TS) (Lightbody et al. 2019). WGS technique analyzes entire genomes and
allows investigation of changes within coding and regulatory sites (Meienberg
et al. 2016). It offers identification of CNVs, chromosomal rearrangements, and
other structural variations that may be missed by targeted sequencing. This tech-
nique provides global insight into novel genomic changes in cancer samples as it
gives the base-pair resolution of complete cancer genome in a single run (Zhao et al.
2019). Yates et al. (2017) performed WGS of primary as well as metastatic tumor
samples of breast cancer and observed that cell clones causing metastasis or relapse
migrate late from the primary tumors; however, they constantly gain alterations,
mostly in the same biological process as the primary tumor. Another WGS study of
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Table 2.1 Resources (data repositories and analysis tools) for cancer genomics study

Database/tools Features Link References

The Cancer Genome
Atlas (TCGA)

Exhaustive data repository of
genomic, epigenomic data of
cancer and control samples

https://portal.gdc.
cancer.gov/

Tomczak
et al. (2015)

Gene Expression
Omnibus (GEO)

Public repository of genomic
and proteomic data from
array- and sequencing-based
techniques

https://www.ncbi.
nlm.nih.gov/geo/

Barrett et al.
(2012)

International Cancer
Genome Consortium
(ICGC)

Data portal consists of
somatic mutations and
molecular data of major
tumor types for competent
visualization and analysis

https://dcc.icgc.
org/

Zhang et al.
(2019b)

Database of DNA
methylation and gene
expression in human
cancer (MethHC)

DNA methylomes and
mRNA/microRNA
expression database;
provides clinical and
genomic variation data;
multiplicity of information
present

https://awi.cuhk.
edu.cn/~MethHC/
methhc_2020/php/
index.php

Huang et al.
(2021)

The database of human
DNA methylation and
cancer (MethyCancer)

Database comprises of DNA
methylation data, cancer-
related gene and mutations;
also provides an efficient
visualization tool,
MethyView

http://
methycancer.
psych.ac.cn/

He et al.
(2007)

Chinese Glioma
Genome Atlas (CGGA)

Database contains mRNA/
miRNA expression profiles
and DNAmethylation data of
brain tumors from Chinese
cohorts

http://www.cgga.
org.cn/

Zhao et al.
(2021)

UCSC Xena Graphical viewer for gene-
and genomic-coordinate
across multiple data types of
tumors

http://xena.ucsc.
edu/

Goldman
et al. (2020)

cBioPortal Data portals provide genetic
alterations across samples,
genes, and pathways by
analyzing multi-omics cancer
data

https://www.
cbioportal.org/

Gao et al.
(2013)

SomamiR Comprehensive resource for
somatic and germline
alterations in miRNA and
their target sites in cancer

https://compbio.
uthsc.edu/
SomamiR/

Bhattacharya
et al. (2013)

Database of Epigenetic
Modifiers (dbEM)

Data resource for genomic
information of epigenetic
modifiers in cancer and
healthy samples

https://webs.iiitd.
edu.in/raghava/
dbem/

Nanda et al.
(2016)
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glioblastoma (GBM) tumors identified novel non-coding constraint mutations for
GBM-associated genes (Sakthikumar et al. 2020). In contrast to WGS, targeted
sequencing approaches examine specific genomic regions of interest for the detec-
tion of rare variants and include WES and TS. WES covers coding genomic portions
(i.e., genes and their flanking regions) to find out disease-causing variants in these
portions (Gupta et al. 2017; Mueller et al. 2018). Mainly, WES is useful for
identifying indels and SNV/SNPs inside the genome’s coding sites. TS technique
is helpful when prior information of disease is available and performed on particular
locations of the genome (Davis et al. 2021). Recently, Weigelt et al. (2018)
performed WES of breast tumors and TS of 410 breast cancer genes to investigate
the somatic changes and the phenotypic characteristics associated with breast cancer
which is originated from ataxia–telangiectasia (ATM) germline mutation. Garrett
et al. (2020) carried out WES study of GBM tumor samples to analyze their genetic
profile and correlated this information with drug treatment response to develop
personalized treatments against GBM. Targeted sequencing was used to identify
somatic mutations and CNV alterations in 30 genes which are most frequently
altered in gliomas in order to detect biomarkers associated with the long-term
survival of GBM patients (Cantero et al. 2018).

2.2.2 Epigenomic Data

Epigenomic information is useful to map the dynamic state of the genome in order to
elucidate phenotypic characteristics observed via gene expression studies.

2.2.2.1 DNA Methylation Data
DNA methylation process is an epigenetic mechanism which incorporates a methyl
(CH3) group into the cytosine residue of DNA via the action of DNA
methyltransferase enzymes. It controls gene expression and chromatin remodeling
by influencing the interactions of DNA with histone or specific transcription factors.
Whole-genome bisulfite-sequencing (WGBS) is a high-throughput technique used to
quantify genome-wide DNA methylation. It provides a higher resolution to allele-
specific DNA methylation as compared to DNA methylation assays and DNA
microarrays. This technique allows identification of differentially methylated
positions (DMPs) and differentially methylated regions (DMRs) which are the
genomic positions/regions having distinct of DNA methylation levels in various
biological circumstances (Wu et al. 2015). These DMPs and DMRs in disease
conditions are useful for the development of potential epigenetic biomarkers
which may help in early detection and diagnosis. The methylation changes in
circulating DNA of metastatic breast cancer were studied using WGBS and found
21 DNA hypermethylation hotspots that could be potential blood-based biomarkers
(Legendre et al. 2015). Bam et al. (2021) analyzed the global methylation status of
both tumor-infiltrating and blood CD4+ T-cell from glioblastoma patients. The study
found that the epigenetic modifications in tumor-infiltrating helper T-cells are
affected by tumor cells.

28 P. Gawade et al.



2.2.2.2 Histone Modification Data
Chromosomal DNA tightly wraps around histone proteins and forms a chromatin
structure in the nucleus. The post-translational modifications (PTMs) of histone
proteins are crucial in chromatin remodelling which influence transcription. There
are two mechanisms by which histone modifications exert their effect: (1) by directly
altering overall chromatin structure either over short or long distances and
(2) regulating (either positively or negatively) the binding of histone modifiers
(Bannister and Kouzarides 2011). The detection of various histone modifications
enables a greater understanding of epigenetic regulation and leads to the develop-
ment of therapeutic strategies against histone-modifying enzymes. Chromatin
immunoprecipitation-sequencing (i.e., ChIP-seq), an effective method for detecting
DNA, targets for histone modifications as well as for transcription factors (TFs) at
genomic scale with base-pair resolution (O’Geen et al. 2011). It identifies differences
in the histone modification patterns which help in understanding epigenetic
mechanisms that regulate various biological processes in diseases and thus a power-
ful tool to analyze chromatin structure and gene expression. ChIP-seq data also
reveals how the genome is organized and the functional domains across the entire
genome which aid in predicting and validating a set of large, non-coding RNAs. Xi
et al. (2018) used the ChIP-seq technique to profile the distributions of 8 key histone
modifications (i.e., H3K4me1, H3K4me3, H3K9ac, H3K9me3, H3K27ac,
H3K27me3, H3K36me3 and H3K79me2) across 13 breast cancer cell lines and
from the epigenetic landscape of 5 molecular subtypes of breast cancer defined
subtypes-specific key chromatin signatures to determine potential biomarkers. ChIP-
seq analysis of histone H3 Lys27 acetylation (H3K27ac) revealed that alteration in
the metabolite acetyl-CoA stimulates site-specific regulation of H3K27ac through
which acetyl-CoA impacts the expression of distinct sets of genes associated with
malignant phenotypes of glioblastoma, i.e., cell adhesion and migration (Lee et al.
2018).

2.2.3 Transcriptomics Data

Gene expression data are useful to obtain information on the abundance of complete
sets of RNA transcripts that are produced by the genome within a biological sample
simultaneously.

2.2.3.1 Transcript Profiling Data
The RNA molecules are used to form proteins that serve a crucial part of the cell.
Thus, RNA expression reveals active transcription of cell and core activities in cells
and tissue under specific conditions. Different types of RNA molecules present in
eukaryotic cells play different biological functions like: mRNAs—carry the genetic
blueprint from a cell’s DNA to its ribosomes to make protein; microRNAs
(miRNAs)—involve in gene silencing by repressing translation; long ncRNAs
(lncRNAs)— involve in regulating chromatin function, modulating mRNA transla-
tion and also interfere with signalling pathways by acting as decoys, scaffolds or
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enhancer RNAs. RNA sequencing (RNA-seq) technique is useful to study expres-
sion level of transcripts under particular conditions, namely, different environmental
conditions, disease scenarios, and therapeutics exposure etc. Analysis of
transcriptome data reveals which genes are activated or silent in cells/tissue (quali-
tative information) and to what extent genes are expressed (quantitative information)
(Wang et al. 2009). RNA-seq methods provide information on differentially
expressed genes to detect both known and novel transcripts. The profiling of
mRNA molecules can be done using several RNA-seq assays viz., mRNA-seq,
single-cell RNA-seq (scRNA-seq), strand-specific RNA-seq, ultra-low input
RNA-seq and isoform sequencing (Iso-seq). However, the small RNA-seq technique
is useful for expression profiling of small non-coding RNAs (like miRNA, siRNA,
and piRNA). Total RNA-seq technique provides genome-wide expression data of
both coding and non-coding RNAs. For example, using total RNA-seq technology,
miRNA associated with metastatic breast cancer response to systemic treatment was
identified based on miRNA count (Martinez-Gutierrez et al. 2019). Gao et al. (2021)
showed that circular RNA (circRNA)-encoded unique E-cadherin variant circ-E-
Cad (C-E-Cad) activates oncogenic EGFR signalling by directly binding to it and
contributes to glioma stem cell tumorigenicity. Recently, Ren et al. (2021) discussed
usage of scRNA-seq technology in breast cancer heterogeneity, metastasis, drug
resistance, and prognosis and highlighted the importance of scRNA-seq for devel-
opment of better treatment strategies.

High-throughput technologies generate massive amount of omics data which
present a challenge due to its high dimension and redundancy. There is still a gap
in understanding of these data that are often publicly and freely available. The
traditional simplex classification algorithms are not suitable to handle large data
sets as they contain a small sample size and large gene count. In this scenario,
machine learning-based methods provide an excellent tool for analyzing such large
and complex data, thus promoting clinical diagnosis and precision medicine against
cancer.

2.3 Machine Learning Approaches

Nowadays, machine learning (ML), a subset of artificial intelligence (AI), is exten-
sively applied in growing areas of healthcare, like medical imaging and gene
expression pattern analysis, etc. and is extremely useful for high-dimensional data
analysis and prediction. It is a data driven approach, which handles large datasets and
automatically learns inherent patterns in the data that are useful to make decisions for
new sets of data (Witten and Frank 2000). These characteristics make ML a suitable
approach to design effective strategies for cancer diagnosis and treatment. Recent
developments in ML models have indicated pronounced potential in preclinical
conditions. The following sections give details of machine learning algorithms and
their applications in cancer research.

The terminologies used in machine learning are mentioned below:
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Dataset: It is a matrix containing features from which the machine learns and
class label/target to predict. Each column in the matrix represents a feature or target,
whereas each row represents an instance/observation. An initial dataset from which
the model learns any relationships between features and targets during model
training is called as training dataset. However, testing dataset is a subset of data
which is not provided during model training but is useful for unbiased model
evaluation by comparing predictions with the true value of the dataset.

Instance: An observation or data point is denoted as instance.
Feature/Attribute/Variable: This describes instances by measurable values and

acts as input for prediction.
Target/Class Label: A value of an observation that a machine learns to predict is

called as target or class label. For example, molecular subtype identification of breast
cancer is a multi-classification task. Here, four class labels, i.e., luminal A,
luminal B, HER2, and triple negative, are available.

Cross-Validation (CV): It is a technique that uses a subset of the original dataset
for model training and utilizes other subset for model evaluation. This is generally
useful to reduce model overfitting during training time. This method generates a
fixed number of subset (fold) of data and performs the analysis for each subset.
Further, it averages the final error estimate. Types of cross-validation methods are
mentioned below.

a) k-Fold Cross-Validation: The k-fold cross-validation method performs random
splitting on the original dataset to generate k equal size subsets and uses (k – 1)
subsets for training. For the testing purpose, it uses one subset.

b) Leave One Out Cross-Validation: The “leave one out cross-validation”method
selects one instance from the original dataset for testing and the remaining instances
for model training. The iteration is performed for each instance, and the final
outcome is the average of results obtained from each iteration.

c) Bootstrap Cross-Validation: In this method, the complete original dataset is
used for model training with sample replacement technique, and the remaining
instances are used for model testing.

Machine learning algorithms are mainly grouped into following three categories
on the basis of the availability of class labels/targets (Kotsiantis et al. 2007).

1. Supervised Learning Algorithms: It uses known targets during training and a
model learn the relationship between features and targets. This information can be
used for predicting unknown instances.

2. Unsupervised Learning Algorithms: Targets for unsupervised machine learning
algorithms are unknown. It is used to find hidden structures/patterns or groups of
similar samples during training the model. For clustering and pattern detection in
biological research, these algorithms are mostly applied and also, useful for
identification of gene signature in cancer and survival prediction.

3. Semi-Supervised Learning Algorithms: In this case, limited class labels are
available, and thus, both labeled and unlabeled data are used during model
building to improve accuracy. These algorithms are self-learning and show
great potential in cancer prediction problems.
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Depending on the nature of target values, above-discussed ML algorithms are
further divided into either classification or regression type. The classification
algorithms are used to predict categories of new instances by training the input
dataset. However, regression algorithms learn from input datasets and then predict
the outcome for continuous values. The schematic representation of machine
learning workflow in the case of cancer prediction is given in Fig. 2.1.

The commonly used methods during model construction for improving model
performance are discussed below.

2.3.1 Feature Selection Methods

Post-genomics era generated a large amount of transcriptomic, mutational, copy
number variation (CNV), DNA methylation, histone modification, and miRNA
expression data from various high-throughput techniques when applied on cancer
cell lines or patients. These different types of data act as features in machine learning
models and hold predictive power. To improve prediction accuracy, the feature
selection method selects relevant features and removes irrelevant features present

Fig. 2.1 Schematic overview of a machine learning workflow for cancer prediction using multi-
omics data. Cancer patient’s omics data, i.e., genomics, epigenomics, and transcriptomics, can act
as input for machine learning models. Once a model is trained, it can be used to make predictions
like cancer classification and drug response etc. for new patient’s data
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in the original dataset without changing its original value. This method is very
important when a dataset contains a large number of features. In such cases, there
is no need to give every feature to the algorithm but only important ones for model
prediction. This step will make the algorithm to perform fast, and will decrease the
model complexity, increase model accuracy, reduce overfitting and simplify
interpretation.

The feature selection is mainly grouped into three classes, namely, filter, wrapper,
and embedded (Hira and Gillies 2015).

Filter Method: This feature selection algorithm employs some ranking over
features that decide the importance of each feature for prediction. In this way, it
selects best N features without depending on any ML algorithms. This method is
used as pre-processing step. Few examples of this method are Pearson’s correlation,
t test, variance thresholds, information gain (IG), and Bayesian networks.

Wrapper Method: This method selects the best N features using machine learning
classifiers. It uses forward selection or backward elimination or bi-directional elimi-
nation techniques to decide which features to retain or remove.

Embedded Method: It combines the filter and wrapper techniques to check feature
importance. This method is useful for avoiding the overfitting. The gradient boosting
machine (GBM), ridge regression, recursive feature elimination (RFE), and LASSO
are few examples of embedded feature selection algorithms.

2.3.2 Dimension Reduction Methods

In model construction, the feature selection method selects a subset of relevant
features, resulting in a reduction in the dataset’s dimension. It retains a subset of
original features. However, in the case of high-dimensional data (i.e., 100 or 1000
features), the dimension reduction approach is used to reduce the high number of
features into low numbers by transforming the original values. The implementation
of this method will reduce computational time and provide quick visualization. Few
commonly used dimension reduction techniques are, principal component analysis
(PCA) (Pearson 1901), metric dimensional scaling (MDS) (Torgerson 1952), and
t-distributed stochastic neighbor embedding (t-SNE) (Hinton and Roweis 2002). The
high-dimensional data in the biological area like high-throughput gene expression
data, can be analyzed using the above techniques, and some of them are discussed
below.

Principal Component Analysis (Pearson 1901): This method uses the orthogonal
transformation process to convert instances of correlated features into a group of
linearly uncorrelated features. In this way, it reduces the dimension of the dataset
with the most negligible information loss, and newly formed features are known as
principal components. If data are nonlinear, kernel PCA is beneficial with nonlinear
kernel mapping. PCA works well on the dataset which shows the Gaussian
distribution.

Metric Dimensional Scaling (Torgerson 1952): This statistical method uses data
that contains dissimilarities among pairs of instances. MDS denotes these
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dissimilarities as distances among instances and obtain low dimension data points
from the high-dimensional dataset by keeping pairwise distances the same.

2.3.3 Overview of Machine Learning Algorithms

2.3.3.1 Supervised Machine Learning Algorithms
Supervised machine learning algorithms have been used for cancer diagnosis and
prognosis. Different supervised ML algorithms are available to analyze multi-omics
data with categorical and quantitative variables in cancer research and build predic-
tion models. Omics data of individual cancer patient at variety of molecular levels
can also be used with these classifiers to develop personalized predictions; they are
also useful for personalized predictions models. A detailed description of some of
the supervised ML algorithms useful in cancer prediction/prognosis is given below.

Support Vector Machine (SVM)
SVM is a commonly applied supervised machine learning algorithm that searches
hyperplane with maximal separation from each data class. Vapnik first described
such a kind of classifier to classify data classes using only a hyperplane (Cortes and
Vapnik 1995). The general principle of SVM is presented in Fig. 2.2a. SVM uses a
multidimensional function known as kernel to transform input data points from the
feature space to target space so as to differentiate complex real-life datasets. The
classification, as well as regression problems, can be solved using SVM. The proper
selection of kernel functions and their parameters significantly helps to improve the
model performance.

The following function describes SVM:

min
1
2

wk k2 þ C
Xn

i¼1

ξþi þ ξ�i
� �

s:t:

yi � f xið Þ � εþ ξþi

yi � f xið Þ � �ε� ξ�i

ξþi , ξ
�
i � 0

8
>><
>>:

,

where f, y, and ε represent prediction, actual class label, and free threshold parame-
ter, respectively. The constant C is a coefficient of adjustment between the margin of
separation and error on the hyper-plane. The ξþi and ξ�i parameters representing
slack variables for error calculation.

Naive Bayes (NB)
Naive Bayes, another supervised ML algorithm (Rish 2001), is a probabilistic
method based on Bayes’ law. It assumes that a particular feature in a class is
independent of another feature in the same class and each feature is equally
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contributing to target class. See Fig. 2.2b. This algorithm is used for classification
purposes.

Naïve Bayes classifier can be defined as follows:

p E ¼ 1jFð Þ ¼
p E ¼ 1ð ÞQ

n

i¼1
p f ijE ¼ 1ð Þ

p Fð Þ ,

where, F ¼ ( f1, f2, . . .. . .fn) denotes all the features, p(E ¼ 1) is obtained from a
training set and known as target class prior probability, p(F) is the feature prior
probability, p( fi|E ¼ 1) is likelihood that is probability of feature given target, and
p(E ¼ 1|F) is the posterior probability of target class given feature.

The below function finds class with maximum probability:

Fig. 2.2 The basic principles of different types of machine learning algorithms. (a) Support vector
machine (SVM), (b) Naive Bayes, (c) logistic regression, (d) artificial neural network (ANN), (e) k-
nearest neighbors (KNN), (f) decision tree, (g) random forest, (h) CN2, and (i) Laplacian SVM
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classify f 1, f 2, . . . ::f nð Þ ¼ argmax
E¼1, 0

p Eð Þ
Yn

i¼1

p f ijEð Þ:

Logistic Regression Classifier
Logistic regression is a classification algorithm utilized for probability prediction of
target class by logistic function (refer Fig. 2.2c). To use this algorithm, the target
class must be categorical, and multi-collinearity should not be in features. This
classifier helps to detect the best fitting model so as to represent the association
between features and the target class.

The logistic function with the feature set F ¼ {f1, f2, . . .. . .. . .. . . ., fn} is

p E ¼ 1jFð Þ ¼ 1
1þ e� β0þβ1f 1þ...::βnf nð Þ :

Artificial Neural Networks (ANNs)
ANN (Hagan et al. 1997), also known as a neural network or simulated neural
network (SNN), simulates behaviour of the human nervous system. This computa-
tional network comprises numerous interconnected layers (i.e., multi-layer
perceptron) that learn (without any programming), generalize training data, and
give output from complex data. It mainly contains three layers, namely, (1) input
layer, only one input layer in which input data are fed, (2) hidden layers, one or more
hidden layers in which processing takes place to derive results based on the weighted
sum of connections, and (3) output layer, demonstrating the results. Each layer
consists of multiple processing units called nodes, which possess an “activation
function” that converts input signal to output signal. Model performance gets
affected by the number of nodes and hidden layers. Figure 2.2d shows the computa-
tional scheme of ANN.

ANN’s objective function is as follows:

argmin
w

E wð Þ ¼ 1
2

Xm

i¼1

N w, xið Þ � yið Þ2,

where x, w, and y represents input vector, weight between nodes, and target vector,
respectively. ANN algorithms are useful for prediction, classification, regression,
and pattern recognition.

k-Nearest Neighbors (KNNs)
The k-nearest neighbors are a distance-based algorithm as it first finds all the closest
points around new unknown data point and calculates the distance between them to
determine the class of new data points (Aha et al. 1991) (shown in Fig. 2.2e). The
number of closest points near new unknown data points is denoted as “k” symbol,
and fine-tuning of this value improves the model performance. This method helps to
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solve the classification task by considering the majority of votes, while for the
regression problem, KNN takes the mean for all the closest points.

Decision Trees (DTs)
Decision tree, a supervised machine learning algorithm, is a tree-structured classifier
that continuously divides the data based on specific parameters. This classifier starts
with the root node (i.e., entire dataset), which further expands based on features into
a number of branches (represent decision rule) and finally forms leaf nodes (viz.,
final outcome) (Breiman et al. 2017). Figure 2.2f illustrates the decision tree
classifier. Decision tree has two types as follows: (1) classification tree (for categori-
cal class variable) and (2) regression tree (for continuous class variable).

The following measures in a decision tree are used to check the impurity of a node
t:

Entropy tð Þ ¼ �
X

i2 0, 1ð Þ
p ijtð Þ log 2p ijtð Þ

Gini tð Þ ¼ 1�
X

i2 0, 1ð Þ
p ijtð Þ½ �2

Classification error ¼ 1� max i p ijtð Þ½ �:
The gain ratio is as follows:

¼
IðparentÞ �Pn

i¼1

NðchildiÞ
N IðchildiÞ

�Pn

i¼1
pðchildiÞ log 2pðchildiÞ

:

In the decision tree, the gain ratio is used to measure the goodness of a node’s
split. This measure decides which feature in a tree should be the parent node and
which should be set down after being split as a child node.

Random Forest (RF)
As the name suggests, the random forest comprises multiple decision trees and can
provide more accurate predictions by combining all of them (Fig. 2.2g). However,
this algorithm solves the problem of overfitting associated with the decision tree.
Each decision tree in a random forest makes prediction of a class, and the class with
highest number of hits will be the prediction of model. If an optimal classifier is
unfeasible, a random forest classifier is especially helpful (Ditterrich 1997; Breiman
2001). This classifier applies bagging and feature randomness to generate uncorre-
lated trees in a forest, ultimately giving a more accurate and stable result. It is used to
solve classification and regression problems.
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CN2 Classifier
The CN2 algorithm induces classification rules “if. . .then..” from data using entropy
(Clark and Niblett 1989). This classifier is used only for classification purposes and
works well with imperfect/noisy training data. Figure 2.2h gives the schematic
representation of this classifier.

The advantages and disadvantages of above supervised ML algorithms are given
in Table 2.2.

2.3.3.2 Semi-Supervised Classifier
Semi-supervised ML algorithms use a combination of supervised learning on a small
amount of labeled data and unsupervised learning on large amount of unlabeled data
(Chapelle et al. 2009). This approach is applicable when a large number of labeled
data is not available and overcomes the drawbacks of supervised (i.e., require
sufficient labels and costly process) and unsupervised (i.e., limited range of
applications) algorithms. This algorithm works on the basis of any of these three
assumptions, viz., (1) continuity assumption, data points around each other belong to
the same class; (2) cluster assumption, data can be split into distinct clusters and data
points in the same cluster tend to share class; and (3) the manifold assump-
tion, assumes that data points are present on the manifold of lower dimensions
than input space. The manifold assumption is useful in condition where data points
may locate in high dimensions, and is very difficult to map data points in those
dimensions. Semi-supervised classifier includes Laplacian SVM, generative models,
and transductive SVM.

Laplacian SVM
Laplacian support vector machine (LapSVM) is based on a support vector machine
algorithm and obeys manifold regularization (Belkin et al. 2006). This is a graph-
based approach in which nodes are formed from labeled and unlabeled data. The
KNN algorithm is employed to compute edge weight to define similarity between
data points in a graph. Through this procedure unlabeled nodes can be labeled by
transferring the information of labeled data points to other nodes. See Fig. 2.2i for
pictorial representation of LapSVM.

LapSVM solves the following optimization problem.

argmin
f2Hk

1
nl

Xni

i¼1

1� yif xið Þj jþ þ λa fk k2K þ λb
nl þ nuð Þ2 � f TLf ,

where fk k2K , nl, nu are a regularization function for smoothness, number of labeled
data points, number of unlabeled data points, respectively, and λa, λb are
hyperparameters.

loss function ¼ 1� yif xið Þj jþ ¼ max 0, 1� yf xð Þð Þ,
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Table 2.2 Advantages and disadvantages of different supervised ML algorithms

Algorithm
name Advantages Disadvantages

Support
Vector
Machine
(SVM)

• High prediction accuracy
• Handle high-dimensional space
• Generalized well with small
amount of data
• Less prone to condition of
overfitting
• Less influence of outliers

• Extensive memory required for
optimization
• Not appropriate for large datasets
• High time complexity
• Selection of proper kernel function
is challenging
• Difficult to fine-tune some hyper-
parameters

Naive Bayes • Its implementation is easy and
simple
• Computationally very fast
• If conditional independence
assumption holds, it quickly generates
outcomes
• Works well with categorical and
continuous data

• The conditional independence
assumption does not always hold in
the complex biological problems
• Not suitable for imbalanced data
• Shows decrease in performance
with increase in sample size of dataset

Logistic
regression
classifier

• Simplest algorithm to use
• Very fast
• Do not suffer from overfitting in
case of low-dimensional dataset
• Very efficient for linearly-
separable dataset

• Causes model overfitting on high-
dimensional dataset
• Shows decrease in performance
with increase in number of samples
and features in dataset
• Not suitable for non-linear data
• Sensitive to outliers

Artificial
Neural
Network
(ANN)

• Robust to noise
• Shows good fault tolerance
• Works well on complex nonlinear
association among dependent and
independent features
• Able to perform parallel processing

• Training performance increases
with increase in training dataset
• Unexplained functioning
• The algorithm may be stuck into
local minima
• Hardware dependent
• Long training time is required
• Difficult to determine network
structure
• Suffers from overfitting

k-Nearest
neighbors

• Implementation is simple and easy
• Fast, as no training time is require
• Highly reserved for local
information
• Versatile as it performs
classification, regression, and search
tasks
• Analytically tractable

• Huge storage space requires
• Different values of k give different
outcomes
• Takes long computation time for
large dataset
• Larger k values increase the time
complexity
• Sensitive to noisy data and outliers
• Difficult to work with high
dimensional data
• Standardization and normalization
steps require

Decision
Trees

• Simple, easy to understand and
interpret
• Can handle irrelevant features and
nonlinear associations

• Small changes affect stability of
decision tree structure
• Suffer from overfitting without
proper tree pruning

(continued)
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Xn

i, j¼1

Wij f xið Þ � f xj
� �� �2 ¼ f TLf ,

Wij, is the edge weights in the graph,
Laplacian operator, L ¼ D � W.

This classifier is less vulnerable to overfitting, robustness to noise and outliers,
and has high prediction power and good generalization ability with small labeled
data. However, it does not work well with large number of data points because it
needs high memory to construct a graph and is time-consuming.

2.3.4 Model Performance Evaluation

The major part of building an effective ML model is evaluation of model’s perfor-
mance. ML requires evaluation metrics for selecting the best model. Following are
the primary building blocks of several evaluation metrics, formed from confusion
matrix, which is obtained from actual and predicted class labels:

True Positive (TP): It represents an outcome in which positive samples are accu-
rately predicted as positive by the model.

True Negative (TN): It represents an outcome in which negative samples are
accurately predicted as negative samples by the model.

Table 2.2 (continued)

Algorithm
name Advantages Disadvantages

• Not sensitive to missing values
• Runs fast
• No normalization and scaling
require
• Data preparation takes less efforts

• Stuck in local minima
• Not suitable for regression
problem and prediction of continuous
values
• Difficult to find optimal decision
tree

Random
Forest

• High predictive performance
• Works well with both classification
and regression problems
• Efficiently handles large datasets
• Reduces overfitting and variance
• Easy to understand model
predictions

• Complex thus requires more
computational power and resources
• Suffers from overfitting for noisy
datasets
• Takes more time than decision tree

CN2
classifier

• Implementation is simple and easy
to understand
• Can handle irrelevant features and
nonlinear relationships
• Works fast

• In case of large number of
features, difficult to define rules for
training datasets
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False Positive (FP): It represents an outcome in which negative samples are
incorrectly predicted as positive by the model.

False Negative (FN): It represents an outcome in which positive samples are
wrongly predicted as negative samples by the model.

Based on these 4 outcomes, model performance metrics are given below.

True-Positive Rate (TPR) (Also Known as Sensitivity): The probability that positive
samples will predict positive.

True Positive Rate TPRð Þor Sensitivity ¼ TP
TPþ FN

, TPR 2 0, 1½ �:

False-Positive Rate (FPR): The probability that negative samples will predict
positive.

False Positive Rate FPRð Þ ¼ FP
FPþ TN

, FPR 2 0, 1½ �:

Precision: It estimates positive sample predictions that are genuinely from the
positive class label.

Precision ¼ TP
TPþ FP

, Precision 2 0, 1½ �:

Recall: It estimates positive sample predictions from all actual positives.

Recall ¼ TP
TPþ FN

, Recall 2 0, 1½ �:

F-Measure: It balances precision and recalls both together to provide a single score.

F‐measure ¼ 2 � Precision � Recallð Þ
Precisionþ Recallð Þ , F‐measure 2 0, 1½ �:
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Accuracy: It gives the total correct predictions (TP + TN) made by the model.

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

, Accuracy 2 0, 1½ �:

The Area Under the Receiver Operating Characteristic Curve (auROC): It shows
whether the model is capable of correctly discriminating between class labels.

auROC 2 0, 1½ �:

Matthews Correlation Coefficient (MCC): It computes the correlation between
actual and predicted labels and is calculated by the following formula.

MCC ¼ TP � TNð Þ � FP � FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ � TPþ FNð Þ � TNþ FPð Þ � TNþ FNð Þp , MCC 2 �1, 1½ �:

Sufficient labeled data should be available to get statistically significant measures.
The above performance metrics are useful to evaluate various ML algorithms to
check how good the model is in predicting the outcome.

To implement different machine learning algorithms, various functions are avail-
able in scikit-learn (Python) (Pedregosa et al. 2011; Kramer 2016), e1071
(R) (Dimitriadou et al. 2008; Meyer et al. 2019), and Weka (Java) (Witten et al.
1999; Dimov et al. 2007).

2.4 Application of AI and Machine Learning Techniques
in Cancer

As mentioned previously, cancer is a heterogeneous disease and shows distinct
molecular as well as phenotypic characteristics within a tumor. This heterogeneous
nature of the tumor poses a challenge for successful treatment and recovery. Differ-
ent machine learning and artificial intelligence techniques have been effectively
applied to combat the disease.

2.4.1 Cancer Classification

In order to determine the proper treatment regime and to reduce cancer-related
mortality, correct classification of cancer is needed. RNA-seq provides genome-
wide gene expression data that can be useful to determine cancer types and unravel
cancer subtypes, indicating a profound impact on cancer prediction/diagnosis.
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However, gene expression data have several limitations like small sample sizes,
large number of genes, and presence of some uninformative genes. All these factors
decrease classification performance. This indicates the need for filtration and feature
selection steps before model building. With the stringent threshold, these two steps
ensure that only informative and sufficiently differentially expressed genes between
the target classes can be used in building the classifiers. Various supervised and
unsupervised algorithms are developed using gene expression data for cancer classi-
fication purposes. For instance, Flynn et al. (2018) identified primary site of
33 cancers and the molecular subtype of 11 cancers by applying several machine
learning approaches like diagonal linear discriminant analysis (DLDA), KNN, RF,
and SVM on gene expression profiles from the TCGA. The gene expression data of
breast cancer provide an information based on which ML methods classified the
disease into triple-negative breast cancer (TNBC) and non triple-negative breast
cancer (non-TNBC) (Wu and Hicks 2021). The authors evaluated four different
classification algorithms, namely SVM, KNN, NB and DT and found that SVM was
able to divide TNBC and non-TNBC with less errors compared to others. Zhang
et al. (2020) classified glioblastoma subtypes using SVM and RF with
methylation data.

2.4.2 Anti Cancer Drug Response Prediction

The complexity of the tumor and its microenvironment lead to partial or no response
to anti cancer drugs. Therefore, finding the relationship between drug response and
molecular features of cancer cells or their microenvironment will be helpful in the
identification of novel diagnostic/predictive biomarkers and evaluating drug
response to guide personalized medicine. Miranda et al. (2021) used DNA methyla-
tion profiles at global scale from several cancer cell lines in the Genomics of Drug
Sensitivity in Cancer (GDSC) database to predict eight anti cancer drug’s cytotoxic
responses by machine learning algorithms. Here, authors used RF, SVM, gradient
boosting machines, and KNN for both classification and regression. The predictions
made by the RF classifier were significantly correlated with Temozolomide drug
responses for low-grade gliomas. Bomane et al. (2019) assessed ML algorithms,
namely RF, XGB, LGBM, logistic regression LR, classification and regression tree
(CART) on six molecular profiles (CPG and CGI DNA methylation, mRNA expres-
sion, miRNA profiles, isomiR expression, CNV) of breast tumors to predict pacli-
taxel response. A study found that DNA methylation and miRNA profiles out of six
molecular profiles were the most informative overall.

2.4.3 Survival Prediction

Survival is the time during which a patient survives after disease diagnosis. Survival
analysis is crucial in cancer patient management because of tumor heterogeneity.
Integration of multi omics data and ML algorithms holds promise for improving the

2 Artificial Intelligence and Machine Learning Techniques Using Omics. . . 43



survival of cancer patients. Mitchel et al. (2019) developed ML workflow using
decision-level integration of multi omics tumor data to predict the overall survival of
breast cancer patients. This study predicted the survival with an accuracy of 85% and
area under the curve (AUC) of 87% with multi omics data and identified best
integrated classification combination as methylation, miRNA, and gene expression.
Recently, an auto-encoder was used to integrate and reduce the dimensions of
pancreatic cancer patients’ microRNA expression and DNA methylation data
(Baek and Lee 2020). Machine learning models like SVM, RF, and LR and L2
regularized logistic regression were implemented to combine the clonal expansion of
DNA mutations and multi omics data to predict cancer recurrence and survival
within five years. This study revealed that mutated genes with low cellular preva-
lence (CP) values (i.e., mutated in smaller clones) were not significantly associated
with recurrence and survival. However, the topmost CP value genes which usually
mutated in the initial stages of tumor development were significantly related to poor
prognosis in pancreatic cancer.

2.4.4 Metastasis Prediction

Cancer metastasis contributes to cancer-related mortality. Early prediction of it can
improve prognosis. Most of the time, the metastasis prediction models use gene
expression data. Recently, miRNA expression levels and DNA methylation patterns
have also been explored for metastasis prediction. Tuo et al. (2018) used the
SVM-based classifier on gene expression profiles to predict whether the breast
cancer samples were metastatic or non metastatic, and prediction accuracy was
evaluated by training and validating the model on TCGA data, an independent
dataset. The mRNA- and miRNA-specific classifiers were used to differentiate
cross-cancer tissue samples as primary or metastatic (Lee et al. 2019a). This study
used three classification algorithms (LASSO, RF, and SVM) with bootstrap cross-
validation method to determine how accurately mRNA and miRNA biomarkers can
classify metastasis.

2.4.5 Biomarker Prediction

Cancer biomarkers may evaluate the risk of cancer development or progression in a
specific tissue or therapeutic response. Thus, to decide appropriate therapy for cancer
patients, the identification of cancer biomarkers is essential and may be useful for
patients’ survival. Tabl et al. (2019) used a machine learning multi class approach,
the one-versus-rest technique to identify potential biomarkers which can increase
breast cancer patients’ survival. In this study, gene expression profiles of cancer
patients who received different treatments like surgery, hormone therapy, and
radiotherapy were used and also considered their status as living or deceased. The
classifiers, namely random forest, SVM, and Naive Bayes, were implemented and
found that random forest outperformed the others and showed a better classification
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power for the hierarchical model. In another study, microRNA expression data were
used for validating clinically selected miRNAs as breast cancer biomarkers using
several machine learning classifiers (Rehman et al. 2019). The feature selection
methods like information gain (IG), chi-squared (CHI2) and least absolute shrinkage
and selection operation (LASSO) were implemented to rank the miRNAs by their
importance and concluded that not all miRNAs carry equal weightage to act as a
cancer biomarker, even among those clinically selected ones.

2.5 Conclusion and Future Directions

In the upcoming decade, advancement in artificial intelligence and proper imple-
mentation of machine learning methods in cancer genomics will reveal crucial
aspects in oncology. Recent studies showed that the utilization of diverse omics
data and their combination enhanced the cancer prediction performance of the
machine learning models. Several challenges still exist, like data collections, pre
processing, and storage. The collaboration between clinicians and bioinformaticians
will be beneficial to get organized or structured data from various sources and at
numerous scales. Recently, a study combined multi omics data with drug data to
predict overall survival and different subtypes (at pathological, histological, and
molecular levels) of glioma patients (Saurabh et al. 2020). This kind of comprehen-
sive analysis can be helpful for doctors and clinicians in early diagnosis as well as in
deciding the correct and personalized therapeutic strategies for individual cancer
patients. In recent years, several studies integrated genomics data with pathological
image data for identifying distinct cellular subtypes, prognostic biomarkers, muta-
tional status, therapeutic strategies, and clinical outcomes. Applying a deep learning
classifier on point mutation, copy number alteration, and gene expression data, Qu
et al. (2021) predicted driver mutations and signaling pathways activity from
histopathological whole slide images (WSI) of breast carcinoma patients. Recently,
a new approach, radiogenomics, has emerged in the area of personalized medicine
which integrates genetic and radiomic data for monitoring genetic variations in
patients through medical images and can act as a better substitute for painful
mediation (Shui et al. 2020; Gullo et al. 2020). Lee et al. (2019b) used machine
learning classifiers on quantitative radiomic data of glioblastoma patients obtained
from magnetic resonance images (MRI) and targeted sequencing of the IDH1 gene
to predict its mutation status from images. The study showed a good (~80%)
predictive power for IDH1 mutation by training 31 features of MRI and also
observed good (i.e., 66.3–83.4%) accuracy through validation on an external set
(Lee et al. 2019b). Such an integrative machine learning approach has an important
role in improving diagnosis and prognosis. Nowadays, model explainability is
gaining importance in the machine learning field as it explains the backend process
of the model prediction, i.e.,which particular features mainly contribute to the model
prediction. The success of ML solutions may provide a handful of clinically relevant
tools for cancer patient’s treatment and management.
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