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Preface

Dear Readers,
Cancer is a deadly disease that has claimed the lives of millions of people.

Research on cancer has been going on for well over a century. There have been a
huge number of books and research papers on cancer. For cancer diagnosis, therapy,
and prevention, this integrated book brings out the numerous facets which are timely
and invaluable. Cancer systems biomedicine, with its unique synthesis of experi-
mental biology, computational and mathematical analysis, is particularly positioned
to address the complexity associated with cancer. The purpose of the book is to
provide a bird's eye view of the evolving cancer ecosystem, allowing cancer
biologists and oncologists to understand and forecast how one modification affects
an entire tumor system, rather than viewing cancer through the lens of a single
mutation or alteration. The collection of chapters represents the first systematic
efforts to demonstrate all the different facets of Systems Biomedicine Approach in
Cancer Research. Chapter 1 talks about the role of medicinal plants and its impact on
Systems Biomedicine. The authors evaluated the recent initiatives aimed at improv-
ing natural product biosynthesis pathway discovery, activation, and modulation.
Drug discovery could benefit from the use of these new biosynthetic pathway
models and the integration of “omics” data. Chapter 2 summarizes lucidly artificial
intelligence (AI) and machine learning (ML) as players in cancer research. This
chapter looks at how ML can be used to improve diagnosis and therapy. The authors
lay out a vision for how ML might revolutionize three areas of biomedicine, viz.
clinical diagnostics, precision therapeutics, and health monitoring, with the key
focus on health. Due to the proliferation of data, cancer systems biology is an
ever-growing field of study; the difficulty is figuring out how to mine that data and
extract relevant information. To gain a better understanding of carcinogenesis,
researchers must methodically exploit a variety of resources, including databases,
microarrays, and next-generation sequencing. The management and analysis of
cancer data, the creation and deposition of databases, whole transcriptome and
genome comparison, analyzing results from high-throughput experiments to uncover
cellular pathways and molecular interactions, and the design of effective algorithms
to identify potential biomarkers are all topics in the field of Cancer Biomarkers.
Chapter 3 encompasses Cancer Biomarkers in the era of Systems Biology. Chapter 4
highlights mPGES as inhibitors in Cancer Biomedicine. Chapter 5 talks about the
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Emerging Role of Structural and Systems Biology in Anticancer Therapeutics. The
goal of systems biology is to anticipate the behavior of biological systems based on
the molecules that are involved. As a result, understanding the interactions between
these molecules is critical to these endeavors. Only three-dimensional structures
provide a complete understanding of how molecules interact, yet structural biology
is still difficult for complexes of two or more macromolecules. As a result, the
methodologies utilized to anticipate structural features for interactions are extremely
important. Protein docking, homology modeling, or detecting repeated interaction-
sequence signatures, either a pair of domains or a domain, can all be used to
anticipate the chemical interactions. It is conceivable to anticipate the architecture
of massive molecular assemblies or the details of how biological pathways function
using these methods. Complementing the interactome with structural data will result
in a more complete whole-cell framework at the atomic level, which will have a
significant impact on cancer system biomedicine research. In recent times, gene
fusions, which comprise genomic rearrangements that fuse regulatory or coding
regions from two separate genes, are a common form of mutation in numerous
cancer types. The genetics of tumors including fusion oncogenes and the proteins
they encode has improved cancer diagnosis and treatment in some circumstances.
However, little is known about the impact of fusion genes’ complicated structure on
the biogenesis of the chimeric transcripts they produce. An improved understanding
of fusion transcript synthesis and the diversity of chimeric RNAs found in fusion-
driven cancers would improve the chances of RNA-based therapies being successful
in cancer malignancy. Chapter 6 envisions the computational tools and methods for
fusion transcripts used to study cancer biology. Chapter 7 is about understanding
molecular kinetics in non-small cell lung cancer which talks about the research
focused on a small number of genes and proteins that have yielded crucial insights
into the complex interactions which occur within and between cells. To turn
complex datasets that span diverse length and time dimensions into usable knowl-
edge, systems analysis and predictive modeling are required. Systems biomedicine
will face hurdles in terms of technology, experimental design, data processing, and
data integration. Given the system medicine promise and interest in the topic, as
evidenced by the rise in the number of literature, researchers worldwide appear to
believe that systems biomedicine has significant potential to aid in the study of
cancer biology.

Pune, India Shailza Singh
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Medicinal Plants for Indigenous Cancer
Drug Discovery: Current to Future 1
Pragya Misra, Prajakta Nimsarkar, and Shailza Singh

Abstract

Medicinal plants serve as a rich source of therapeutic modalities against various
diseases especially cancer, which gained attention by researchers, due to the
problems associated with available treatments. Indian traditional medicinal
systems have a rich repository of medicinal plants and could serve as a source
of safe and cost-effective alternative therapy. A major limitation with natural
products is meager information about their mode of action, hindering their wider
clinical use. Herein, we are focusing on anticancer potential of few medicinal
plants based on common chemical constituents, viz. Peganum harmala, Quercus
infectoria, Melissa officinalis, and Plumbago zeylanica, with well-cited use in
folk medicines. Anticancer mechanism of these plants/active components has
been well deciphered with targeted pathways involved in their anticancer poten-
tial. Peganum harmala and its active constituents showed involvement of various
signaling pathways for anticancer effect. Cancer cell death by Quercus infectoria
and its constituents also involved pathways such as AKT, NF-κB, and
JAK/STAT. Melissa officinalis showed anticancer potential by affecting various
transcription factors such as NF-κB, TNF-α, and COX-2. Anticancer activity
mediated by plumbagin isolated from Plumbago also showed effect on various
transcription factors/signaling pathways as pTEN, mTOR, and Akt pathways,
thereby inhibiting survival signaling. However, overall data suggested the need
for more extensive studies focused on clinical investigation for pharmacokinetics,
bioavailability, and toxicity of these plants/plant products. We propose in this
chapter that studies based on computational biology using identified pure
compounds and their target to develop pharmacophore model for drug discovery
would be a fast and feasible way to design new potential derivatives.

P. Misra · P. Nimsarkar · S. Singh (*)
National Centre for Cell Science, Pune, India

# The Author(s), under exclusive license to Springer Nature Singapore Pte
Ltd. 2022
S. Singh (ed.), Systems Biomedicine Approaches in Cancer Research,
https://doi.org/10.1007/978-981-19-1953-4_1
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Abbreviations

COX-2 Cyclooxygenase-2
DYRK Dual-specificity tyrosine phosphorylation-regulated kinase
GQI Galls of Quercus infectoria
MA Melissa officinalis
MRP1 Multidrug resistance-associated protein 1
PG Peganum harmala
PU Plumbagin

1.1 Introduction

Cancer, a metabolic syndrome, is associated with second highest mortality and
morbidity worldwide with increasing cases. Due to the associated complexities, it
has been a major area of research for new therapeutic/preventive strategies (Bakitas
2007). Current treatment regimen includes chemotherapy, radiotherapy, and novel
strategies like monoclonal antibodies against immune checkpoint inhibitors
(Farkona et al. 2016; Falzone et al. 2018). However, all these treatment strategies
are associated with severe side effects (Schirrmacher 2019; Kennedy and Salama
2020). Therefore, there is an urgent need for developing alternative treatments.

Medicinal plants have been the source of treatment for various ailments world-
wide through ages. With associated advantage of safety and tolerance, drug devel-
opment program based on medicinal plants has gained a lot of attention in last
decades. Various plant extracts of traditional/folk medicinal system and their
phytochemicals have been studied for treatment/prevention of cancer. Indian Ayur-
veda system is a rich repository of plants with medicinal value, and these have been
extensively studied for various ailments (Behere et al. 2013). Herein, we have
selected four such plants based on their known anticancer/medicinal potential
since ancient times and have explored steps ahead, in terms of identifying active
phyto-constituents and mode of action, which could help in providing an interface
for traditional medicinal to be used in clinics (Vaidya and Devasagayam 2007;
Pandey et al. 2016; Roy and Bharadvaja 2017). Another major criteria for selection
of these plants were their common phyto-constituents including flavonoids,
alkaloids, phenolics, and essential oils, which have known pharmacological
functions (Yin et al. 2013). We would discuss these medicinal plants, viz. Peganum
harmala, Quercus infectoria, Melissa officinalis, and Plumbago zeylanica, with
focus on their active constituents and mode of action.

Peganum harmala (PG)
Kingdom: Plantae
Division: Magnoliophyta
Class: Magnoliopsida—Dicotyledons
Subclass: Rosidae
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Order: Sapindales
Family: Zygophyllaceae
Genus: Peganum L.—Peganum P
Species: Peganum harmala L.
Peganum harmala (PG) also known harmala, Syrian rue, wild rue, harmal, and

Africa rue is native of Africa, Middle-East, and Mediterranean region along with
historical reports of its presence in Turkey, Iran, Iraq, Uzbekistan, Tajikistan, Russia,
China, Mongolia, Afghanistan, India, and Pakistan (Moloudizargari et al. 2013).
Seeds, fruits, root, and bark of Peganum harmala have been used as folk medicine. It
has been used for various ailments such as antispasmodic, antipyretic, and diseases
of digestive system (Mamedov et al. 2017).

Studies conducted to screen the phytochemical composition of PG showed the
presence of flavonoids, alkaloids, tannins, triterpenes, sterol, anthraquinones,
coumarins and volatile oils in seeds, roots, and aerial parts of plants. Β-Carboline
alkaloids such as harmaline and harmine have been found in seeds and roots along
with harmalol, harman, and harmol, and quinazoline alkaloids such as peganine,
deoxypeganine, deoxyvasicinone, isopeganine, pegaminem, peganol, dipegene, and
peganones were obtained from seeds and whole plant (Moloudizargari et al. 2013).
Most of the medicinal properties of PG have been attributed to presence of these
alkaloids.

1.2 Anticancer Potential of Peganum harmala (PG)

Traditional medicinal uses of PG (Pandey et al. 2016) had drawn the attention of
researchers worldwide to carry out various pharmacological studies evaluating its
anticancer role and identifying active components for anticancer efficacy. Seed
extract of PG induced apoptosis in breast cancer cells and decreased expression of
Bcl-1 along with increased expression of Bax, Puma, TRAIL, and caspase-8. This
concluded that PG mediated breast cancer cell death via apoptosis involved both
intrinsic and extrinsic pathways (Hashemi Sheikh Shabani et al. 2015). Mode of
action of Peganum harmala/its derivatives against various forms of cancer is
represented in Fig. 1.1.

Alkaloids present in various plant parts of PG are major contributors for its
anticancer potential. Studies conducted in breast cancer showed that β-carboline
alkaloid from PG, harmine inhibited the overexpression of ABC transporter protein
BCRP, which has a role in multidrug resistance. Harmine also showed its anticancer
potential by inhibiting resistance of these cells, for anticancer drugs mitoxantrone
and camptothecin, found to be mediated by overexpression of BCRP (Ma and Wink
2010).

Harmine was found effective against childhood malignancy neuroblastoma (NB).
Poor prognosis of NB is associated with overexpression of MYCN gene. Therefore,
to assess the role of harmine against NB, four cells lines, two having amplification of
MYCN and two without it, were selected. It was found that harmine induced
apoptotic cell death by cleavage of PARP, mediated by caspase, and it was more
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efficient in cells with amplified MYCN gene. Patients having high expression of
dual-specificity tyrosine phosphorylation-regulated kinase (DYRK), DYRK2 and
DYRK3, show poor prognosis and are also co-related to expression of MYCN.
Based on this clinical data, it was believed harmine might have DYRK inhibitory
potential (Uhl et al. 2018).

Effect of harmine was also assessed against melanoma cells and found to be
mediated by both extrinsic and intrinsic apoptotic pathways, as evident by activation
of caspase-3, caspase-8, and caspase-9 along with overexpression of Bax and Bid.
Various transcription factors such as NF-κB subunits, c-Fos, ATF-2, and CREB
were found to be downregulated in harmine-treated cells. Most of these transcription
factors are negative regulators of apoptosis (Hamsa and Kuttan 2011).

Synergistic anticancer effect of harmine was tested with paclitaxel in gastric
cancer cells. These cells expressed cyclooxygenase-2 (COX-2) which helps in
progression of tumor. This combination therapy was found to be significantly
efficient in inhibiting cancer cell growth by inducing apoptosis and downregulating
COX-2, Bcl-2, and overexpression of Bax (Yu et al. 2016). Suppression of DNA
methyltransferases was explored as mechanism for anticancer potential of harmine
against leukemia. This strategy has been used to develop therapeutic targets against

Fig. 1.1 Mode of action of Peganum harmala and its derivatives against various forms of cancer
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various malignancies (Blum and Marcucci 2005; Brueckner et al. 2005). It was
observed that treatment with harmine reduced the proliferation of cells along with
suppressing DNMT1 gene (DNA methyltransferase 1). Due to suppression of
DNMT1, tumor suppressor promoter p53 was hypomethylated leading to its activa-
tion, thereby inducing cell death (Oodi et al. 2017). Harmaline, isolated from PG,
was found to show efficacy against gastric tumor mediated through apoptosis
involving activation of caspase-8 and caspase-3 along with upregulation of Fas/FasL
and cell cycle arrest (Wang et al. 2015).

Various human and animal studies have reported intoxication induced by PG and
extract of PG is found to be toxic at higher dose causing complications such as
paralysis, liver degeneration, and digestive issues (Lamchouri et al. 2002; Herraiz
et al. 2010). However, a clinical trial study wherein PG oral capsules were used for
improving urinary symptoms of benign prostate enlargement showed that in
regulated doses, this extract did not affect vital parameters of body (Shirani-
Boroujeni et al. 2017). Most of these studies suggested that special attention should
be paid by researchers and clinicians for therapeutic usage of this plant by
conducting detailed studies for its safer dose.

Melissa officinalis (MA)
Kingdom: Plantae
Division: Magnoliophyta
Class: Magnoliopsida—dicotyledons
Subclass: Asteridae
Order: Lamiales
Family: Lamiaceae—mint family
Genus: Melissa L.—balm P
Species: Melissa officinalis L.
It is commonly known as lemon balm, honey balm, garden balm, etc., due to its

lemon-like fragrance (Singh Verma et al. 2015). Plant is native of Eastern Mediter-
ranean Region and Western Asia, Germany, France, Italy Romania, Bulgaria, and
North America (Meftahizade et al. 2010). Medicinal importance of this plant has
been documented back to 50–80 BC (Kennedy et al. 2003). The plant has been used
in Europe, Austria (Vogl et al. 2013), and Iranian medicinal system for various
disorders (Shakeri et al. 2016). Indian Ayurvedic system has also mentioned the
importance of Melissa officinalis (MA) in improving memory (Singhal et al. 2012).
This plant contains terpenes, phenols, flavonoids, and essential oils as major chemi-
cal constituents (Cohen et al. 1964; Herrmann and Kucera 1967; Mulkens and
Kapetanidis 1987; Žiaková et al. 2003; Allahverdiyev et al. 2004; Awad et al.
2009; Meftahizade et al. 2010; Moradkhani et al. 2010). Important active
constituents include volatile oils such as geranial, neral, citronellal and geraniol,
triterpenes such as ursolic acid, and phenolics such as luteolin, naringin, and
hesperidin.

Melissa officinalis (MA) and its active components have been explored for
anticancer potential and pharmacological studies which have revealed a lot about
its mode of action as discussed below and depicted in Fig. 1.2.

1 Medicinal Plants for Indigenous Cancer Drug Discovery: Current to Future 5



1.3 Anticancer Potential of Melissa officinalis (MA)

Hydroalcoholic extract of MA showed anticancer potential against various cancer
cell lines including lung cancer, breast adenocarcinoma, ovarian cancer, and prostate
cancer (Jahanban-Esfahlan et al. 2015). MA was also found to attenuate the cytotox-
icity induced by doxorubicin (DOX), a known anticancer drug against breast cancer.
It was observed that when rats were treated with MA, it reduced the leakage of
cardiac enzymes by doxorubicin along with decreasing the oxidative stress. Treat-
ment with MA also reduced the expression of NF-κB, TNF-α, and COX-2. It also
reduced the activity of myeloperoxidase, thereby suppressing the inflammatory
response induced by DOX. This data suggested the synergistic potential of MA
with DOX against human breast cancer cells (MCF-7) (Saraydin et al. 2012).

Anticancer effect of ethanolic/aqueous extract of MA was evaluated against
human colon cancer cells, and it was found that MA showed potent antiproliferative
effect mediated by rosmarinic acid present in it (Encalada et al. 2011).
Dichloromethane and n-hexane fractions of MA showed significant inhibitory

Fig. 1.2 Mode of action of Melissa officinalis and its derivatives against various forms of cancer
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potential against leukemia cell lines. Effect of dichloromethane fraction was found to
be mediated by cell cycle arrest and apoptosis. Both intrinsic and extrinsic apoptotic
pathways were involved as evident by upregulation of Fas and Bax mRNA expres-
sion as well as the Bax/Bcl-2 ratio posttreatment with MA fraction (Ebrahimnezhad
Darzi and Amirghofran 2013).

Glioblastoma multiforme develops from glial cells, and no treatment regimen has
been fully effective against it. Effect of essential oils of MA and citral was evaluated
against GBM cells and was found to show anticancer potential mediated by apopto-
sis. Citral downregulated the expression of multidrug resistance-associated protein
1 (MRP1). It can be inferred that essential oils of MA could be an effective
therapeutic strategy against glioblastoma (De Queiroz et al. 2014).

Various studies have been conducted to assess the toxicity and tolerability of MA
in humans and showed varied data. A clinical trial in healthy individuals and the
other one in stressed volunteers showed no cytotoxicity by MA containing
rosmarinic acid. A double-blind, randomized trial to treat heart palpitation also did
not indicate any serious side effects. Some side effects like vomiting, dizziness,
wheezing, agitation, abdominal pain, and nausea were observed in a double-blind,
randomized, placebo-controlled trial of Alzheimer’s disease patients (Cases et al.
2011; Alijaniha et al. 2015).

Galls of Quercus infectoria (GQI)
Kingdom: Plantae
Division: Magnoliophyta—flowering plants
Class: Magnoliopsida—dicotyledons
Order: Fagales
Family: Fagaceae
Genus: Quercus L.
Species: Quercus infectoria Olivier
Quercus infectoria Olivier habitat includes Turkey, Greece, along with Asia

Minor, Europe, and North Africa (Harris 2003). Galls are irregular growth on
Quercus and which develop due to interaction between plant hormones and
chemicals produced by insects (Bartlett and Connor 2014). Galls also known as
Galla Turcica have been used for wide range of medicinal potential in folk
medicines (The Wealth of India 1952; The Indian Pharmacopoeia Commission
2007; Bhati et al. 2012). The main chemical constituent present in these galls is
tannins along with syringic acid, ellagic acid, sitosterol, amentoflavone, hexamethyl
ether, isocryptomerin, methyl betulate, methyloleanate, and hexagalloylglucose;
50–70% constituent of galls is gallotannic acid (Harris 2003). Its pharmacological
efficacy has further been explored and found to include anticancer, anti-
inflammatory, antidiabetic, antifungal, and anti-MRSA (methicillin-resistant Staph-
ylococcus aureus)/antibacterial (Vermani et al. 2009; Basri and Khairon 2012; Basri
et al. 2013; Sithisarn et al. 2015). Herein, this chapter we are focusing specifically on
its anticancer potential.

1 Medicinal Plants for Indigenous Cancer Drug Discovery: Current to Future 7



1.4 Anticancer Effect of Galls of Quercus infectoria (GQI)

Anticancer potential of galls of Quercus infectoria (GQI) and its active constituents
has been well studied. It was observed that ethyl acetate extract of GQI inhibited
EGFR (epidermal growth factor receptor), a potent anticancer drug target (Wang
et al. 2014).

Ellagic acid from GQI showed potent anticancer effect mediated via apoptosis
along with inhibiting the migration and invasion of cancer cells. This effect was
mediated via impacting many signaling pathways such as PKC pathway, TGF-β/
Smad3 pathway (Vanella et al. 2013; Zhang et al. 2014; Chen et al. 2015; Mishra and
Vinayak 2015; Salimi et al. 2015). Other major chemical constituent of GQI is
methyl gallate, which blocks AKT, NF-кB and JAK/STAT pathways leading to
apoptosis-mediated cell death (Chaudhuri et al. 2015; Afsar et al. 2016). It also helps
in overcoming the immune suppression state in tumor by inhibiting infiltration of
regulatory T cells (Lee et al. 2010).

Gallic acid isolated from GQI showed anticancer effect by cell cycle arrest
leading to apoptosis. It also affects angiogenesis and metagenesis of cancer cells.
Other important targets for anticancer potential of gallic acid include activation of
ATM kinases, inhibition of COX, depletion of GSH, and inhibition of VEGF along
with inhibition of NF-κB (Madlener et al. 2007; Lu et al. 2010, 2016; You and Park
2010; Sun and McKallip 2011; Chandramohan Reddy et al. 2012; Ho et al. 2013; He
et al. 2016; Kennedy and Salama 2020).

1,2,3,4,6-Penta-O-galloylglucose isolated from GQI was found to be effective
against breast cancer cells via affecting metabolic genes, for example, targeting
overexpression of lactic acid dehydrogenase-A (Deiab et al. 2015).

Toxicity of GQI was evaluated in mice model, and it was found that even at
300 times higher dose mice survived along with few biochemical and hematological
parameters changed initially which further resolved with time. In spite of promising
data, further studies need to be done before clinical trials in human (Iminjan et al.
2014) (Fig. 1.3).

Plumbago zeylanica along with many other species of Plumbago, viz. Plumbago
rosea, Plumbago capensis, Plumbago europaea, and Plumbago scandens, has been
reported for its medicinal use in history since second century (Bhati et al. 2012).
Root and extract of other part of this plant were used for treating dyspepsia, piles,
diarrhea, skin diseases, tuberculosis, and leprosy (Jain et al. 2014). Most of the
medicinal properties of Plumbago zeylanica are attributed to one of the
naphthoquinone metabolite (5-hydroxy-2-methyl-1,4-naphthoquinone) isolated
from genus Plumbago and have been found as a miracle molecule with activity
against various forms of cancer. Herein, this section we will focus on its anticancer
potential.

8 P. Misra et al.



1.5 Anticancer Potential of Plumbago with Focus
on Plumbagin (PU)

Plumbago zeylanica along with other species has shown anticancer potential against
various forms of cancer and studies suggested that most of the anticancer activity is
due to presence of Plumbagin (Hiradeve et al. 2011; Sundari et al. 2017). Plumbagin
(PU) has been found to be effective against hormone-refractory phase, i.e.,
androgen-independent (AI) phase of prostate cancer which is the last stage leading
to death (Edwards and Bartlett 2005; Quinn et al. 2005). It was found that PU
inhibited the progression of AI prostate cancer cells both in vitro and in vivo.
Expression of multiple targets such as PKCε, PI3K, pAKT, pJAK-2, pStat3, and
NF-κB was inhibited both in prostate cancer cell line and DU145 xenografts (Aziz
et al. 2008). PU generated ROS and depleted GSH levels in androgen-independent
prostate cancer cells which lacks p53 and induced apoptosis. It also altered the
expression of superoxide dismutase 2 (Powolny and Singh 2008). The anticancerous
properties of Plumbago are depicted in Fig. 1.4 with the modes of action.

PU was found to induce cell cycle arrest and autophagy-mediated cell death in
human breast cancer cells. It blocked the activation of Akt pathway and other
downstream molecules such as mammalian target of rapamycin (mTOR), forkhead

Fig. 1.3 Depiction of anticancerous properties of Quercus infectoria galls and its mechanisms
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transcription factors, and glycogen synthase kinase 3β, thereby inhibiting survival
signaling (Kuo et al. 2006).

Hepatocarcinoma was also found to be inhibited both in vitro and in vivo by PU,
and this anticancer effect was found to be mediated by cell cycle arrest at G2/M
phase along with inhibition of expression of p53-targeted gene SIVA and mTOR.
SIVA activates mTOR signaling and therefore contributes to tumorigenesis (Prasad
et al. 1997; Van Nostrand et al. 2016). Another study using Wistar male rats wherein
hepatoma was induced by 3-methyl-4-dimethyl aminoazobenzene (3Me-DAB)
showed tumor regression on treatment with PU along with increased levels of
glycolic enzymes and decreased levels of enzymes of gluconeogenesis pathway
(Parimala and Sachdanandam 1993).

It was found that PU was cytotoxic to leukemia cells and role of ROS was
established in the cell death. It was also observed that treatment with PU significantly
enhanced the expression of TRAIL-R1 (DR4) and TRAIL-R2 (DR5) which mediate
the TRIAL-dependent apoptosis of tumor cells. Data suggested that PU shows its
anticancer activity by TRIAL-mediated pathway (Sun and McKallip 2011).

Anticancer potential of PU against non-small cell lung cancer was mediated by
G2/M phase arrest and apoptosis. Accumulation of p53 and phosphor-p53 was also

Fig. 1.4 Anticancerous potential of Plumbagin and its mode of action
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observed along with increased levels of p21 and decreased levels of cyclin B1, Cdc2,
and Cdc25C. It was also found that c-Jun Nh2-terminal kinase (JNK), which has
proven role in apoptosis mediated by various agents, was an important mediator for
PU-induced inhibition of cell growth (Liu and Lin 2005). Downregulation of
oncogenic growth factors EGFR/Neu along with downstream signaling targets was
observed in H460 lung cancer cells treated with PU. It was also found that PU
activated JNK/p38 signaling pathway, promoting apoptosis in cancer cells
(Gomathinayagam et al. 2008).

Ovarian cancer cells PEO-1 and PEO-4 were found to be sensitive to treatment
with PU. Inhibition of VEGF-A and Glut-1 was also observed on treatment with
PU. OVCAR-5 tumor-bearing mice when treated with PU showed tumor regression
(Sinha et al. 2013).

BG1 ovarian cancer cells were treated with few standard anticancer drugs and
PU. It was found that PU induced cell death most efficiently. These cells were
positive for estrogen receptor, and it was found that PU can bind with active site of
ER-α and induce its truncated form, thereby inhibiting the classical ER-α signaling
pathway (Srinivas et al. 2004; Thasni et al. 2008). Pure compounds from plants
showing anticancerous properties have been tabulated in Table 1.1.

1.6 Computational Approach Toward Natural Products
and Drug Discovery

The process of developing new pharmaceutical drugs is known as drug discovery. It
is one of the most critical aspects of pharmaceutical research and development
(validating, testing, and launching a new drug). Since the advent of modern medi-
cine, the preponderance of systematic drug discovery has focused on small-molecule
prospects. For example, small molecules make up over 86% of the medications (both
authorized and investigational) in the DrugBank database (Wishart et al. 2017).
Lipinski’s “rule of five” is a set of established best practice rules for identifying
potential orally active pharmacological candidates that reflects small molecules’
pervasive nature in drug development (Lipinski 2004).

Sequence-based characteristics, interactions with body structures (proteins,
metabolites, tissues, cells, and so on), pathway disruptions, and toxicity are only a
few examples of bioinformatics methodologies used in drug discovery. High-
throughput sequencing with multiomics is two examples of bioinformatics sciences.
Bioinformatics may be utilized in the drug development process in a variety of ways
(Wishart et al. 2017; Thomford et al. 2018). In the case of natural products, scientists
can employ a wide range of methodologies relating to the organisms that manufac-
ture the substances. Evolution and phylogenetics, for instance, provide a variety of
avenues for drug discovery.

In recent decades, computational strategies have become mainstream in research,
extending to medication development (Sliwoski et al. 2014). For example,
cheminformatics is the application of computer science to understand and character-
ize the molecular properties and chemical behavior of particular compounds. These
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Table 1.1 2D structure of few pure compounds from plants showing anticancer potential
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techniques have resulted in enormous libraries of tiny compounds that may be used
to search for specific therapeutic activities (Blaney and Martin 1997). Several
cheminformatics methods may be used to generate libraries of chemically and
structurally related compounds after identified candidates have been identified to
enhance stability, toxicity, and kinetics. Bioinformatics approaches may also be used
to figure out how potential medications produce therapeutic activity in the human
body, such as predicting drug–protein interactions, determining the impact on
biological pathways and functions, as well as genetic differences that determine
drug response (Drews 2000). Regardless of these advancements in drug discovery
techniques, new therapeutic pharmaceutical approvals have stalled in recent years.
The number of distinct molecular entities authorized by the US FDA decreased from
53 to 17 each year between 1996 and 2007, the same rate as it has been for more than
50 years (FitzGerald 2008; Munos 2009). These studies might be supplemented with
a special debate confined to in silico techniques for natural product drug develop-
ment, considering the developments as mentioned earlier in emerging computational
tools and advances in traditional informatics for translational applications.

A rising move toward data-driven drug discovery is another trend in drug
development that has been supported by informatics and computational approaches
(Tatonetti et al. 2012; Lusher et al. 2014). The traditional drug development process
was as follows: researchers would first find a target structure in the human body
associated with a disease or condition and then screen for “lead” chemicals that are
associated with the target. The most promising ideas are then narrowed down and
placed through the development process, where they are tested for safety and
efficacy in model organisms before being tested on humans. An overview of drug
discovery by systems biology means has been highlighted in Fig. 1.5.

1.7 Therapeutic Natural Products Divided into Several
Categories

Natural Products: “Natural products” are seemed to be limited to small-molecule
secondary metabolites (Nature Publishing Group 2007) for some authors, while
others define them more generally as any chemical component created by a live
organism (Nature Publishing Group 2007; National Center for Complementary and
Integrative Health 2017).

Fungal Metabolites: Plant and fungal metabolites have several similarities and are
classified in the same way (the flavonoid compounds to be most notable one). Like
plant metabolites, fungi can treat a wide range of ailments and problems, although
they are best recognized for producing numerous powerful antibiotics. Statins
(mevastatin, lovastatin), immunosuppressants (ciclosporin), antimalarials
(antiamoebin), and other drugs have previously been utilized effectively (Thomford
et al. 2018).

Phytochemicals: Plant-produced substances, or phytochemicals, are found in
many natural goods. Phytochemicals can be cytotoxic, provide essential nutrients
(such as amino acids, antioxidants, and dietary fiber), or be inert in humans.
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Phytochemicals are small molecules (rather than macromolecules, prevalent in many
of the other classes) found in primary and secondary metabolites in plants. They are
divided into phenolic acids, stilbenes, and flavonoids (further subdivided into more
specific subclasses) (Harborne 1999).

1.8 Natural Products and Cheminformatics

Many typical cheminformatics methodologies are difficult to apply to some types of
natural products, especially those with extensive chemical structures. We classify
cheminformatics into three primary kinds of methodologies that have proven suc-
cessful with natural products, discussing the limitations that must be addressed for
natural products specifically.

1.8.1 QSAR Analysis of Natural Products

Quantitative structure–activity relationship (QSAR) analysis is a common approach
in cheminformatics for predicting a response variable from a set of structural,

Fig. 1.5 Highlighting the process of drug discovery from natural products using system biology
approaches

14 P. Misra et al.



chemical, and maybe physical input elements (known as molecular descriptors).
Different classes of natural products have been subjected to QSAR, with specific
classes dictating the molecular descriptors employed. Symbolic (1D or 2D)
descriptors, 3D spatial organization, higher-order conformational characteristics
(e.g., time-dependent or ligand-bound) (Polanski 2009), and nonnatural product
applications frequently use experimental data such as partition coefficient, polariz-
ability, and refractivity. In terms of predicting antibody binding affinity to proteins,
QSAR has worked well. For each amino acid location in a library of single-chain
monoclonal antibodies, a framework consisting of 26 physicochemical parameters
(including hydrophobicity, polarity, and electronegativity) was presented (Mandrika
et al. 2007). While this technique has yet to be used in the identification of NP drugs,
it appears to be a viable option.

1.8.2 Molecular Docking and Dynamics

Molecular docking is a technique for determining if and how two molecules (usually
a target and a ligand) will interact physically. Typically, this is accomplished in two
steps: (1) determining novel conformational fits and (2) scoring those that are
discovered. Molecular dynamics is a prominent simulation tool for docking. The
role (target vs. ligand) that a natural product compound plays in docking simulations
is usually dictated by the compound’s class. Small molecules and short polypeptides
are frequently utilized as ligands, whereas targets are more significant proteins and
protein complexes (although exceptions are typical). This distinction is crucial,
particularly when screening a high number of possible compounds: The target is
customarily established, but the ligand can be chosen from a vast number of
molecules. Docking many small-molecule compounds is computationally conceiv-
able when a specific molecular target has been determined (Khan et al. 2009; Lee
et al. 2011; Ma et al. 2011). Docking simulations may be used to determine which
metabolites might bind to a natural macromolecular product if endogenous small-
molecule metabolites are suspected of interacting with it (Pithayanukul et al. 2009).
When both a target and a ligand have been predicted using other approaches,
docking is commonly used as an additional validation step (e.g., QSAR or other
methods). Albrand et al. employed molecular dynamics and nuclear magnetic
resonance in 1995 to explain how the toxin FS2 (from Black Mamba venom) blocks
L-type calcium channels, causing significant cardiotoxicity (Albrand et al. 1995).

1.8.3 Library Construction

The generation of enormous libraries of compounds that may be screened in parallel
is one of the most frequent strategies for generating drug candidates, understanding
that just a small percentage will result in “hits” (potential therapeutic activity).
Combinatorial chemistry (i.e., using combinatorics to enumerate chemical
structures) comprises many approaches to creating such libraries (Terrett et al.
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1995). ChEMBL and PubChem databases consist of numerous natural products
annotated by compound classes (Li et al. 2010; Gaulton et al. 2016). For better
annotations, databases such as Dictionary of Marine Natural Products and
ArachnoServer are helpful as natural product libraries accumulate characteristic
and appeal features (Pineda et al. 2017; Romano et al. 2018).

1.9 Conclusion and Perspectives

This chapter suggests that medicinal plants used in folk medicine and their active
components show remarkable anticancer potential which involved various signaling/
metabolic pathways. These extended studies not only deciphered the molecular
mechanism behind anticancer potential of these plants which would help in bringing
these molecules/extracts from laboratory to clinics, but also helped in identification
of various biological targets for novel computational-based drug designing
strategies. Such extended efforts would not only introduce novel anticancer
molecules with safe and potent activity but also reduce their cost due to origin
from natural products and also the computational pipeline adopted. However, more
detailed in vivo and clinical trial studies are needed to bring these molecules/extracts
for clinical use along with toxicity evaluation.

Most of the literature available for cancer treatment indicates various
comorbidities along with lower average survival. Medicinal plants have proven
strong anticancer potential directly or by immunomodulatory function along with
being safe. Bioassay-guided fractionation has identified various pure compounds
with strong anticancer potential which could be further synthesized in laboratories.
To increase the availability, shelf life and targeted delivery of these molecules,
various new technologies such as delivery vehicles (nanoparticles, liposomes, and
virosomes) could be used. This would not only allow sustained release of the drug
for better activity but also help in implying tissue-specific strategy of drug designing
to reduce side effects if any.
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Abstract

Cancer is a heterogeneous disease concerning molecular, functional and clinical
behaviour, and poses a challenge for timely detection and treatment. Early
detection and prognosis of cancer type may facilitate refined clinical management
of cancer treatment. Recent technological development, such as next-generation
sequencing, generated a large number of omics datasets in cancer genomics. The
genome-wide biological information, such as cancer driver mutations, aberrantly
methylated regions, gene, and miRNA expression profiles, is helpful for
predicting the cancer onset, subtypes, and treatment response and is valuable
for improving diagnosis and therapeutic and clinical decisions. In this context,
machine learning (ML) algorithms and artificial intelligence have been beneficial
and essential for the better accuracy of cancer-related predictions. Here, we
mainly focus on research based on these omics data, paying close attention to
machine learning methods. We summarize various kinds of omics data and
different ML algorithms effective in cancer prediction. We also highlighted the
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applications of the ML algorithm on genomic information in cancer, including
cancer classification, therapy response, survival, metastasis, and biomarker iden-
tification. Further we discussed the novel approaches in machine learning for
improving cancer prediction. These data-driven approaches can potentially pro-
vide a new solution for enhancing the precise treatment of cancer.

2.1 Introduction

Cancer shows significant disease burden globally due to its high prevalence and
death rate. It occurs due to the development of atypical cells that divide in an
uncontrolled manner. A central feature of cancer malignancy is metastasis. In the
metastasis stage, cancerous cells leave their pre-neoplastic lesions, enter the blood-
stream, disseminate throughout the body, and acclimate to new cellular surroundings
in a secondary site, ultimately destroying the normal body tissue (Kang and Pantel
2013; Welch and Hurst 2019). These abilities of cancer cells viz., dissemination and
invasion, eventually prove fatal to the host.

Cancer is a multistep and progressive disease in which gene expression alters
because of the accretion of numerous genetic and epigenetic aberrations within a
genome. The genomic complexity of cancer cells arises due to intrinsic factors
and/or extrinsic factors that cause gross-scale abnormalities, i.e., variation in chro-
mosome numbers (including aneuploidy and whole-genome duplication) (Hasty and
Montagna 2014). Also, small-scale/local changes, i.e., genome rearrangements
(consist of gene amplification, deletions, and non-reciprocal translocations), occurs
due to causative agents and are responsible for genomic complexity. In addition to
this, aberrant alterations in genes encoding epigenetic players that control epigenetic
mechanisms are also responsible for increasing the complexity of cancer by causing
the inappropriate onset (initiation/inhibition) of genetic expressions and promoting
tumorigenesis. The epigenetic changes modify DNA (via methylation), histones
(by post-translational modifications PTMs, namely methylation, acetylation, and
phosphorylation, etc.), and non-coding RNAs (small and long ncRNAs) regulations
and nucleosome remodeling, to form a regulatory system that controls accessibility
between DNA elements and histones/non-coding RNAs (Ilango et al. 2020; Lu et al.
2020). The epigenetic players that participate in these modifications are susceptible
to extrinsic factors, and changes caused by these players are reversible. These
genetic and epigenetic alterations are often found in two kinds of genes, namely,
proto-oncogenes and tumor suppressor genes. The activation changes like gain-of-
function mutations and hypomethylation converts the proto-oncogenes into
oncogenes (OGs), which are overactive positive cell cycle regulators responsible
for cell survival, growth, and division, ultimately leading to cancer progression. The
changes like loss-of-function mutations, epigenetic silencing like hypermethylation,
proteasomal degradation by ubiquitination, and abnormal cellular localization of
tumor suppressor genes (TSGs) leads to their inactivation. As a consequence of this,
tumor development occurs due to elimination of negative regulatory proteins that
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usually restrict cell growth (by apoptosis or activating DNA repair and cell cycle
checkpoint) (Wang et al. 2018; Kontomanolis et al. 2020). Numerous studies have
been done for identifying the genetic and epigenetic changes in different cancer
types. For example, glioblastoma is associated with genetic alterations in the number
of tumor suppressors, viz., PTEN, TP53, PIK3R1, NF1, RB1, and oncogenes, i.e.,
EGFR, PIK3CA, and IDH1 (Zhang et al. 2019a). The other tumor suppressor genes
such as BRCA1/2, P53, PTEN, ATM, Rb, LKB, Nm23, P16, and oncogenes like
HER2, c-MYC, and ERBB2, MYC, PIK3CA are very frequently mutated in breast
cancer (Oliveira et al. 2005; Perera and Bardeesy 2012).

The complexity of cancer is further enhanced due to tumor heterogeneity that can
occur during cancer evolution. Tumor heterogeneity is of two types as follows:
(a) Intra-tumor heterogeneity, in which subsets of cancer cells within a tumor of a
single patient possess discrete phenotypic and molecular characteristics and
(b) Inter-tumor heterogeneity, which comprises tumor genotype variations among
tumors of the same histological type between different patients (Meacham and
Morrison 2013). This heterogeneity can arise from genetic, epigenetic,
transcriptomic, or phenotypic changes (McQuerry et al. 2017). Genomic-level
studies of tumor heterogeneity showed that cells in a tumor are highly diverse,
spatio-temporally by analyzing their genetic variations like single-nucleotide
variants (SNV), insertion–deletion mutations (indels), and copy number variation
(CNV) (Murtaza et al. 2015; Li et al. 2017). Several studies provided information on
epigenetic heterogeneity by inspecting DNA methylome and micro-RNA (miRNA)
pools (Liu et al. 2018; Dietz et al. 2019; Wang et al. 2019; Guo et al. 2019; Alfardus
et al. 2021). Studies of tumor heterogeneity at the transcriptome level revealed
variation in the gene expression pattern of particular pathways like cell cycle,
MAPK signaling pathway, immune/complement system pathways, and biological
programs, namely hypoxia and epithelial–mesenchymal transition (EMT) (Patel
et al. 2014; Zhang et al. 2016). Some studies supported the proteomic heterogeneity
of tumors, but it is less prominent than genomic and transcriptomic heterogeneity
(Ahmed et al. 2016; Sood et al. 2016). Tumor heterogeneity also includes heteroge-
neity of the tumor microenvironment (consists of endothelial cells, fibroblasts,
adipocytes, immune cells, mesenchymal stroma/stem-like cells, and extracellular
matrix), that sends physical and chemical signals to tumor cells and influences
epigenetic machinery (Hass et al. 2020). Such a dynamic and highly variable nature
of cancer hinders diagnosis and prognosis and leads to treatment resistance, relapse,
and eventually death (Dagogo-Jack and Shaw 2018; Marusyk et al. 2020). Hence,
understanding the mechanism of cancer development at different biological levels
and early prediction of cancer may help in designing better therapeutic strategies.

2.2 Omics Data in Cancer Research

Advancements of high-throughput sequencing (or next-generation sequencing,
NGS) techniques and the availability of omics data provide genome-wide
measurements of genomic features (including genetic variants, DNA methylation,
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and transcripts etc.) at various levels and resulted in remarkable progress in cancer
research. Several databases are available online which provide free access to geno-
mic information related to cancer. Among these, a few popular and important
resources are listed in Table 2.1.

In order to properly analyze various kinds of omics data and to perform explor-
atory analysis, several computational tools are freely available online (see
Table 2.1). Integration of different omics data will decode interrelationships between
these features and their functions. This holistic approach seems to be promising to
understand cancer development, recurrence, therapy response, and patient survival.
The subsequent sections will discuss different types of omics data produced by
various high-throughput sequencing approaches.

2.2.1 Genomic Data

Genomic information helps to unravel functional information present in DNA
sequences.

2.2.1.1 Genomic Variation Data
Genetic variation is an alteration in the nucleotide order of DNA sequences that
occur either due to mutation or genetic recombination. It can be grouped into
following classes on the basis of size: (1) Small-scale sequence variation (<1 kb)
consists of single-nucleotide variants (SNV), single nucleotide insertions/deletions
(indels), etc., (2) Large-scale structural variation includes copy number variations
(CNV) (loss or gain) and chromosomal rearrangement (genomic inversions,
translocations) (Cardoso et al. 2015). SNVs are the most prevalent variants and
can be present in different genomic locations: (1) protein-coding sequences,
(2) non-coding regions like splice sites, promoters, ribosome binding sites, etc.
Indels cause frameshift mutations within a coding region, whereas chromosomal
rearrangements affect the spatial organization of chromosomes and cause nuclear
reorganization. This kind of genomic variation is a fundamental constituent of
genomics data and provides an opportunity to explore associations between genes,
tissues, individuals, and phenotypes. DNA-sequencing (DNA-seq) techniques have
been used to study genomic alterations, which include whole-genome sequencing
(WGS), whole-exome sequencing (WES), and targeted massively parallel sequenc-
ing (TS) (Lightbody et al. 2019). WGS technique analyzes entire genomes and
allows investigation of changes within coding and regulatory sites (Meienberg
et al. 2016). It offers identification of CNVs, chromosomal rearrangements, and
other structural variations that may be missed by targeted sequencing. This tech-
nique provides global insight into novel genomic changes in cancer samples as it
gives the base-pair resolution of complete cancer genome in a single run (Zhao et al.
2019). Yates et al. (2017) performed WGS of primary as well as metastatic tumor
samples of breast cancer and observed that cell clones causing metastasis or relapse
migrate late from the primary tumors; however, they constantly gain alterations,
mostly in the same biological process as the primary tumor. Another WGS study of
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Table 2.1 Resources (data repositories and analysis tools) for cancer genomics study

Database/tools Features Link References

The Cancer Genome
Atlas (TCGA)

Exhaustive data repository of
genomic, epigenomic data of
cancer and control samples

https://portal.gdc.
cancer.gov/

Tomczak
et al. (2015)

Gene Expression
Omnibus (GEO)

Public repository of genomic
and proteomic data from
array- and sequencing-based
techniques

https://www.ncbi.
nlm.nih.gov/geo/

Barrett et al.
(2012)

International Cancer
Genome Consortium
(ICGC)

Data portal consists of
somatic mutations and
molecular data of major
tumor types for competent
visualization and analysis

https://dcc.icgc.
org/

Zhang et al.
(2019b)

Database of DNA
methylation and gene
expression in human
cancer (MethHC)

DNA methylomes and
mRNA/microRNA
expression database;
provides clinical and
genomic variation data;
multiplicity of information
present

https://awi.cuhk.
edu.cn/~MethHC/
methhc_2020/php/
index.php

Huang et al.
(2021)

The database of human
DNA methylation and
cancer (MethyCancer)

Database comprises of DNA
methylation data, cancer-
related gene and mutations;
also provides an efficient
visualization tool,
MethyView

http://
methycancer.
psych.ac.cn/

He et al.
(2007)

Chinese Glioma
Genome Atlas (CGGA)

Database contains mRNA/
miRNA expression profiles
and DNAmethylation data of
brain tumors from Chinese
cohorts

http://www.cgga.
org.cn/

Zhao et al.
(2021)

UCSC Xena Graphical viewer for gene-
and genomic-coordinate
across multiple data types of
tumors

http://xena.ucsc.
edu/

Goldman
et al. (2020)

cBioPortal Data portals provide genetic
alterations across samples,
genes, and pathways by
analyzing multi-omics cancer
data

https://www.
cbioportal.org/

Gao et al.
(2013)

SomamiR Comprehensive resource for
somatic and germline
alterations in miRNA and
their target sites in cancer

https://compbio.
uthsc.edu/
SomamiR/

Bhattacharya
et al. (2013)

Database of Epigenetic
Modifiers (dbEM)

Data resource for genomic
information of epigenetic
modifiers in cancer and
healthy samples

https://webs.iiitd.
edu.in/raghava/
dbem/

Nanda et al.
(2016)
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glioblastoma (GBM) tumors identified novel non-coding constraint mutations for
GBM-associated genes (Sakthikumar et al. 2020). In contrast to WGS, targeted
sequencing approaches examine specific genomic regions of interest for the detec-
tion of rare variants and include WES and TS. WES covers coding genomic portions
(i.e., genes and their flanking regions) to find out disease-causing variants in these
portions (Gupta et al. 2017; Mueller et al. 2018). Mainly, WES is useful for
identifying indels and SNV/SNPs inside the genome’s coding sites. TS technique
is helpful when prior information of disease is available and performed on particular
locations of the genome (Davis et al. 2021). Recently, Weigelt et al. (2018)
performed WES of breast tumors and TS of 410 breast cancer genes to investigate
the somatic changes and the phenotypic characteristics associated with breast cancer
which is originated from ataxia–telangiectasia (ATM) germline mutation. Garrett
et al. (2020) carried out WES study of GBM tumor samples to analyze their genetic
profile and correlated this information with drug treatment response to develop
personalized treatments against GBM. Targeted sequencing was used to identify
somatic mutations and CNV alterations in 30 genes which are most frequently
altered in gliomas in order to detect biomarkers associated with the long-term
survival of GBM patients (Cantero et al. 2018).

2.2.2 Epigenomic Data

Epigenomic information is useful to map the dynamic state of the genome in order to
elucidate phenotypic characteristics observed via gene expression studies.

2.2.2.1 DNA Methylation Data
DNA methylation process is an epigenetic mechanism which incorporates a methyl
(CH3) group into the cytosine residue of DNA via the action of DNA
methyltransferase enzymes. It controls gene expression and chromatin remodeling
by influencing the interactions of DNA with histone or specific transcription factors.
Whole-genome bisulfite-sequencing (WGBS) is a high-throughput technique used to
quantify genome-wide DNA methylation. It provides a higher resolution to allele-
specific DNA methylation as compared to DNA methylation assays and DNA
microarrays. This technique allows identification of differentially methylated
positions (DMPs) and differentially methylated regions (DMRs) which are the
genomic positions/regions having distinct of DNA methylation levels in various
biological circumstances (Wu et al. 2015). These DMPs and DMRs in disease
conditions are useful for the development of potential epigenetic biomarkers
which may help in early detection and diagnosis. The methylation changes in
circulating DNA of metastatic breast cancer were studied using WGBS and found
21 DNA hypermethylation hotspots that could be potential blood-based biomarkers
(Legendre et al. 2015). Bam et al. (2021) analyzed the global methylation status of
both tumor-infiltrating and blood CD4+ T-cell from glioblastoma patients. The study
found that the epigenetic modifications in tumor-infiltrating helper T-cells are
affected by tumor cells.
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2.2.2.2 Histone Modification Data
Chromosomal DNA tightly wraps around histone proteins and forms a chromatin
structure in the nucleus. The post-translational modifications (PTMs) of histone
proteins are crucial in chromatin remodelling which influence transcription. There
are two mechanisms by which histone modifications exert their effect: (1) by directly
altering overall chromatin structure either over short or long distances and
(2) regulating (either positively or negatively) the binding of histone modifiers
(Bannister and Kouzarides 2011). The detection of various histone modifications
enables a greater understanding of epigenetic regulation and leads to the develop-
ment of therapeutic strategies against histone-modifying enzymes. Chromatin
immunoprecipitation-sequencing (i.e., ChIP-seq), an effective method for detecting
DNA, targets for histone modifications as well as for transcription factors (TFs) at
genomic scale with base-pair resolution (O’Geen et al. 2011). It identifies differences
in the histone modification patterns which help in understanding epigenetic
mechanisms that regulate various biological processes in diseases and thus a power-
ful tool to analyze chromatin structure and gene expression. ChIP-seq data also
reveals how the genome is organized and the functional domains across the entire
genome which aid in predicting and validating a set of large, non-coding RNAs. Xi
et al. (2018) used the ChIP-seq technique to profile the distributions of 8 key histone
modifications (i.e., H3K4me1, H3K4me3, H3K9ac, H3K9me3, H3K27ac,
H3K27me3, H3K36me3 and H3K79me2) across 13 breast cancer cell lines and
from the epigenetic landscape of 5 molecular subtypes of breast cancer defined
subtypes-specific key chromatin signatures to determine potential biomarkers. ChIP-
seq analysis of histone H3 Lys27 acetylation (H3K27ac) revealed that alteration in
the metabolite acetyl-CoA stimulates site-specific regulation of H3K27ac through
which acetyl-CoA impacts the expression of distinct sets of genes associated with
malignant phenotypes of glioblastoma, i.e., cell adhesion and migration (Lee et al.
2018).

2.2.3 Transcriptomics Data

Gene expression data are useful to obtain information on the abundance of complete
sets of RNA transcripts that are produced by the genome within a biological sample
simultaneously.

2.2.3.1 Transcript Profiling Data
The RNA molecules are used to form proteins that serve a crucial part of the cell.
Thus, RNA expression reveals active transcription of cell and core activities in cells
and tissue under specific conditions. Different types of RNA molecules present in
eukaryotic cells play different biological functions like: mRNAs—carry the genetic
blueprint from a cell’s DNA to its ribosomes to make protein; microRNAs
(miRNAs)—involve in gene silencing by repressing translation; long ncRNAs
(lncRNAs)— involve in regulating chromatin function, modulating mRNA transla-
tion and also interfere with signalling pathways by acting as decoys, scaffolds or
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enhancer RNAs. RNA sequencing (RNA-seq) technique is useful to study expres-
sion level of transcripts under particular conditions, namely, different environmental
conditions, disease scenarios, and therapeutics exposure etc. Analysis of
transcriptome data reveals which genes are activated or silent in cells/tissue (quali-
tative information) and to what extent genes are expressed (quantitative information)
(Wang et al. 2009). RNA-seq methods provide information on differentially
expressed genes to detect both known and novel transcripts. The profiling of
mRNA molecules can be done using several RNA-seq assays viz., mRNA-seq,
single-cell RNA-seq (scRNA-seq), strand-specific RNA-seq, ultra-low input
RNA-seq and isoform sequencing (Iso-seq). However, the small RNA-seq technique
is useful for expression profiling of small non-coding RNAs (like miRNA, siRNA,
and piRNA). Total RNA-seq technique provides genome-wide expression data of
both coding and non-coding RNAs. For example, using total RNA-seq technology,
miRNA associated with metastatic breast cancer response to systemic treatment was
identified based on miRNA count (Martinez-Gutierrez et al. 2019). Gao et al. (2021)
showed that circular RNA (circRNA)-encoded unique E-cadherin variant circ-E-
Cad (C-E-Cad) activates oncogenic EGFR signalling by directly binding to it and
contributes to glioma stem cell tumorigenicity. Recently, Ren et al. (2021) discussed
usage of scRNA-seq technology in breast cancer heterogeneity, metastasis, drug
resistance, and prognosis and highlighted the importance of scRNA-seq for devel-
opment of better treatment strategies.

High-throughput technologies generate massive amount of omics data which
present a challenge due to its high dimension and redundancy. There is still a gap
in understanding of these data that are often publicly and freely available. The
traditional simplex classification algorithms are not suitable to handle large data
sets as they contain a small sample size and large gene count. In this scenario,
machine learning-based methods provide an excellent tool for analyzing such large
and complex data, thus promoting clinical diagnosis and precision medicine against
cancer.

2.3 Machine Learning Approaches

Nowadays, machine learning (ML), a subset of artificial intelligence (AI), is exten-
sively applied in growing areas of healthcare, like medical imaging and gene
expression pattern analysis, etc. and is extremely useful for high-dimensional data
analysis and prediction. It is a data driven approach, which handles large datasets and
automatically learns inherent patterns in the data that are useful to make decisions for
new sets of data (Witten and Frank 2000). These characteristics make ML a suitable
approach to design effective strategies for cancer diagnosis and treatment. Recent
developments in ML models have indicated pronounced potential in preclinical
conditions. The following sections give details of machine learning algorithms and
their applications in cancer research.

The terminologies used in machine learning are mentioned below:
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Dataset: It is a matrix containing features from which the machine learns and
class label/target to predict. Each column in the matrix represents a feature or target,
whereas each row represents an instance/observation. An initial dataset from which
the model learns any relationships between features and targets during model
training is called as training dataset. However, testing dataset is a subset of data
which is not provided during model training but is useful for unbiased model
evaluation by comparing predictions with the true value of the dataset.

Instance: An observation or data point is denoted as instance.
Feature/Attribute/Variable: This describes instances by measurable values and

acts as input for prediction.
Target/Class Label: A value of an observation that a machine learns to predict is

called as target or class label. For example, molecular subtype identification of breast
cancer is a multi-classification task. Here, four class labels, i.e., luminal A,
luminal B, HER2, and triple negative, are available.

Cross-Validation (CV): It is a technique that uses a subset of the original dataset
for model training and utilizes other subset for model evaluation. This is generally
useful to reduce model overfitting during training time. This method generates a
fixed number of subset (fold) of data and performs the analysis for each subset.
Further, it averages the final error estimate. Types of cross-validation methods are
mentioned below.

a) k-Fold Cross-Validation: The k-fold cross-validation method performs random
splitting on the original dataset to generate k equal size subsets and uses (k – 1)
subsets for training. For the testing purpose, it uses one subset.

b) Leave One Out Cross-Validation: The “leave one out cross-validation”method
selects one instance from the original dataset for testing and the remaining instances
for model training. The iteration is performed for each instance, and the final
outcome is the average of results obtained from each iteration.

c) Bootstrap Cross-Validation: In this method, the complete original dataset is
used for model training with sample replacement technique, and the remaining
instances are used for model testing.

Machine learning algorithms are mainly grouped into following three categories
on the basis of the availability of class labels/targets (Kotsiantis et al. 2007).

1. Supervised Learning Algorithms: It uses known targets during training and a
model learn the relationship between features and targets. This information can be
used for predicting unknown instances.

2. Unsupervised Learning Algorithms: Targets for unsupervised machine learning
algorithms are unknown. It is used to find hidden structures/patterns or groups of
similar samples during training the model. For clustering and pattern detection in
biological research, these algorithms are mostly applied and also, useful for
identification of gene signature in cancer and survival prediction.

3. Semi-Supervised Learning Algorithms: In this case, limited class labels are
available, and thus, both labeled and unlabeled data are used during model
building to improve accuracy. These algorithms are self-learning and show
great potential in cancer prediction problems.
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Depending on the nature of target values, above-discussed ML algorithms are
further divided into either classification or regression type. The classification
algorithms are used to predict categories of new instances by training the input
dataset. However, regression algorithms learn from input datasets and then predict
the outcome for continuous values. The schematic representation of machine
learning workflow in the case of cancer prediction is given in Fig. 2.1.

The commonly used methods during model construction for improving model
performance are discussed below.

2.3.1 Feature Selection Methods

Post-genomics era generated a large amount of transcriptomic, mutational, copy
number variation (CNV), DNA methylation, histone modification, and miRNA
expression data from various high-throughput techniques when applied on cancer
cell lines or patients. These different types of data act as features in machine learning
models and hold predictive power. To improve prediction accuracy, the feature
selection method selects relevant features and removes irrelevant features present

Fig. 2.1 Schematic overview of a machine learning workflow for cancer prediction using multi-
omics data. Cancer patient’s omics data, i.e., genomics, epigenomics, and transcriptomics, can act
as input for machine learning models. Once a model is trained, it can be used to make predictions
like cancer classification and drug response etc. for new patient’s data
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in the original dataset without changing its original value. This method is very
important when a dataset contains a large number of features. In such cases, there
is no need to give every feature to the algorithm but only important ones for model
prediction. This step will make the algorithm to perform fast, and will decrease the
model complexity, increase model accuracy, reduce overfitting and simplify
interpretation.

The feature selection is mainly grouped into three classes, namely, filter, wrapper,
and embedded (Hira and Gillies 2015).

Filter Method: This feature selection algorithm employs some ranking over
features that decide the importance of each feature for prediction. In this way, it
selects best N features without depending on any ML algorithms. This method is
used as pre-processing step. Few examples of this method are Pearson’s correlation,
t test, variance thresholds, information gain (IG), and Bayesian networks.

Wrapper Method: This method selects the best N features using machine learning
classifiers. It uses forward selection or backward elimination or bi-directional elimi-
nation techniques to decide which features to retain or remove.

Embedded Method: It combines the filter and wrapper techniques to check feature
importance. This method is useful for avoiding the overfitting. The gradient boosting
machine (GBM), ridge regression, recursive feature elimination (RFE), and LASSO
are few examples of embedded feature selection algorithms.

2.3.2 Dimension Reduction Methods

In model construction, the feature selection method selects a subset of relevant
features, resulting in a reduction in the dataset’s dimension. It retains a subset of
original features. However, in the case of high-dimensional data (i.e., 100 or 1000
features), the dimension reduction approach is used to reduce the high number of
features into low numbers by transforming the original values. The implementation
of this method will reduce computational time and provide quick visualization. Few
commonly used dimension reduction techniques are, principal component analysis
(PCA) (Pearson 1901), metric dimensional scaling (MDS) (Torgerson 1952), and
t-distributed stochastic neighbor embedding (t-SNE) (Hinton and Roweis 2002). The
high-dimensional data in the biological area like high-throughput gene expression
data, can be analyzed using the above techniques, and some of them are discussed
below.

Principal Component Analysis (Pearson 1901): This method uses the orthogonal
transformation process to convert instances of correlated features into a group of
linearly uncorrelated features. In this way, it reduces the dimension of the dataset
with the most negligible information loss, and newly formed features are known as
principal components. If data are nonlinear, kernel PCA is beneficial with nonlinear
kernel mapping. PCA works well on the dataset which shows the Gaussian
distribution.

Metric Dimensional Scaling (Torgerson 1952): This statistical method uses data
that contains dissimilarities among pairs of instances. MDS denotes these
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dissimilarities as distances among instances and obtain low dimension data points
from the high-dimensional dataset by keeping pairwise distances the same.

2.3.3 Overview of Machine Learning Algorithms

2.3.3.1 Supervised Machine Learning Algorithms
Supervised machine learning algorithms have been used for cancer diagnosis and
prognosis. Different supervised ML algorithms are available to analyze multi-omics
data with categorical and quantitative variables in cancer research and build predic-
tion models. Omics data of individual cancer patient at variety of molecular levels
can also be used with these classifiers to develop personalized predictions; they are
also useful for personalized predictions models. A detailed description of some of
the supervised ML algorithms useful in cancer prediction/prognosis is given below.

Support Vector Machine (SVM)
SVM is a commonly applied supervised machine learning algorithm that searches
hyperplane with maximal separation from each data class. Vapnik first described
such a kind of classifier to classify data classes using only a hyperplane (Cortes and
Vapnik 1995). The general principle of SVM is presented in Fig. 2.2a. SVM uses a
multidimensional function known as kernel to transform input data points from the
feature space to target space so as to differentiate complex real-life datasets. The
classification, as well as regression problems, can be solved using SVM. The proper
selection of kernel functions and their parameters significantly helps to improve the
model performance.

The following function describes SVM:

min
1
2

wk k2 þ C
Xn

i¼1

ξþi þ ξ�i
� �

s:t:

yi � f xið Þ � εþ ξþi

yi � f xið Þ � �ε� ξ�i

ξþi , ξ
�
i � 0

8
>><
>>:

,

where f, y, and ε represent prediction, actual class label, and free threshold parame-
ter, respectively. The constant C is a coefficient of adjustment between the margin of
separation and error on the hyper-plane. The ξþi and ξ�i parameters representing
slack variables for error calculation.

Naive Bayes (NB)
Naive Bayes, another supervised ML algorithm (Rish 2001), is a probabilistic
method based on Bayes’ law. It assumes that a particular feature in a class is
independent of another feature in the same class and each feature is equally
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contributing to target class. See Fig. 2.2b. This algorithm is used for classification
purposes.

Naïve Bayes classifier can be defined as follows:

p E ¼ 1jFð Þ ¼
p E ¼ 1ð ÞQ

n

i¼1
p f ijE ¼ 1ð Þ

p Fð Þ ,

where, F ¼ ( f1, f2, . . .. . .fn) denotes all the features, p(E ¼ 1) is obtained from a
training set and known as target class prior probability, p(F) is the feature prior
probability, p( fi|E ¼ 1) is likelihood that is probability of feature given target, and
p(E ¼ 1|F) is the posterior probability of target class given feature.

The below function finds class with maximum probability:

Fig. 2.2 The basic principles of different types of machine learning algorithms. (a) Support vector
machine (SVM), (b) Naive Bayes, (c) logistic regression, (d) artificial neural network (ANN), (e) k-
nearest neighbors (KNN), (f) decision tree, (g) random forest, (h) CN2, and (i) Laplacian SVM
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classify f 1, f 2, . . . ::f nð Þ ¼ argmax
E¼1, 0

p Eð Þ
Yn

i¼1

p f ijEð Þ:

Logistic Regression Classifier
Logistic regression is a classification algorithm utilized for probability prediction of
target class by logistic function (refer Fig. 2.2c). To use this algorithm, the target
class must be categorical, and multi-collinearity should not be in features. This
classifier helps to detect the best fitting model so as to represent the association
between features and the target class.

The logistic function with the feature set F ¼ {f1, f2, . . .. . .. . .. . . ., fn} is

p E ¼ 1jFð Þ ¼ 1
1þ e� β0þβ1f 1þ...::βnf nð Þ :

Artificial Neural Networks (ANNs)
ANN (Hagan et al. 1997), also known as a neural network or simulated neural
network (SNN), simulates behaviour of the human nervous system. This computa-
tional network comprises numerous interconnected layers (i.e., multi-layer
perceptron) that learn (without any programming), generalize training data, and
give output from complex data. It mainly contains three layers, namely, (1) input
layer, only one input layer in which input data are fed, (2) hidden layers, one or more
hidden layers in which processing takes place to derive results based on the weighted
sum of connections, and (3) output layer, demonstrating the results. Each layer
consists of multiple processing units called nodes, which possess an “activation
function” that converts input signal to output signal. Model performance gets
affected by the number of nodes and hidden layers. Figure 2.2d shows the computa-
tional scheme of ANN.

ANN’s objective function is as follows:

argmin
w

E wð Þ ¼ 1
2

Xm

i¼1

N w, xið Þ � yið Þ2,

where x, w, and y represents input vector, weight between nodes, and target vector,
respectively. ANN algorithms are useful for prediction, classification, regression,
and pattern recognition.

k-Nearest Neighbors (KNNs)
The k-nearest neighbors are a distance-based algorithm as it first finds all the closest
points around new unknown data point and calculates the distance between them to
determine the class of new data points (Aha et al. 1991) (shown in Fig. 2.2e). The
number of closest points near new unknown data points is denoted as “k” symbol,
and fine-tuning of this value improves the model performance. This method helps to
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solve the classification task by considering the majority of votes, while for the
regression problem, KNN takes the mean for all the closest points.

Decision Trees (DTs)
Decision tree, a supervised machine learning algorithm, is a tree-structured classifier
that continuously divides the data based on specific parameters. This classifier starts
with the root node (i.e., entire dataset), which further expands based on features into
a number of branches (represent decision rule) and finally forms leaf nodes (viz.,
final outcome) (Breiman et al. 2017). Figure 2.2f illustrates the decision tree
classifier. Decision tree has two types as follows: (1) classification tree (for categori-
cal class variable) and (2) regression tree (for continuous class variable).

The following measures in a decision tree are used to check the impurity of a node
t:

Entropy tð Þ ¼ �
X

i2 0, 1ð Þ
p ijtð Þ log 2p ijtð Þ

Gini tð Þ ¼ 1�
X

i2 0, 1ð Þ
p ijtð Þ½ �2

Classification error ¼ 1� max i p ijtð Þ½ �:
The gain ratio is as follows:

¼
IðparentÞ �Pn

i¼1

NðchildiÞ
N IðchildiÞ

�Pn

i¼1
pðchildiÞ log 2pðchildiÞ

:

In the decision tree, the gain ratio is used to measure the goodness of a node’s
split. This measure decides which feature in a tree should be the parent node and
which should be set down after being split as a child node.

Random Forest (RF)
As the name suggests, the random forest comprises multiple decision trees and can
provide more accurate predictions by combining all of them (Fig. 2.2g). However,
this algorithm solves the problem of overfitting associated with the decision tree.
Each decision tree in a random forest makes prediction of a class, and the class with
highest number of hits will be the prediction of model. If an optimal classifier is
unfeasible, a random forest classifier is especially helpful (Ditterrich 1997; Breiman
2001). This classifier applies bagging and feature randomness to generate uncorre-
lated trees in a forest, ultimately giving a more accurate and stable result. It is used to
solve classification and regression problems.
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CN2 Classifier
The CN2 algorithm induces classification rules “if. . .then..” from data using entropy
(Clark and Niblett 1989). This classifier is used only for classification purposes and
works well with imperfect/noisy training data. Figure 2.2h gives the schematic
representation of this classifier.

The advantages and disadvantages of above supervised ML algorithms are given
in Table 2.2.

2.3.3.2 Semi-Supervised Classifier
Semi-supervised ML algorithms use a combination of supervised learning on a small
amount of labeled data and unsupervised learning on large amount of unlabeled data
(Chapelle et al. 2009). This approach is applicable when a large number of labeled
data is not available and overcomes the drawbacks of supervised (i.e., require
sufficient labels and costly process) and unsupervised (i.e., limited range of
applications) algorithms. This algorithm works on the basis of any of these three
assumptions, viz., (1) continuity assumption, data points around each other belong to
the same class; (2) cluster assumption, data can be split into distinct clusters and data
points in the same cluster tend to share class; and (3) the manifold assump-
tion, assumes that data points are present on the manifold of lower dimensions
than input space. The manifold assumption is useful in condition where data points
may locate in high dimensions, and is very difficult to map data points in those
dimensions. Semi-supervised classifier includes Laplacian SVM, generative models,
and transductive SVM.

Laplacian SVM
Laplacian support vector machine (LapSVM) is based on a support vector machine
algorithm and obeys manifold regularization (Belkin et al. 2006). This is a graph-
based approach in which nodes are formed from labeled and unlabeled data. The
KNN algorithm is employed to compute edge weight to define similarity between
data points in a graph. Through this procedure unlabeled nodes can be labeled by
transferring the information of labeled data points to other nodes. See Fig. 2.2i for
pictorial representation of LapSVM.

LapSVM solves the following optimization problem.

argmin
f2Hk

1
nl

Xni

i¼1

1� yif xið Þj jþ þ λa fk k2K þ λb
nl þ nuð Þ2 � f TLf ,

where fk k2K , nl, nu are a regularization function for smoothness, number of labeled
data points, number of unlabeled data points, respectively, and λa, λb are
hyperparameters.

loss function ¼ 1� yif xið Þj jþ ¼ max 0, 1� yf xð Þð Þ,

38 P. Gawade et al.



Table 2.2 Advantages and disadvantages of different supervised ML algorithms

Algorithm
name Advantages Disadvantages

Support
Vector
Machine
(SVM)

• High prediction accuracy
• Handle high-dimensional space
• Generalized well with small
amount of data
• Less prone to condition of
overfitting
• Less influence of outliers

• Extensive memory required for
optimization
• Not appropriate for large datasets
• High time complexity
• Selection of proper kernel function
is challenging
• Difficult to fine-tune some hyper-
parameters

Naive Bayes • Its implementation is easy and
simple
• Computationally very fast
• If conditional independence
assumption holds, it quickly generates
outcomes
• Works well with categorical and
continuous data

• The conditional independence
assumption does not always hold in
the complex biological problems
• Not suitable for imbalanced data
• Shows decrease in performance
with increase in sample size of dataset

Logistic
regression
classifier

• Simplest algorithm to use
• Very fast
• Do not suffer from overfitting in
case of low-dimensional dataset
• Very efficient for linearly-
separable dataset

• Causes model overfitting on high-
dimensional dataset
• Shows decrease in performance
with increase in number of samples
and features in dataset
• Not suitable for non-linear data
• Sensitive to outliers

Artificial
Neural
Network
(ANN)

• Robust to noise
• Shows good fault tolerance
• Works well on complex nonlinear
association among dependent and
independent features
• Able to perform parallel processing

• Training performance increases
with increase in training dataset
• Unexplained functioning
• The algorithm may be stuck into
local minima
• Hardware dependent
• Long training time is required
• Difficult to determine network
structure
• Suffers from overfitting

k-Nearest
neighbors

• Implementation is simple and easy
• Fast, as no training time is require
• Highly reserved for local
information
• Versatile as it performs
classification, regression, and search
tasks
• Analytically tractable

• Huge storage space requires
• Different values of k give different
outcomes
• Takes long computation time for
large dataset
• Larger k values increase the time
complexity
• Sensitive to noisy data and outliers
• Difficult to work with high
dimensional data
• Standardization and normalization
steps require

Decision
Trees

• Simple, easy to understand and
interpret
• Can handle irrelevant features and
nonlinear associations

• Small changes affect stability of
decision tree structure
• Suffer from overfitting without
proper tree pruning

(continued)
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Xn

i, j¼1

Wij f xið Þ � f xj
� �� �2 ¼ f TLf ,

Wij, is the edge weights in the graph,
Laplacian operator, L ¼ D � W.

This classifier is less vulnerable to overfitting, robustness to noise and outliers,
and has high prediction power and good generalization ability with small labeled
data. However, it does not work well with large number of data points because it
needs high memory to construct a graph and is time-consuming.

2.3.4 Model Performance Evaluation

The major part of building an effective ML model is evaluation of model’s perfor-
mance. ML requires evaluation metrics for selecting the best model. Following are
the primary building blocks of several evaluation metrics, formed from confusion
matrix, which is obtained from actual and predicted class labels:

True Positive (TP): It represents an outcome in which positive samples are accu-
rately predicted as positive by the model.

True Negative (TN): It represents an outcome in which negative samples are
accurately predicted as negative samples by the model.

Table 2.2 (continued)

Algorithm
name Advantages Disadvantages

• Not sensitive to missing values
• Runs fast
• No normalization and scaling
require
• Data preparation takes less efforts

• Stuck in local minima
• Not suitable for regression
problem and prediction of continuous
values
• Difficult to find optimal decision
tree

Random
Forest

• High predictive performance
• Works well with both classification
and regression problems
• Efficiently handles large datasets
• Reduces overfitting and variance
• Easy to understand model
predictions

• Complex thus requires more
computational power and resources
• Suffers from overfitting for noisy
datasets
• Takes more time than decision tree

CN2
classifier

• Implementation is simple and easy
to understand
• Can handle irrelevant features and
nonlinear relationships
• Works fast

• In case of large number of
features, difficult to define rules for
training datasets
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False Positive (FP): It represents an outcome in which negative samples are
incorrectly predicted as positive by the model.

False Negative (FN): It represents an outcome in which positive samples are
wrongly predicted as negative samples by the model.

Based on these 4 outcomes, model performance metrics are given below.

True-Positive Rate (TPR) (Also Known as Sensitivity): The probability that positive
samples will predict positive.

True Positive Rate TPRð Þor Sensitivity ¼ TP
TPþ FN

, TPR 2 0, 1½ �:

False-Positive Rate (FPR): The probability that negative samples will predict
positive.

False Positive Rate FPRð Þ ¼ FP
FPþ TN

, FPR 2 0, 1½ �:

Precision: It estimates positive sample predictions that are genuinely from the
positive class label.

Precision ¼ TP
TPþ FP

, Precision 2 0, 1½ �:

Recall: It estimates positive sample predictions from all actual positives.

Recall ¼ TP
TPþ FN

, Recall 2 0, 1½ �:

F-Measure: It balances precision and recalls both together to provide a single score.

F‐measure ¼ 2 � Precision � Recallð Þ
Precisionþ Recallð Þ , F‐measure 2 0, 1½ �:
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Accuracy: It gives the total correct predictions (TP + TN) made by the model.

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

, Accuracy 2 0, 1½ �:

The Area Under the Receiver Operating Characteristic Curve (auROC): It shows
whether the model is capable of correctly discriminating between class labels.

auROC 2 0, 1½ �:

Matthews Correlation Coefficient (MCC): It computes the correlation between
actual and predicted labels and is calculated by the following formula.

MCC ¼ TP � TNð Þ � FP � FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ � TPþ FNð Þ � TNþ FPð Þ � TNþ FNð Þp , MCC 2 �1, 1½ �:

Sufficient labeled data should be available to get statistically significant measures.
The above performance metrics are useful to evaluate various ML algorithms to
check how good the model is in predicting the outcome.

To implement different machine learning algorithms, various functions are avail-
able in scikit-learn (Python) (Pedregosa et al. 2011; Kramer 2016), e1071
(R) (Dimitriadou et al. 2008; Meyer et al. 2019), and Weka (Java) (Witten et al.
1999; Dimov et al. 2007).

2.4 Application of AI and Machine Learning Techniques
in Cancer

As mentioned previously, cancer is a heterogeneous disease and shows distinct
molecular as well as phenotypic characteristics within a tumor. This heterogeneous
nature of the tumor poses a challenge for successful treatment and recovery. Differ-
ent machine learning and artificial intelligence techniques have been effectively
applied to combat the disease.

2.4.1 Cancer Classification

In order to determine the proper treatment regime and to reduce cancer-related
mortality, correct classification of cancer is needed. RNA-seq provides genome-
wide gene expression data that can be useful to determine cancer types and unravel
cancer subtypes, indicating a profound impact on cancer prediction/diagnosis.
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However, gene expression data have several limitations like small sample sizes,
large number of genes, and presence of some uninformative genes. All these factors
decrease classification performance. This indicates the need for filtration and feature
selection steps before model building. With the stringent threshold, these two steps
ensure that only informative and sufficiently differentially expressed genes between
the target classes can be used in building the classifiers. Various supervised and
unsupervised algorithms are developed using gene expression data for cancer classi-
fication purposes. For instance, Flynn et al. (2018) identified primary site of
33 cancers and the molecular subtype of 11 cancers by applying several machine
learning approaches like diagonal linear discriminant analysis (DLDA), KNN, RF,
and SVM on gene expression profiles from the TCGA. The gene expression data of
breast cancer provide an information based on which ML methods classified the
disease into triple-negative breast cancer (TNBC) and non triple-negative breast
cancer (non-TNBC) (Wu and Hicks 2021). The authors evaluated four different
classification algorithms, namely SVM, KNN, NB and DT and found that SVM was
able to divide TNBC and non-TNBC with less errors compared to others. Zhang
et al. (2020) classified glioblastoma subtypes using SVM and RF with
methylation data.

2.4.2 Anti Cancer Drug Response Prediction

The complexity of the tumor and its microenvironment lead to partial or no response
to anti cancer drugs. Therefore, finding the relationship between drug response and
molecular features of cancer cells or their microenvironment will be helpful in the
identification of novel diagnostic/predictive biomarkers and evaluating drug
response to guide personalized medicine. Miranda et al. (2021) used DNA methyla-
tion profiles at global scale from several cancer cell lines in the Genomics of Drug
Sensitivity in Cancer (GDSC) database to predict eight anti cancer drug’s cytotoxic
responses by machine learning algorithms. Here, authors used RF, SVM, gradient
boosting machines, and KNN for both classification and regression. The predictions
made by the RF classifier were significantly correlated with Temozolomide drug
responses for low-grade gliomas. Bomane et al. (2019) assessed ML algorithms,
namely RF, XGB, LGBM, logistic regression LR, classification and regression tree
(CART) on six molecular profiles (CPG and CGI DNA methylation, mRNA expres-
sion, miRNA profiles, isomiR expression, CNV) of breast tumors to predict pacli-
taxel response. A study found that DNA methylation and miRNA profiles out of six
molecular profiles were the most informative overall.

2.4.3 Survival Prediction

Survival is the time during which a patient survives after disease diagnosis. Survival
analysis is crucial in cancer patient management because of tumor heterogeneity.
Integration of multi omics data and ML algorithms holds promise for improving the
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survival of cancer patients. Mitchel et al. (2019) developed ML workflow using
decision-level integration of multi omics tumor data to predict the overall survival of
breast cancer patients. This study predicted the survival with an accuracy of 85% and
area under the curve (AUC) of 87% with multi omics data and identified best
integrated classification combination as methylation, miRNA, and gene expression.
Recently, an auto-encoder was used to integrate and reduce the dimensions of
pancreatic cancer patients’ microRNA expression and DNA methylation data
(Baek and Lee 2020). Machine learning models like SVM, RF, and LR and L2
regularized logistic regression were implemented to combine the clonal expansion of
DNA mutations and multi omics data to predict cancer recurrence and survival
within five years. This study revealed that mutated genes with low cellular preva-
lence (CP) values (i.e., mutated in smaller clones) were not significantly associated
with recurrence and survival. However, the topmost CP value genes which usually
mutated in the initial stages of tumor development were significantly related to poor
prognosis in pancreatic cancer.

2.4.4 Metastasis Prediction

Cancer metastasis contributes to cancer-related mortality. Early prediction of it can
improve prognosis. Most of the time, the metastasis prediction models use gene
expression data. Recently, miRNA expression levels and DNA methylation patterns
have also been explored for metastasis prediction. Tuo et al. (2018) used the
SVM-based classifier on gene expression profiles to predict whether the breast
cancer samples were metastatic or non metastatic, and prediction accuracy was
evaluated by training and validating the model on TCGA data, an independent
dataset. The mRNA- and miRNA-specific classifiers were used to differentiate
cross-cancer tissue samples as primary or metastatic (Lee et al. 2019a). This study
used three classification algorithms (LASSO, RF, and SVM) with bootstrap cross-
validation method to determine how accurately mRNA and miRNA biomarkers can
classify metastasis.

2.4.5 Biomarker Prediction

Cancer biomarkers may evaluate the risk of cancer development or progression in a
specific tissue or therapeutic response. Thus, to decide appropriate therapy for cancer
patients, the identification of cancer biomarkers is essential and may be useful for
patients’ survival. Tabl et al. (2019) used a machine learning multi class approach,
the one-versus-rest technique to identify potential biomarkers which can increase
breast cancer patients’ survival. In this study, gene expression profiles of cancer
patients who received different treatments like surgery, hormone therapy, and
radiotherapy were used and also considered their status as living or deceased. The
classifiers, namely random forest, SVM, and Naive Bayes, were implemented and
found that random forest outperformed the others and showed a better classification
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power for the hierarchical model. In another study, microRNA expression data were
used for validating clinically selected miRNAs as breast cancer biomarkers using
several machine learning classifiers (Rehman et al. 2019). The feature selection
methods like information gain (IG), chi-squared (CHI2) and least absolute shrinkage
and selection operation (LASSO) were implemented to rank the miRNAs by their
importance and concluded that not all miRNAs carry equal weightage to act as a
cancer biomarker, even among those clinically selected ones.

2.5 Conclusion and Future Directions

In the upcoming decade, advancement in artificial intelligence and proper imple-
mentation of machine learning methods in cancer genomics will reveal crucial
aspects in oncology. Recent studies showed that the utilization of diverse omics
data and their combination enhanced the cancer prediction performance of the
machine learning models. Several challenges still exist, like data collections, pre
processing, and storage. The collaboration between clinicians and bioinformaticians
will be beneficial to get organized or structured data from various sources and at
numerous scales. Recently, a study combined multi omics data with drug data to
predict overall survival and different subtypes (at pathological, histological, and
molecular levels) of glioma patients (Saurabh et al. 2020). This kind of comprehen-
sive analysis can be helpful for doctors and clinicians in early diagnosis as well as in
deciding the correct and personalized therapeutic strategies for individual cancer
patients. In recent years, several studies integrated genomics data with pathological
image data for identifying distinct cellular subtypes, prognostic biomarkers, muta-
tional status, therapeutic strategies, and clinical outcomes. Applying a deep learning
classifier on point mutation, copy number alteration, and gene expression data, Qu
et al. (2021) predicted driver mutations and signaling pathways activity from
histopathological whole slide images (WSI) of breast carcinoma patients. Recently,
a new approach, radiogenomics, has emerged in the area of personalized medicine
which integrates genetic and radiomic data for monitoring genetic variations in
patients through medical images and can act as a better substitute for painful
mediation (Shui et al. 2020; Gullo et al. 2020). Lee et al. (2019b) used machine
learning classifiers on quantitative radiomic data of glioblastoma patients obtained
from magnetic resonance images (MRI) and targeted sequencing of the IDH1 gene
to predict its mutation status from images. The study showed a good (~80%)
predictive power for IDH1 mutation by training 31 features of MRI and also
observed good (i.e., 66.3–83.4%) accuracy through validation on an external set
(Lee et al. 2019b). Such an integrative machine learning approach has an important
role in improving diagnosis and prognosis. Nowadays, model explainability is
gaining importance in the machine learning field as it explains the backend process
of the model prediction, i.e.,which particular features mainly contribute to the model
prediction. The success of ML solutions may provide a handful of clinically relevant
tools for cancer patient’s treatment and management.
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Cancer Biomarkers in the Era of Systems
Biology 3
Shazia Firdous, Sunil Kumar Srivastava, and Sudipto Saha

Abstract

Cancer biomarkers allow diagnosis, risk assessment, monitoring disease progres-
sion, and prediction of therapeutic response in oncology. Different forms and
types of cancer biomarkers exist and it covers a broad range of biochemical
entities including DNA, miRNA, cirRNA, and proteins. The advances in high-
throughput technologies including genomics, transcriptomics, proteomics, and
metabolomics have generated great opportunities for the discovery of new and
effective cancer biomarkers. Due to the heterogeneous nature of cancer cells, it is
difficult to identify the clinically useful precise cancer biomarkers. Multiomics
data analyses using a systems approach play a vital role in the discovery of cancer
biomarkers. In this chapter, a brief classification system for cancer biomarkers has
been provided according to their biochemical nature and based on clinical utility
along with the application of recent high-throughput approaches used in cancer
biomarker discovery. Several databases and bioinformatics tools applied in
cancer biomarker discovery have been mentioned. In summary, different cancer
biomarker types, omics approaches used for cancer biomarker discovery, and
dedicated cancer-related databases and tools have been discussed.
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3.1 Introduction

Cancer, a heterogeneous group of diseases, represents the second leading cause of
death globally and is responsible for an estimated ten million deaths worldwide in
2020 (Sung et al. 2021). For advancement and better treatment in cancer, patient’s
early diagnosis and accurate detection of cancer are the crucial steps. In the past few
decades, the biomarker field along with the improved quality of medical services and
technologies has transformed the ability of cancer researchers to easily diagnose and
classify cancer at the molecular level and resulted in improved drug development
and clinical trial design (Hu and Dignam 2019; Parker et al. 2021; Goossens et al.
2015; Goyal et al. 2021). The definition of biomarker has been given differently by
different groups. Some of the definitions limit the scope of biomarkers up to
biological molecule or biochemical features; on the other hand, a broader definition
of biomarker provided by the Biomarker Consortium (Foundation of National
Institute of Health) increases the probability of discovering new biomarkers in the
ever-changing era of research biology (Califf 2018; Wu and Qu 2015; Strimbu and
Tavel 2010). According to United Nations, World Health Organization (WHO)
biomarkers can be defined as any measurable substance, structure, or process or its
product that can predict the incidence of disease outcome (World Health Organiza-
tion 2001). In simple words, any measurable indicator of disease condition and
treatment response indicator can be considered as a biomarker (Zare Jeddi et al.
2021; Lassere 2008). In a study in 1848, light chain of immunoglobulin was
identified as the first-ever cancer biomarker in the myeloma patient urine sample
(Solomon 1980). Since then, numerous cancer biomarkers have been identified such
as alfa-fetoprotein, carcinoembryonic antigen (CEA), and prostate-specific antigen
(PSA). Every era of cancer biomarker discovery has been closely associated with the
new and powerful technology (Tatarinov 1964; Xu et al. 2021; Campos-da-Paz et al.
2018; Cózar et al. 2021; Wang et al. 1979).

In the past few decades, high-throughput technologies such as genomics,
metagenomics, transcriptomics, proteomics, and metabolomics have generated a
significant amount of data for cancer biology. For example, a proteomics-based
study identified DNA-dependent protein kinase catalytic subunit (DNA-PKcs) as a
potential diagnostic biomarker for clinical outcomes in breast cancer (Asleh et al.
2021). A combined study of transcriptomics with metabolomics revealed a panel of
important serum biomarkers such as 2-hydroxybutyric acid and 4-hydroxybutyric
acid as candidate diagnostic biomarkers for lung cancer proliferation through the
Ca2+ signaling pathway (Zheng et al. 2021). In addition, miRNA-194 was identified
as a favorable prognostic biomarker for gastric cancer (Wang et al. 2021a). More-
over, the machine learning-based computational algorithm helps to classify the
complex pattern of cancer research outcomes generated by a plethora of high-
throughput experiments (Echle et al. 2021). As a result, these omics approaches
when coupled with bioinformatics and computational methods provide great
opportunities for biomarker discovery and facilitate therapeutic development for
cancer (Menyhárt and Győrffy 2021; Yan et al. 2016).
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As with time, the information about cancer biomarkers has expanded, and so also
the complexities of tumor biology evolve adding challenges to the development of
efficient biomarkers. More powerful tools, cross-validation techniques, and system
biology approaches should be deployed in future to increase the yield of biomarkers
in cancer therapeutics (Ileana Dumbrava et al. 2018; Sheng et al. 2020; Louie et al.
2021). In this chapter, we have highlighted three aspects of cancer biomarkers. The
first part deals with the cancer biomarker classification according to the molecular
types and the potential role they play in clinical oncology. The second part relates to
the omics approaches that are nowadays considered as a powerful strategy to
untangle the complex biological behavior of cancer cells. These high-throughput
technologies help to discover molecular biomarkers with prognostic, diagnostic, and
targeted therapeutic values. The third part discusses some important bioinformatics
tools and software related to cancer biomarker discovery. The multiomics data
integration and molecular regulatory network-based analysis tool can revolutionize
the biomarker field for the effective treatment of cancer.

3.2 Categorization of Cancer Biomarkers

In biomedical science, cancer biomarker identification is one of the major multidis-
ciplinary areas and their categorization should be considered contextual. Further, due
to the enhancement in recent advanced technologies, enormous cancer biomarkers
have been reported thereby it is difficult to categorize cancer biomarkers by consid-
ering only one aspect (Henry and Hayes 2012). However, according to contempo-
rary findings, several attempts have been applied to classify cancer biomarkers
(Nguyen et al. 2020). A basic schematic representation for the classification of
cancer biomarkers is shown in Fig. 3.1.

Fig. 3.1 Classification of cancer biomarkers based on biomolecules, clinical utility, and other
criteria
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3.2.1 Classification of Cancer Biomarkers Based on Biomolecules

3.2.1.1 DNA Cancer Biomarkers
Genetic alteration, gene rearrangement, and point mutation are responsible for
cancer progression (Housman et al. 2014; Torgovnick and Schumacher 2015; Li
et al. 2021a). The most common cancer DNA biomarker includes single nucleotide
polymorphisms (SNPs). In a recent study, SNP–SNP interactions have been
identified as a potential indicator of prostate cancer aggressiveness (Lin et al.
2021). Another study demonstrated m6A-associated functional SNPs (PLEKHA8,
SMUG1, CDC123, RMI2, ACSM5) as major functional variants for thyroid cancer
(Ruan et al. 2021). Moreover, researchers have defined circulating tumor DNA in
localized nonsmall cell lung cancer as a prognostic biomarker and predicted the
survival rate (Peng et al. 2020). Epigenetic CpG methylation also provides a broad
range for early cancer detection and can be used as a cancer biomarker (Locke et al.
2019).

3.2.1.2 RNA Cancer Biomarkers
Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR),
microarray, Serial Analysis of Gene Expression (SAGE), differential display,
microfluid card, and bead-based methods are commonly used to detect RNA or
miRNA cancer biomarkers (Xi et al. 2017; Yamashita et al. 2008). Various identified
mRNA and miRNA act as effective diagnostic and prognostic cancer biomarkers
(Paramasivam 2021; Wang et al. 2021b; Bautista-Sánchez et al. 2020). In blood-
based liquid biopsies, platelet RNA has been detected as an early diagnostic bio-
marker for cancer (Wurdinger et al. 2020). A recent article has indicated that miRNA
plays an important role in identification of drug and decision-making of drug
delivery in cancer therapeutics (Paramasivam 2021). Clinical researches reported
that circRNAs expression indicates the cancer prognosis in different types of cancer,
for example in a recent study circRNA expression in peripheral blood has been
found to be correlated with cancer size (Li and Han 2019; Pan et al. 2019; Chen et al.
2017).

3.2.1.3 Protein Cancer Biomarkers
The most commonly used techniques used to identify protein-based biomarkers
include Polyacrylamide Gel Electrophoresis (PAGE) and Two-Dimensional fluores-
cence Difference Gel Electrophoresis (2D-DIGE) (Issaq and Veenstra 2008). The
high-throughput method includes proteomics study based on Mass Spectroscopy
(MS), Surface-Enhanced Laser Absorption Desorption Ionization Time of Flight
(SELDI-TOF), and Matrix-Associated Laser Absorption Desorption Ionization
Time of Flight (MALDI-TOF) and discovered various protein and peptide
biomarkers for ovarian and breast cancer (Zeidan et al. 2009; Liu 2011; Swiatly
et al. 2017; Lv et al. 2019). Quantitative proteomics has also been applied to identify
potential cancer protein biomarkers in different types of cancers (Kwon et al. 2021).
To discover secreted protein-mediated interaction between the cancer cell and
nonmalignant stroma, Stable Isotope Labeling with Amino Acids in Cell culture
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(SILAC) was performed and further in pancreatic cancer, Wntless homolog protein
(WLS) and Myristoylated Alanine-rich C-Kinase Substrate (MARCKS) found to be
associated with oxaliplatin resistance (Kim et al. 2021; Wang et al. 2018). Isobaric
Tags for Relative and Absolute Quantitation (iTRAQ), a quantitative proteomics
approach was applied to find differentially expressed protein in metformin-treated
cervical cancer cells and reported that metformin increases tumor suppressor gene
expression IGFBP7 (Xia et al. 2020). Liquid Chromatography-Mass Spectrometry/
Mass Spectrometry (LC-MS/MS) and antibody arrays are used in lung breast and
colon cancer to find a panel of potential protein biomarkers (Wang et al. 2016a;
Huang and Zhu 2017). Protein-based biomarkers are considered as a more valuable
biomarker as compared to DNA- and RNA-based biomarkers as they are involved in
functional molecular pathways and determine the disease initiation and progression
state (Zhang et al. 2019). In a recent study, PINK1 protein has been reported as a
prognostic biomarker for cancer (Zhu et al. 2020).

3.2.1.4 Carbohydrate Cancer Biomarkers
Cancer progression is often associated with changes in the expression of surface
carbohydrates such as N-linked and O-linked glycans (Leney et al. 2017). The
glycobiomarkers [glycoprotein, glycolipid, and proteoglycan] serve as candidate
epidemiological cancer biomarkers (Lan et al. 2016; Daniotti et al. 2013). Mass
spectrometry such as MALDI-TOF and Electrospray Ionization (ESI) are generally
used for profiling of N- and O-linked glycosylation at serine and threonine residue of
candidate protein molecules in human sera and cancer cell lines (Dube and Bertozzi
2005; An et al. 2006, 2010; Drake et al. 2017). Glycan microarray analysis has been
found a good biomarker identification method for the diagnosis of breast cancer
(Wang et al. 2008). Further in hepatocellular carcinoma, cancer-associated carbohy-
drate antigens (DSGG, fucosyl GM1, and Gb2 of CACAs) have been reported as
potential biomarkers for early detection of cancer (Wu et al. 2012).

3.2.2 Classification of Cancer Biomarkers Based on Clinical Utility

Based on the putative application, cancer biomarkers can be classified under the
following categories. Although some biomarkers are overlapping in nature, for
example, the grading and staging cancer biomarker is also used as a prediction and
screening biomarker (Ludwig and Weinstein 2005).

3.2.2.1 Prediction Cancer Biomarker
Predictive biomarkers predict the response and efficacy of the treatment and also
help to determine the optimal dose of the drug at the initial treatment stages (Alves
Martins et al. 2019; Bai et al. 2020). As cancer is a heterogeneous disease and the
same cancer type responds differently to a drug thereby these types of biomarkers
help in selecting a successful treatment process and minimizing the drug toxicity. A
common predictive biomarker is overexpression of HER2, which predicts breast
cancer’s response to drugs like trastuzumab (Jørgensen and Hersom 2016). A high

3 Cancer Biomarkers in the Era of Systems Biology 55



level of circulating IFN-γ predicts the response of immunotherapies to immune
checkpoint blockade in melanoma and nonsmall cell lung cancer patients
(Karachaliou et al. 2018). A more recent study predicts that overexpression of
excision repairs cross-complementation group 1 (ERCC1) increases DNA excision
repair and imparts resistance to platinum-based drugs (Chung 2021). Additionally,
in colorectal cancer, the mutation in MAPK pathway genes serves as a predictive
biomarker for EGFR therapy and indicates resistance to cetuximab drug (Boussios
et al. 2019).

3.2.2.2 Detection/Diagnostic Cancer Biomarker
The screening or detection of cancer biomarkers is the real indicator of the presence
of cancer. These biomarkers help to identify benign cancer before metastasis. The
tumor cells produce several immune factors, serum proteins, and circulating free
DNA and RNA and these molecules can serve as cancer detection biomarkers
(Parker et al. 2018). Diagnostic biomarkers play an important role in classifying
patients into subtypes and also detecting the presence of the disease. Prostate-
specific antigen (PSA) is the best-known cancer biomarker for prostate cancer
early detection (Welch and Albertsen 2009). Cancer Antigen 19-9 (CA-19-9) is a
diagnostic serum biomarker for pancreatic ductal carcinoma (Poruk et al. 2013).
Further, another cancer antigen CA 125 is also used as a classical biomarker for the
detection of ovarian cancer (Felder et al. 2014). The utility of cytokines as diagnostic
biomarkers is increasing rapidly although further validation is required. IL-6 and
VEGF serve as possible diagnostic biomarkers for ovarian and gastric cancer (Liang
et al. 2015; Monastero and Pentyala 2017). Diagnostic biomarkers are often used in
conjunction with other specific biomarkers to increase the specificity and diagnosis
in the general population (Califf 2018).

3.2.2.3 Prognostic Cancer Biomarkers
Prognostic biomarkers allow to monitor the disease status, detect the recurrence rate,
and provide an idea about the overall patient survival rate, independent of therapy
(Sechidis et al. 2018; Ruberg and Shen 2015). It allows estimating the risk of the
disease. In colon, lung, and breast cancer, patient’s carcinoembryonic antigen (CEA)
signifies a poor survival rate (Boonpipattanapong and Chewatanakornkul 2006; Su
et al. 2012). Some diagnostic biomarkers such as Cancer antigen 19-9 (CA-19-9) and
cancer antigen (CA 125) have also prognostic values and their presence can predict
the survival rate in pancreatic ductal carcinoma and ovarian cancer, respectively
(Poruk et al. 2013; Felder et al. 2014). Other prognostic biomarkers include miR-155
which suggests a poor clinical prognosis in hepatocellular carcinoma (Nalejska et al.
2014). A recent study reported five signature miRNAs having prognostic values in
colon cancer (Lv et al. 2020). Further for breast cancer, circulating tumor cells serve
as a prognostic indicator in nonmetastatic breast cancer as their presence is correlated
with metastasis (Lucci et al. 2012).
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3.2.2.4 Pharmacodynamics Cancer Biomarkers
This type of biomarkers is the new classification-based biomarker that determines
the degree of the drug response (Sarker and Workman 2007). Pharmacodynamic
biomarkers provide an idea about the interaction between a drug and its suspected
target and whether the drug exerted a cellular response or not, and thereby guide
treatment decision-making plans in real-time (Jackson 2012). For example, in
nonsmall cell, lung cancer patient measurement of Mitogen-Activated Protein
Kinase (MAPK) pathway inhibition receiving BRAF inhibitors can suggest a direct
interaction between drug and target genes (Gainor et al. 2014). Further, Ki67 acts as
a biomarker for cell proliferation, its expression after treatment with endocrine
therapy serves as a pharmacodynamic response, and indicates target drug effects
(Kelloff et al. 2005). Another example of pharmacodynamic biomarker example is
monitoring the activity of PARP enzyme in white blood cells for the development of
anticancer drug Olaparib (Dick et al. 2021).

3.2.3 Classification of Cancer Biomarkers Based on Other Criteria

3.2.3.1 Imaging Cancer Biomarkers
X-ray, Positron Emission Tomography (PET), Computed Tomography (CT), ultra-
sound, radionuclide imaging, and Magnetic Resonance Imaging (MRI) are the
imaging techniques that are routinely used in clinical oncology for diagnosis,
screening, and staging of cancer (Dregely et al. 2018; O’Connor et al. 2017). In
oncology, imaging biomarkers are cost-effective noninvasive tools that easily allow
identifying the disease state including assessment of the drug response. Several
attempts have been made to do a regular assessment to reduce the risk of cancer
development. For example, colonoscopy and mammography have been found to
reduce the risk of developing colon cancer and breast cancer, respectively (Bischoff
2014).

3.2.3.2 Pathological Cancer Biomarkers
Various types of infectious agents such as viruses and bacteria constitute 15–20% of
all human cancers (Srivastava et al. 2005; McLaughlin-Drubin and Munger 2008).
The presence of pathogenic agents within the tumor cell makes them attractive
pathogenic cancer biomarkers. The presence of HPV is associated with cervical
cancer (Burd 2003). Further, Epstein Bair Virus (EBV) is closely associated with
lymphoma and nasopharyngeal carcinoma (Pagano 1999). Helicobacter pylori is an
established biomarker for gastric cancer (Wroblewski et al. 2010). Besides, various
cancer pathogen detection methods have been revolutionized recently for rapid
biomarker detection in the complex biological sample including Bioluminescence
Resonance Energy Transfer (BRET), Clustered Regularly Interspaced Short Palin-
dromic Repeats (CRISPR)-based biosensors, and ELISA (Wu and Qu 2015).
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3.3 Omics Approaches in Cancer Biomarker Research

“Omics” studies have been characterized by high-throughput technologies which
help to investigate the genome, transcriptome, epigenome, proteome, and
metabolome of cancer cells. These omics approaches facilitate the understanding
of carcinogenesis at the molecular level. Figure 3.2 depicts a schematic representa-
tion of omics approaches that are commonly used to study the cellular behavior of
cancer cells and some important biomarkers identified by using these omics
approaches.

3.3.1 Genomics for Cancer Biomarkers

In oncology, numerous technologies such as Next-Generation Sequencing (NGS),
Whole-Genome Sequencing (WGS), Comparative Genome Hybridization (CGH),
and Fluorescence in situ Hybridization (FISH) have been widely used to analyze
cancer-specific mutational changes (Hu et al. 2018; Zhao et al. 2019). Additionally,
genomic studies primarily focus on the analysis of copy number variation and
identification of chromosomal abnormality to characterize cancer cells at the molec-
ular endpoint (Nogrady 2020). Further, the advances in sequencing technology
helped the decision-making for personalized treatment strategy instead of based on

Fig. 3.2 Schematic representation of different omics approaches used for cancer biomarker
discovery
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cancer type. For example, FDA-approved biomarker EGFR mutation signifies the
effectiveness of EGFR inhibitors like gefitinib (Tsimberidou et al. 2020). BRCA1
and BRCA2 mutations have been identified as hereditary markers for breast and
ovarian cancer syndrome (Narod and Salmena 2011; Savanevich et al. 2021).
Moreover, genomic profiling of pancreatic cancer identified centromere protein F
as a novel therapeutic target and proved to be responsible for cancer progression
(Chen et al. 2021).

3.3.2 Transcriptomics for Cancer Biomarkers

Transcriptomics studies are engaged in quantification, detection, and identification
of altered mRNA, miRNA, and lncRNA in cancer cell populations (Chakraborty
et al. 2018). Tools like RNA-seq, and microarray are commonly used to study the
transcriptome. Expression Quantitative Trait Loci (eQTL) is a new approach for the
analysis of functional variation sequence that leads to changes in gene expression
(Hong et al. 2020; Geeleher et al. 2018). Various prognostic and predictive gene
signatures have been identified in lung, breast, colon, and other tumor types
(Vishnubalaji et al. 2019; Xiong et al. 2020; Sheng et al. 2019; Fang et al. 2021;
Li et al. 2019). The transcriptomic study-based microarray technology has also been
applied in precision oncology trials and aids in the clinical classification of breast
cancer, colon cancer, and gastric cancer (Salem et al. 2017; Guinney et al. 2015; Lin
et al. 2015). In breast cancer, transcriptomic data with bioinformatics study reveal
BRIP1 as a noteworthy prognostic biomarker and its expression found to be
correlated with various clinical features of breast cancer (Khan and Khan 2021).
Furthermore, from RNA-seq data, a differential gene expression pattern has been
revealed for different cancer tissue and their normal counterpart which will uncover
the complex molecular pattern of cancer cells (Li et al. 2017). Different types of
RNA serve as independent cancer biomarkers for instance in nonsmall cell lung
cancer (NSCLC), the expression profiling of snoRNAs serves as an early diagnostic
cancer biomarker (Liao et al. 2010). For renal cancer, hepatic cancer and glioblas-
toma piRNAs may serve as diagnostic and prognostic biomarkers (Busch et al. 2015;
Liu et al. 2019; Rizzo et al. 2016). In addition, lncRNAs, such as XIST reported as a
potential candidate biomarker for gastric cancer through transcriptomic study
(Lu et al. 2017).

3.3.3 Proteomics for Cancer Biomarkers

Proteomic-based studies are considered as one of the innovative and dynamic high-
throughput technology for determining the cellular function and location of main
mediators of proteins (Olivier et al. 2019). The proteome of a defined entity be it a
cell, an organelle, a tissue allows for better biomarker identification and to better
understand the cancer surveillance mechanisms (Sallam 2015). Several studies
reported that the proteomics approach can be used to identify the drug resistance
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nature of cancer cells and treatment resistance biomarkers; for example through mass
spectrometry, PYCR1 and ALDH18A1 expressions have been identified to be
significantly associated with drug resistance in breast cancer (Shenoy et al. 2020).
The drug resistance of cancer is associated with stemness and by applying the
proteomics approach, new specific cancer biomarkers and therapeutic targets have
been identified in the breast cancer stem cell population (Koh et al. 2020). Protein
profiling of patients receiving immunotherapy is necessary to monitor the therapeu-
tic response and thereby proteomic study can help to discover the potential prognos-
tic biomarkers for cancer therapeutics (Chae et al. 2020; Harel et al. 2019).

3.3.4 Metabolomics for Cancer Biomarkers

Cancer affects intracellular metabolism and results in the inappropriate proliferation
of cells (Vander Heiden and DeBerardinis 2017; Pavlova and Thompson 2016).
Metabolomics is the study of altered metabolites that are produced by cellular
processes mediated by proteins and thus it is a direct assessment of phenotype.
Plasma or serum samples from patients are the major focus for metabolomic analysis
of cancer cells. The methodologies that are used for metabolomic studies for
biomarker detection include mass spectrometry and Nuclear Magnetic Resonance
(NMR)-based imaging techniques, such as Magnetic Resonance Spectroscopic
Imaging (MRSI) which can use both tissue/cell or biopsies samples for detection
(Schmidt et al. 2021). Some putative metabolite biomarkers are altered
carbohydrates in acute myeloid leukemia and unsaturated free fatty acids in colon
cancer (Chaturvedi et al. 2013; Zhang et al. 2016). Other metabolite biomarkers
include changes in citric acid, branched-chain amino acid for prostate cancer and
pancreatic cancer (Giskeødegård et al. 2013; Mayers et al. 2014). Bladder cancer
biomarkers detected from urinary metabolic profiling and 27 differentially
metabolites have been detected (Li et al. 2021b).

3.3.5 Epigenomics for Cancer Biomarker

Epigenomics can be defined as the study of genome-wide chemical modification
such as acetylation and methylation of DNA. The epigenetic modifications play an
important role in uncovering the important genetic marker as these modifications
regulate cellular interactions (Piunti and Shilatifard 2016). ChIP seq and Whole-
Genome Bisulfite Sequencing (WGBS) are the two important powerful techniques
for the identification of DNA-binding sites of transcription factors and to detect the
methylated part in the sequences respectively (Chakraborty et al. 2018; Raj et al.
2017). MBD-isolated Genome Sequencing (MiGS) is another novel technique that
allows the analysis of whole-genome sequencing patterns (Serre et al. 2010). For
predicting the risk of head and neck cancer, DNA methylation in saliva has been
found to be a potential epigenetic biomarker (Rapado-González et al. 2021). Chro-
matin immunoprecipitation (ChIP) studies demonstrated RUNX1T1 as an epigenetic
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regulator of Small Cell Lung Cancer (SCLC) (He et al. 2021). A recent finding
suggests that PD-L1 methylation in CpG loci can be considered as a valuable
diagnostic biomarker for gastric cancer (Amini et al. 2021).

3.4 Bioinformatics Analytical Tools for Cancer Biomarker
Discovery

The emerging high-throughput technologies result in the exponential growth of
cancer biomarker data set from various resources. Thereby biologists face difficulty
in extracting useful information from the available repositories as these contain
various types of cancer-related information. The Cancer Genome Atlas (TCGA), a
resource of multiomics cancer data platform that integrates genomics, epigenomics,
and transcriptomics data of more than 30 human tumor types (Wang et al. 2016b).
This aims to provide publicly available comprehensive atlas for molecular alteration
in cancer cell. Pan-Cancer initiative is the new version of TCGA atlas and it is
dedicated for comparison and analysis of molecular alteration found in different
tumor types (Cancer Genome Atlas Research Network 2013). Recently published
bioinformatics cancer-related database MarkerDB provides molecular cancer bio-
marker information along with the clinical significance such as diagnostic marker or
prognostic marker (Wishart et al. 2021). Another database, OncoMX is a knowledge
base; it integrates data for cancer mutation gene signatures, differential expression
genes for cancer (Dingerdissen et al. 2020). Similarly, CIViCmine is another
recently published database that provides list of curative clinically relevant cancer
biomarkers information (Lever et al. 2019). Different machine learning and statisti-
cal approaches allow to the identification of biomolecules of interest from the large
dataset with quantitative measurements. BioPlat is a software package for cancer
biomarker discovery that allows high-throughput data filtering, gene expression
calculation in silico (Butti et al. 2014). Another recently developed software Q
omics that enables the analysis of patient survival, gene expression, and mutation
of cancer-driven data set (Lee et al. 2021). There is an R-based tool available for
cancer data analysis named CAncer bioMarker Prediction Pipeline (CAMPP), a
standardized framework for the analysis of quantitative biological data (Terkelsen
et al. 2020). Overall, several dedicated databases and tools are available for the
storage and discovery of cancer biomarkers (Table 3.1).

3.5 Future Challenges

The future of biomarkers in oncology is potentially associated with the diagnostic,
predictive, and prognostic cancer biomarkers. Despite the explosion of new
technologies, a number of hurdles are associated with the identification of potential
cancer biomarkers to be considered in clinical trials. The major challenges for cancer
biomarker discovery can be considered at three levels (Henry and Hayes 2012;
Teutsch et al. 2009). First is analytic validity which can be described as pre- and
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Table 3.1 List of some important cancer-related databases and computational tools/software for
cancer biomarkers storage and discovery

Name Type Description URL

The Cancer
Genome Atlas
(TCGA) (Wang
et al. 2016b)

Publically available
database

TCGA database
catalyze the high-
throughput generated
data characterization in
the field of oncology. It
integrates various
bioinformatics and
analytical tools such as
TCPA which allows
analyzing proteomics
generated data.
cBioportal for
genomics data analysis
and Funseq allow to
annotate somatic
variations

https://www.cancer.
gov/about-nci/
organization/ccg/
research/structural-
genomics/tcga/using-
tcga/tools

MarkerDB
(Wishart et al.
2021)

An online database for
cancer biomarkers

A bioinformatics
database that contains
four different
molecular categories of
cancer biomarkers
information such
chemical, protein,
DNA, and karyotypes.
Also, it provides
information for
diagnostic, predictive,
prognostic, and
exposure cancer
biomarkers

https://markerdb.ca

OncoMX
(Dingerdissen
et al. 2020)

An online database for
comparing cancer
patient biomarker data
in the context of a
healthy person

A bioinformatics
comparative tool that
contains cancer-related
mutation information
along with differential
gene expression data

http://data.oncomx.
org

CIViCmine
(Lever et al.
2019)

Clinically relevant
cancer biomarkers
database

CIViCmine is a cancer
knowledgebase,
provides literature-
based information for
cancer biomarkers. It
will be helpful in
precision oncology for
identifying diagnostic
and prognostic cancer
biomarkers

http://bionlp.bcgsc.ca/
civicmine/

BioPlat (Butti
et al. 2014)

A bioinformatics
software for cancer
biomarker discovery

This software allows
biologists to identify
potential predictive and

http://www.
cancergenomics.net

(continued)
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postanalytical evaluation of biomarker detection assay. It determines the specificity
and sensitivity of the technical aspects (Hayes 2015). The second is clinical validity,
it determines the diagnostic accuracy of biomarkers by dividing the population of
interest into two groups such as patient and reference group (Bossuyt 2010). The
third is clinical utility, which relates to making a clinical decision with a high level of
evidence to improve cancer treatment outcomes (Hayes 2021). The aim of cancer
research is earlier cancer diagnosis and get better clinical outcomes for precision
oncology. Nevertheless, multiomics approaches offer great advantages for transla-
tional cancer research over monogenic markers. The rapid development of omics

Table 3.1 (continued)

Name Type Description URL

prognostic cancer
biomarkers or gene
signatures from high-
throughput data. It
offers various in silico
biomarker validation
and annotation tools

Q-Omics (Lee
et al. 2021)

A bioinformatics
software for assisting
in cancer research and
therapeutics

This software
integrates data of
cancer mutation, gene
expression, immune
score, patient survival,
and drug screening
data from various
bioinformatics
resources including
TCGA, GDSC, NCI,
and DepMap
databases. Thereby,
simplifying the
biomarker discovery
process for cancer
biomarkers

http://qomics.
sookmyung.ac.kr

CAncer
bioMarker
prediction
pipeline
(CAMPP)
(Terkelsen et al.
2020)

A bioinformatics
software for high-
throughput data
analysis

This R-based pipeline
allows users to
normalize the obtained
high-throughput cancer
data. It performs
various important
functions for potential
cancer biomarker
discovery including
differential expression/
abundance analysis,
correlation, and
co-expression network
analyses, survival
analysis

https://github.com/
ELELAB/CAncer-
bioMarker-
Prediction-Pipeline-
CAMPP
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biomarkers increases the specificity of targeted therapeutic approach and leads to
enhance predictive, preventive, and personalized medicine (PPPM) practice in
clinical oncology (Lu and Zhan 2018).
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Abstract

According to WHO, Cancer is the leading cause of death worldwide, accounting
for nearly 10 million deaths in 2020. The predicted global cancer burden is
expected to be 28.4 million cases in 2040. Recent scientific evidences suggests
that the overexpression of COX-2 and mPGES-1 through COX/mPGES-1/PGE2
pathway in cancer has resulted in a decreased survival rate. The currently
available COX inhibitors reduces the production of PGE2 along with other
prostanoids which are required for basic cellular functions. Due to the severe
side effects of COX-2 inhibitors especially on the gastrointestinal and cardiovas-
cular systems, mPGES-1 could be a better and safe target. The selective mPGES-
1 inhibitors exploited in inflammation and multiple tumor types have opened new
avenues and are emerging as a new therapeutic approach. Till date, a variety of
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chemically diversified synthetic scaffolds such as imidazole’s, substituted ureas,
derivatives of amides and acids along with natural product inhibitors have been
reported as effective and selective mPGES-1 inhibitors.

4.1 Introduction

Cancer is defined as an abnormal and uncontrolled cell proliferation which can
spread throughout the body. According to WHO, cancer is the second leading
cause of death worldwide with one in six patients die due to cancer and accounts
for 10 million deaths in 2020 alone. Breast cancer, lung cancer, prostate cancer,
colon cancer, and nonHodgkin lymphoma are the most common types of cancers
(World Health Organization (WHO) n.d.). By the end of 2022 in United States alone,
1.9 million new cases of cancer might occur and lead to around 0.6 million deaths.
Further study suggests that the global cancer burden is expected to be 28.4 million
cases in 2040 with an increase of 47%. (World Health Organization (WHO) 2018).
More populations are vulnerable to develop cancer, due to the dramatic change in
lifestyle (e.g., tobacco and alcohol consumption, stress, obesity, improper diet, lack
of physical activity etc.), sociocultural, and environment. The treatment option is
radical radiotherapy for an early stage of cancer whereas most traditional treatment
of chemotherapy is for advanced stages. This is currently the best effective treatment
as most of the chemotherapeutic agents travel throughout the body and kills cancer
cells thereby inhibiting the spread of cancer to other parts of the body (World Health
Organization (WHO) n.d.). The prevention and treatment for different types of
cancers remain one of the greatest challenges in the current medical treatment.
Among the different strategies, chemotherapy based on systemic administration of
a single or a combination of drugs remains the major therapeutic approach for cancer
treatment currently (American Cancer Society 2015).

Chemotherapy has several drawbacks of which most pronounced is its long-term
side effects that include early menopause, cardiac problems, respiratory problems,
numbness, bone, and joint problems. Apart from killing the cancer cells, the chemo-
therapeutic agents can also damage the surrounding healthy tissues causing anemia
and extreme fatigue. An inflammation related to cancer makes it more complicated
due to the interconnection between cancer cells and stromal cells (World Health
Organization (WHO) n.d.). Several studies suggest that high-risk tumors possess
pro-inflammatory features in an immunosuppressive microenvironment of neuro-
blastoma (Hanahan and Weinberg 2011) with acute as well as chronic inflammation
promoting the progression of cancer and metastasis (Aggarwal 2004). Inflammation
is a proven attribute of cancer, the role of Prostaglandin E2 (PGE2), an inflammatory
and oncogenic lipid mediator is coupled with various biochemical pathways leading
to increased tumor cell proliferation, angiogenesis, and immunosuppression.
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Prostaglandins (PGs) is synthesized from arachidonic acid, (a fatty acid obtained
from phospholipid bilayer as a result of phospholipase A2 (PLA2)), plays a signifi-
cant role in response to an inflammation. Oxidation of Arachidonic acid by Prosta-
glandin G/H synthase 1 & Prostaglanding G/H synthase 2 leads to the formation of
Prostaglandin G2 and Prostaglandin PTGS2 respectively. PGH2 is then transformed
to Thromboxane A2 (TXA2), PGE2, PGF2α, PGI2, and PGD2 by either cytosolic
prostaglandin E Synthase (cPGES), microsomal PGES (mPGES)- 1 or -2 (Ricciotti
and FitzGerald 2011). mPGES-1 along with COX-2, induced by pro-inflammatory
stimuli, increases PGE2 levels (Murakami et al. 2002; Samuelsson et al. 2007; Tai
2011). Prostaglandin E2 (PGE2) is a multifaceted bioactive lipid mediator of
inflammation and cancer progression. PGE2 is mediated through four G-PCR
(E prostanoid GPCR), namely EP1 (Gq), EP2 (Gs), EP3 (Gi), and EP4
(Gs) GPCR, referred to as EP receptors. The EP receptor 1-4 coupled to
heterotrimeric G protein GαS and Gαi modulates the level of calcium, cAMP, and
IP3, thereby activating divergent signaling pathways (O’Callaghan et al. 2015). The
interlinkage between PGE2 and EP receptors depends on the nature of cell, tissue
type, and its location. The EP receptors influence cell response to PGE2 in cancer
cells. The activation of the EP receptor leads to EP1-dependent tumor cell migration
and invasion. The EP2-induced angiogenesis along with the suppression of
antitumor immune response is followed by EP4-related tumor cell migration and
metastasis (Fig. 4.1). However, the characteristic features of EP3 are still not clear.
mPGES-2 and cPGES are basically expressed and form the basis for the production
of PGE2. The expression of mPGES-1 is relatively low in most tissues but in
response to acute and chronic inflammatory stimuli, mPGES-1 is upregulated and
couples with COX-2 to mediate inflammatory PGE2 production (Ma and
Brusselaers 2018). The human mPGES-1 gene is restricted to chromosome 9q34.3
with three exons and spans possessing 152 amino acid residues of which 80% are
similar to the enzymes in mouse and rat (Veettil et al. 2017). Selective inhibitors of
COX-2 posseses various side effects including hypertension, edeme formation and
congestive heart failure upon long term usage. Therefore, mPGES-1 can serve as a
therapeutic target for inflammatory and other related disorders (Donnini et al. 2014).

4.2 Role of mPGES-1 in Cancer

The increased expression of COX-2 and mPGES-1 through COX/mPGES-1/PGE2
pathway in cancer has resulted in decreased survival rate (de Groot et al. 2007; Seo
et al. 2009; Kim et al. 2019; Larsson et al. 2015). Studies on PGE2, use of EP
antagonist, genetic deletion, and pharmacological inhibition of COX or mPGES-1
have suggested that PGE2 has a pro-tumorigenic role (Nakanishi and Rosenberg
2013). PGE2 increases the proliferation of cancer cells which promotes tumor-
favoring M2 polarization of tumor-associated macrophages (TAMs). Further, it
attracts immunosuppressive myeloid-derived suppressor cells and enhances the
immunity inhibitory function of regulatory T cells. This leads to decreased amount
and maturation of infiltrating antigen-presenting dendritic cells, inhibits antitumor
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activity of NK cells, cytotoxic T cells, and promotes inflammatory functions of Th17
cells (Nakanishi and Rosenberg 2013; Kalinski 2012). Moreover studies have
proved that mice lacking mPGES-1 have slow growth of tumor when compared to
transgenic mice with overexpression of COX-2 and mPGES-1 developed tumors in
the gastric tract (Pierce et al. 1999).

The current clinical usage of COX inhibitors such as nonsteroidal anti-
inflammatory drugs (NSAIDs) and COX-2 inhibitors (Coxibs) generally reduces
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the production of PGE2 along with other prostanoids which are required for basic
cellular functions. Due to the existing drawback with severe side effects of COX
inhibitors especially on the gastrointestinal and cardiovascular systems, targeting
mPGES-1 could be better and safe (McGraw et al. 2006). Inhibiting the production
of PGE2 without disturbing other prostaglandins including PGI2 can be achieved by
targeting the terminal mPGES-1 which cannot be achieved in COX-1/2 inhibition.
Prostaglandin E2 (PGE2)-driven inflammation promotes tumor growth, immune
suppression, angiogenesis, and resistance to established cancer therapies (Wilson
et al. 2007).

EP2 subtype promotes the invasion of the tumor, metastasis, and further literature
suggests that EP2 receptor activation by PGE2 predominantly promotes hepatocel-
lular carcinoma invasion of cells (Cheng et al. 2014; Hsu et al. 2017a). The PI3K
signaling pathway has a beneficial role in the regulation of cell proliferation,
differentiation, trafficking, and migration (Sobhani et al. 2018) (Fig. 4.2). The
PI3K/Akt cell survival is increased by EP2 and EP4 activations (Ma and
St-Jacques 2018; Regan 2003), thus leading to upregulation of matrix
metalloproteinases observed in several cancer types and regulating various types
of therapies (Hsu et al. 2017b). EP2 receptor contributes more in breast cancer
related to the metabolism and hence alters the growth factor (Allison et al. 2015).
Nevertheless, several events like tumorigenesis, genetic and epigenetic begin
converting from TGF-β from a tumor suppressor to a promoter of cell growth,
metastasis, and invasion (Tian and Schiemann 2010). The attribution to the altered
response of TGF-β in the suppression of TGF-β-induced Smad2/3 nuclear localiza-
tion and signaling by PGE2 is followed by uncoupling TGF-β from activating
Smad3. Additionally, EP2 plays a major role in regulating metastasis by
downregulation of solute carrier family 19 member 3 in triple-negative breast cancer
(Cheuk et al. 2015). Ablation of EP2 suppresses the tumor development of skin by
limiting angiogenesis, promoting apoptosis (Kim et al. 2016; Rundhaug et al. 2011;
Rundhaug and Fischer 2008), EP2 accelerates invasion of prostate tumor cells
controlled by EP2 antagonist TG4-155 (Singh et al. 2011). The upregulation in the
expression of EP2 is found in tumors of laryngeal carcinoma which is detected by a
deeper invasion of submucosa or cartilage (Rogers et al. 1999; Otsnu 2013; Koeberle
and Werz 2015; Nakanishi et al. 2010).

4.2.1 Binding Mechanism

PGE2 binding to GPCR leads to activation of trimeric G-protein (α, β, γ). The α and
γ subunits of G proteins are anchored to membrane lipids covalently (Voss et al.
1993). The β subunit is bonded with γ subunit, forming heterodimeric structure Gβ,γ.
Activated receptor causes conformational changes in Gα, triggering dissociation of
Guanosine diphosphate (GDP) (Kubota and Wakamatsu 2008). This results from the
exchange of GDP with Guanosine triphosphate (GTP) causing the α subunit to
dissociate from β and γ. Gs (EP2 and EP4) mediates signal transduction, Gsα subunit
binds and hydrolyses GTP and binds to plasma membrane-bound adenylyl cyclase
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Fig. 4.2 Role of AKT-β catenin pathway in cancer development
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(AC) (Morou and Georgoussi 2005). Activated AC catalyzes the synthesis of cAMP
from ATP which activates protein kinase A (PKA/ cAMP-dependent protein kinase).
cAMP binds to the regulatory subunits and alters its conformation causing dissocia-
tion of catalytic and regulatory subunits (Mochocki et al. 2015). The freed catalytic
subunits get translocated into the nucleus and bind to transcription factor camp
responsive element-binding protein, activated by phosphorylation. Once the
phosphorylated cAMP response element-binding protein (CREB) recruits transcrip-
tional co-activator CBP (CREB-binding protein) in stimulating the transcription of
the gene for several proteins that plays a crucial role in the progression of cancer
(Xiao et al. 2010). The second pathway that enhances the proliferation of cells and
neoplasia is the β-catenin pathway (Dorsam and Gutkind 2007). Glycogen synthase
kinase 3 β is phosphorylated and inactivated by protein kinase A and on the contrary
β-catenin has been activated through the protein kinase phosphorylation (Rhee
2001). Upon activation of β-catenin by phosphorylation, it stimulates transcription
of genes from various proteins which promotes proliferation of cell and cancer by
binding to the transcription factor (Lef/TCF superfamily) in the DNA (Hino et al.
2005). The activation of inhibitory G protein (Gi) leads to inhibition of AC by α
subunit leading to a lower level of cAMP and exerting the effect opposite to that of
stimulatory G protein (Gs) EP1-mediated Signal (Gq). The EP1-mediated signal is
exerted by Gq sub protein which initiates its effect on membrane-bound enzyme
phospholipase-C-β and cleaves phosphatidyl-4,5-bisphosphate (Ng et al. 1999).
After the cleavage of PIP2, secondary messengers like Inositol triphosphate (IP3)
and Diacylglycerol (DAG) are released where IP3 being the minor. The released IP3
gets released into the cytosol and acts on the sarcoplasmic reticulum and generates
calcium ion release leading to enhanced intracellular calcium levels. Simultaneously,
DAG pairs with the released calcium and activates protein kinase C involved in
regulation of cancer (Masur et al. 2001) (Fig. 4.2).

4.2.2 Crystal Structures of mPGES

Three different subtypes of PGES are available of which mPGES-1 is one of the
potential targets for pain. Currently, there are 17 crystal structures reported for
mPGES-1 in the Protein Data Bank (Table 4.1).

4.3 Small Molecule Inhibitors

The selective mPGES-1 inhibitors exploited in inflammation and multiple tumor
types provides new avenues and emerge as a new therapeutic approach. Till date, a
variety of chemically diversified synthetic scaffolds such as imidazoles, substituted
urea, derivatives of amides and acids have been discovered as effective and selective
mPGES-1 inhibitors. Apart from the synthetic inhibitor, some of the natural products
from plants possessing anti-inflammatory activity and exhibiting mPGES-1 inhibi-
tion such as myrtucommulone A, hyperforin, arzanol, epigallocatechin-3-gallate
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(EGCG), curcumin, carnosol, carnosic acid, tetra- or pentacyclic triterpene acids are
also discussed. The advantages of such small bioactive molecules reported by
research groups and pharmaceutical industries worldwide as mPGES-1 inhibitors
are summarized (Bergqvist et al. 2019; Waltenberger et al. 2011; Hamza et al. 2011;
Jin et al. 2015; Koeberle et al. 2016).

4.3.1 Imidazoles

4.3.1.1 Phenanthrene Imidazoles
Through high-throughput screening (HTS) campaign, a series of phenanthrene
imidazole derivatives as mPGES-1 inhibitors were discovered by Merck Frosst et al.
in 2006. Among the series, four compounds showed good IC50 values at micro and
nanomolar concentrations. Compounds 1 and 2 (Merk Frosst Canada Ltd 2006,
2007) with 2,6-dicyano phenyl ring at the second position of the imidazole showed
IC50 0.7 nM and 0.9 nM respectively, in a cell-free assay. However, compound
3 with chloro-substitution at sixth position (Cote et al. 2007a) has shown good
potency, selectivity, and was orally active with an IC50 value of 0.42 μM in A549
whole cell assay and IC50 of 1.3 μM in human whole blood assay. In 2009, Giroux
et al. through SAR studies identified that a para-fluoro substitution on the
biscyanophenyl ring led to phenanthrene imidazole compound 4 (Giroux et al.
2009) with good in vivo efficacy in the LPS-induced hyperalgesia guinea pig
model (ED50 14 mg/kg). The compound 4 (Fig. 4.3) had half-life of 2.3 h in rat,
higher degree of metabolism in rat (32%) and human (19%) hepatocytes, quicker
absorption, acceptable bioavailability (68%). Based on the results of compound
3 and 4, it can be concluded that phenanthrene-fused imidazole lead needs further
optimization to develop as a potent and selective inhibitor against mPEGS-1 (Cote
et al. 2007b; Fei and Zhou 2014).

4.3.1.2 2,4-Biarylimidazoles
Wu et al. through HTS technique found 34 novel biarylimidazole derivatives with a
wide range of substitutions as mPGES-1 inhibitors. Among the compounds, com-
pound 5 (Wu et al. 2010) showed moderate activity with IC50 600 nM in human
mPGES-1 enzymatic assay with an IC50 of 3100 nm and 7000 nm respectively
(IL-1β stimulated A549 epithelial lung carcinoma cells with 2% and 50% FBS). The
SAR analysis of biarylimidazole suggests that compounds with substitution like
mono-ortho-cyanophenyl and bis-ortho-cyanofluoro phenyl at second position of
imidazole as well as modifications on the central imidazole ring reduces the binding
affinity against mPGES-1. However, substitution at the fourth position of imidazole
showed moderate inhibitory activity for four compounds at micromolar
concentrations. Subsequent derivatization with a triple bond extended from the
4-pyridyl group and nonpolar substituents on the cyclohexyl alkynes resulted in
good mPGES-1 inhibition such as in compound 6 (Wu et al. 2010), with IC50 33 nM
in human mPGES-1 and IC50 620 nM in A549 whole cell assay, respectively.
Further, the cyclohexenyl alkyne compound 7 (Wu et al. 2010) showed IC50
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13 nM in human mPGES-1 enzymatic assay and IC50 400 nM in A549 whole cell
assay. The presence of phenyl alkyne at fourth position and electronegative halogen
such as bromine at fifth position of imidazole ring increased the potency in com-
pound 8 (Wu et al. 2010) with an IC50 of 1 nM in human mPGES-1 cell-free assay
and whole blood assay exhibited IC50 1600 nM. Compound 9 (Wu et al. 2010)
with ethyl hydroxyl group at fifth position showed a good inhibitory response in
human mPGES-1 enzymatic assay (IC50 180 nM) and in A549 whole cell assay (IC50

700 nM) (Fig. 4.3). The study concludes that biarylimidazole derivatives can also
serve as an excellent scaffold and required further optimization to develop into selec-
tive mPGES-1 inhibitors.

4.3.1.3 2-Amino Benzimidazoles
Researchers from Boehringer Ingelheim, identified 2-arylamino benzimidazole
carboxamides derivatives as mPGES-1 inhibitors. Substitution at the second position
(compound 10) (Boehringer Ingelheim International GmbH 2010a) showed IC50 of
1 nm in the enzymatic assay. The preliminary success led to the screening of a wide

Fig. 4.3 Phenanthrene imidazole and benzimidazole as inhibitors of mPGES-1
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range of substitutions at the second position of benzimidazole such as
2,4-dichlorobenzyl pivalamide in compounds 11 and 12 (Boehringer Ingelheim
International GmbH 2012a) with IC50 1 nM and less than 1 nM in the A549 cell-
based assay, respectively. Upon further exploration of benzimidazole, devoid of
carboxamide residue, it subsequently led to compound 13 (Boehringer Ingelheim
International GmbH 2012b) with an IC50 1.3 nM in A549 cell-based assay.

Larsson et al. reported five new 2-aminobenzimidazole derivatives as inhibitors
of human and rodent mPGES-1 against various models for inflammatory activity.
Among the five molecules, compound 14 (Larsson et al. 2019) showed IC50 0.024
μM in human mPGES-1, 0.17 μM in rat mPGES-1, 3.7 μM in whole blood assay.
The compound 15 (Larsson et al. 2019) with trifluoro derivatives showed IC50 0.023
μM in human mPGES-1, 0.078 μM in rat mPGES-1, and 2.5 μM in whole blood
assay. However these two compounds at 10 μM had no inhibition against COX-1,
PGIS, L-PGDS or H-PGDS. These interesting results needs further investigation in
clinical research for identification of possible inhibitors against mPGES-1.

4.3.1.4 2-Amino Imidazoles
Chandrasekhar et al. identified 2-amino imidazoles as a novel and selective mPGES-
1 inhibitors. Among the investigated compounds, mono and trisubstituted
imidazoles, compound 16 and compound 17 (Chandrasekhar et al. 2016), showed
good potency when compared with celecoxib. These compounds showed 100%
inhibition in a concentration-dependent inhibition against mPGES-1 enzyme with
IC50 0.241 μM and 0.00094 μM respectively (Fig. 4.4) but showed poor inhibition in
rat mPGES-1. Further through a rapid dilution approach, mPGES-1 was incubated
with various concentrations of the inhibitors that were tenfold higher than their
respective IC50 values and then diluted to 100-fold with the substrate solution to get
an inhibitor concentration of 1/10 of their IC50 values. The study concludes that the
compounds were of reversible inhibitor type.

4.3.1.5 Imidazopyridines
Another study from Boehringer Ingelheim reported novel Imidazopyridine
carboxamides derivatives as a potent inhibitor of mPGES-1 (Boehringer Ingelheim
International GmbH 2010b). The introduction of a carboxamide substituted at fifth
position of the imidazopyridine scaffold with a nitrogen atom in the benzene ring led
to the discovery of imidazopyridine-6-carboxamides derivatives. All the compounds
were evaluated at 10 μM concentration against mPGES-1 in a cell-free assay. Further
investigation of the compound 18 (Boehringer Ingelheim International GmbH
2010b) showed 100% inhibition at 10 and 1 μM, while compound 19 (Boehringer
Ingelheim International GmbH 2012c) had IC50 1 nM against mPGES-1.

4.3.2 Piperidine Carboxamides

A series of 304 piperidinyl benzoimidazole derivatives from NovaSAID were
reported as mPGES-1 (35 compounds belong to piperidine-4-carboxamide
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derivatives). Compound 20 (Fig. 4.5) (Novasaid 2011) with a naphthalene substitu-
tion had an IC50 0.011 μM against human mPGES-1, IC50 0.037 μM against rat
mPGES-1, and IC50 0.042 μM in the A549 cell-based assay. Compound 21 (Leclerc
et al. 2013) with cyclopentyl substitution showed IC50 values of IC50 0.9 μM and
0.09 μM in human and rat recombinant mPGES-1. Further the compound 20 showed
potent inhibition when tested with human as well as murine cellular assays and
hence inhibiting PGE2 in A549 cells. Pfizer also developed a series of novel
benzoxazole piperidine carboxyamides derivatives of which compound 22
(Arhancet et al. 2013) showed an IC50 3 nM (enzymatic assay) and IC50 109 nM
(whole blood assay).

4.3.3 Trisubstituted Ureas

In 2011, Chiasson et al. reported a novel scaffold as mPEGS-1 inhibitors through
in-house data collection available at Merck Frosst Center for Therapeutic Research.
Among the series tested, compound 23, with a trisubstituted urea (Chiasson et al.
2011), showed moderate inhibition of human recombinant mPGES-1 with 88%
inhibition at 10 μM. Further refinement by SAR studies in trisubstituted urea analog
suggests that modification of the ethylpyridyl and N-cyclopentyl moieties with ben-
zyl and isopropyl functions led to compound 24 (Chiasson et al. 2011) with IC50

Fig. 4.4 2-amino imidazoles as potent inhibitors of mPGES-1
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from 10 μM to 1.7 μM. The detailed investigation reveals that ortho- and para-
substituted regioisomeric analogs were not active. When the meta-position was
substituted with an amide or ether, the compounds found optimum activity. The
introduction of sulfonamide at meta-position showed moderate intrinsic potency
with loss of activity in cell-based assay. Addition of alkyne linker provide a tolane
analog compound 25 (Chiasson et al. 2011) with 300-fold (IC50 0.008 μM) increased
potency in an enzymatic assay whereas in cellular assay resulted in a tenfold increase
with IC50 0.91 μM. Substitution of isopropyl group with phenyl or a benzyl group
resulted in a loss of activity. In subsequent trials, isosteric replacement with guani-
dine analogs led to complete loss of activity. Good potency and selectivity were
achieved with substitution of a terminal pyridyl group and a phenyl substitution
having electron-withdrawing group in the upper and lower tolane resulted in com-
pound 26 (Chiasson et al. 2011) with mPGES-1 IC50¼ 0.002 μM; A549 IC50¼ 0.34
μM; HWB IC50 ¼ 2.1 μM (Fig. 4.5).

Fig. 4.5 Imidazopyridine, piperidine carboxamides, and trisubstituted urea as mPGES-1 inhibitors
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4.3.4 Benzamides

Over the past decade, structurally diversified 180 substituted benzamide derivatives
were explored by pharmaceutical companies in search of novel mPGES-1 inhibitors.
Among them, two compounds 27 and 28 (Boehringer Ingelheim International
GmbH 2011) showed good inhibition with an IC50 1 nM in the HTRF recombinant
enzyme assay. Glenmark pharmaceuticals identified about 40 bicyclic (quinazoline)
benzamide series as mPGES-1 inhibitors. Compound 29 a benzamide deriva-
tive, (Glenmark Pharmaceuticals SA 2013a) showed 100% inhibition at 1 μM
(IC50 < 50 nM) (Fig. 4.6). Further modifications of the benzamide by introduction
of an amide and cyclic structure resulted in compound 30 (Glenmark
Pharmaceuticals SA 2014) with similar inhibition. Benzoyl derivatives of
3-aminocarbazole were reported by Acraf et al. and described substitutions like
halogen, methyl group, trihalomethyl group, nitro and cyano over CF3 group as in
compound 31 (A.C.R.A.F. S.P.A.: 2009). Linear or branched hydroxyalkyl group
as well as carbonyl alkyl group comprising from 1 to 8 carbon atoms were
also synthesized and tested. Of the different studies, compound 31 with CF3 group
(Aziende Chimiche Riunite Angelini Francesco 2009) showed activity (IC50 2.55
μM and pIC50 5.59) against human recombinant mPGES-1, as well (IC50 0.438 μM
and pIC50 6.36) against microsomal mPGES-1. Compound 31 affected PGE2-
associated tumor growth with a decrease of PGE2 levels in A431 tumor cells. This
compound also decreased A431 tumor volume and resulted in 100% inhibition of the
tumor growth at 20 mg/kg in a dose-dependent manner.

4.3.5 Pirinixic Acids

Werz research group reported a new class of mPGES-1 inhibitors obtained from
pirinixic acid. Substitution with sterically bulky lipophilic group at α-substitution
such as n-hexyl, n-octyl, or naphthyl showed mPGES-1 inhibition better than
pirinixic acid. Compound 32 (Fig. 4.6) (Chang and Meuillet 2011) also named as
YS121 with α-(n-hexyl)-substitution inhibited mPGES-1 in cell-free assays with
IC50 3.4 μM. Compound 32 reduced PGE2 formation without influencing other
prostanoid levels in human whole blood in a dose-dependent manner (EC50 2 μM).
Compound 32 with a dose of 1.5 mg/kg intraperitoneally inhibited exudate forma-
tion and leukocyte infiltration after 4 h and decreased the pleural levels of PGE2 and
LTB4 with 36% and 48% inhibition, respectively. Furthermore compound 32 also
suppressed the generation of 6-keto PGF1α (45% reduction) in the exudates. The
possible mechanism of action could be peroxisome proliferator-activated receptors
(PPAR)-α/γ agonism shown to downregulate COX-2 expression because pirinixic
acid derivatives are known for its dual agonists against PPAR-α and -γ. The
conversion of acid derivative into ester resulted in the loss of activity but bulky
lipophilic substituents such as biphenyl-4-methane amine moiety at C6 position of
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the pyrimidine ring improved the efficacy of mPGES-1 inhibition. This resulted in
the identification of compound 33 (Chang and Meuillet 2011), with an IC50 value of
1.3 and 2.0 μM in cell-free assays for mPGES-1 (Hanke et al. 2013; Medeon
Pharmaceuticals GmbH and University of Tubingen 2009).

Fig. 4.6 Benzamide and pirinixic acid derivatives as potent inhibitors of mPGES-1
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4.3.6 Triterpene Acids

Verhoff et al. reported a new class of compounds such as tetra- and pentacyclic
triterpene acid derivatives of Boswellia acid as potent mPGES-1 inhibitors. The
acidic fractions (containing lipophilic acidic ingredients) of gum resins were
analyzed for inhibition of mPGES-1 activity in a cell-free assay (microsomes of
A549 IL-1β-stimulated cells) using MK-886 (10 μM; IC50 2.4 μM) as reference
compound. Four fractions showed potential inhibition against mPGES-1 with IC50

values of 1.9, 2.8, 1.6, and 0.4 μg/mL, respectively. These fractions were obtained
from the gum resins of B. serrata, B. sacra, B. carterii, and B. Papyrifera respec-
tively. The neutral fraction containing essential oil and mucilage fraction (10 μg/mL)
did not show inhibition against mPGES-1. The acidic fraction of B. papyrifera gum
showed 92% inhibition at 30 μg/mL when compared with MK-886 (10 μM ¼ 0.49
μg/mL, 79% inhibition, IC50 2.4 μM). Siemoneit et al. reported acidic fractions from
frankincense gum containing boswellic acid resins for mPGES-1 inhibition activity
(Siemoneit et al. 2010). In total, 17 known triterpene acids were isolated from
different Boswellia spp. out of which compound 34 (Verhoff et al. 2014) and 35
(Verhoff et al. 2014) (Fig. 4.7) showed an IC50 0.4 μM, and IC50 1.2 μM respec-
tively. It was concluded that various lipophilic extracts of gum resins from this
Boswellia spp. possess bioactive molecules responsible for mPGES-1 inhibition.

4.3.7 Indole-Based Carboxylic Acids

An indole-based carboxylic acid derivative showed moderate inhibition of the
human mPGES-1 enzyme with an IC50 of 1.6 μM. However, it was identified that
the potency of this compound varied when tested in cell-based assays in the presence
of fetal bovine serum (FBS) and found that this shift is due to the high degree of
plasma protein binding. Compound 36 (Psarra et al. 2017) serves as a lead molecule
and further optimization of the molecule is necessary to develop into potent mPGES-
1 inhibitors (Fig. 4.7).

4.3.8 Aminobenzothiazoles

Chini et al. in 2020 reported a novel class of aminobenzothiazole scaffold as
mPGES-1 inhibitor through a combinatorial approach from the available inhibitory
activity of PGE2. The protected aminobenzothiazole nucleus was acylated leading to
the formation of compound 37 (Chini et al. 2020) with IC50 1.4 μM, compound 38
(Chini et al. 2020) with IC50 0.7 μM. Compound 39 with (hydroxymethyl) phenyl
substitution at position 5 of the benzothiazole scaffold-like (Chini et al. 2020)
showed higher inhibitory activity, with an IC50 value of 2.6 μM. 4-Fluoro-2-
(trifluoromethyl) phenyl moiety such as in compound 40 (Chini et al. 2020), showed
better inhibition of mPGES-1 with IC50 1.7 μM (Fig. 4.7).
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Fig. 4.7 Triterpene acid and amino thiazole as inhibitors of mPGES-1
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4.3.9 Sulfomyl Phenylacetamides

In 2018, Shekfeh et al. reported novel inhibitors of human mPGES-1 using a
multistep virtual screening approach such as molecular docking, fingerprints-based
clustering with diversity-based selection, and molecular dynamics
(MD) simulations. The generated hits were analyzed for stable interactions in the
binding pocket of mPGES-1. These two compounds 41 (Shekfeh et al. 2018) and 42
(Shekfeh et al. 2018) showed mPGES-1 inhibitory activity with IC50 1.2 μM and 1.3
μM, respectively, in a cell-free assay (microsomes from IL-1β-activated human
A549 cells). On further screening, it was found that compounds with a benzothiazole
ring showed better mPGES-1 inhibition similar to compound 43 (Shekfeh et al.
2018) with IC50 2.3 μM, than the benzoxazole substitution compound 44 (Shekfeh
et al. 2018) with IC50 7.0 μM. Compound 45 (Shekfeh et al. 2018) with a
benzothiazole ring showed significant inhibition of mPGES-1 activity with IC50

0.6 μM better than benzoxazole and benzimidazole substitution (Fig. 4.8). The study
suggests that the presence of polar aromatic functional group and benzothiazole ring
are responsible for potent mPGES-1 inhibition.

Fig. 4.8 Sulfomyl phenylacetamide with other diversified scaffold as mPGES-1 inhibitor
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4.3.10 Other Scafolds

The researchers from Glenmark pharmaceuticals identified substituted bicyclic and
tricyclic molecules with good inhibition against mPGES-1 (Glenmark
Pharmaceuticals SA 2012). Compound 46 showed the highest in vitro inhibition
(HTRF enzyme assay) with IC50 < 250 nM. Further, extensive work on these cyclic
compounds (Glenmark Pharmaceuticals SA 2013b) with a wide range of
substitutions on the benzamide residue such as in compounds 47 and 48 had
an IC50 < 50 nM. Structures including substituted pyrimidine compounds were
also claimed by Glenmark similar to compound 49 (Glenmark Pharmaceuticals SA
2015) with IC50 < 50 nM. Compound 50 (GRC27864) showed potent inhibition
against recombinant guinea pig mPGES-1 enzyme with an IC50 12 nM (Banerjee
et al. 2014). The compound 50 strongly inhibited the formation of PGE2 in
LPS-induced guinea pig and dog whole blood assays with IC50 161�36.66 nM and
154�35.06 nM, respectively. Further the compound 50 showed selectivity (>1000-
fold) over COX-1, COX-2, mPGES-2, PGES, PGI2, PGD2, and TXA2 synthases.
Compound 50 also entered clinical trials for further evaluation of safety and kinetic
parameter in healthy subjects. Recently, Eli Lilly discovered novel carboxylic acid
derivatives possessing methyl-piperidine and quinoline as mPGES-1 inhibitors.
Compound 51 (Eli Lilly and Company 2016) (Fig. 4.8) showed an IC50 of
0.00193 μM in the enzymatic assay and IC50 of 0.00205 μM in a human whole
blood assay and IC50 of 0.00471 μM in an A549 cell-based assay.

4.4 Conclusion

The reported studies suggests that mPGES-1 is a potential target for inflammatory as
well as cancer to overcome the problems associated with the current drug treatment.
Recently, various research groups and scientists have started working on mPGES-1
and attempted for creating hybrid scaffolds or new scaffolds as mPGES-1 inhibitors.
Numerous efforts are being made to explore various therapeutic areas such as pain,
inflammation, rheumatoid arthritis, and osteoarthritis. Further it is clearly understood
and proven in the literature that mPGES-1 is responsible for the overproduction of
PGE2 in different tumor cells. The current ongoing research of new mPGES-1
inhibitors, along with several extensive studies (Samuelsson et al. 2007; Sasaki
et al. 2015; Hanaka et al. 2009; Sheng et al. 2001; Lauro et al. 2017; Korniluk
et al. 2017) suggests that mPGES-1 is a key target for the treatment of wide variety of
tumors as a new and safer therapeutic strategy.
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Abstract

Structural biology methods presently play a significant role in the development of
new therapeutic drugs such as approaches for cancer therapies. Structural biology
is fundamental for recognizing how proteins and genes function and provides us
with the necessary clues to design effective cancer therapies. X-ray crystallogra-
phy has been established to be a dominant instrument in an essential method for
the design and development of new compounds with improved affinity and
specificity. It can provide delicately complete structural information concerning
the interaction of a ligand with a drug or pharmacological target. Fragment-Based
Screening has emerged with X-ray Crystallography has turned into an influential
screening technology, capable of providing structural information in complexes
that involve low-molecular-weight compounds, although with weak binding
affinities. The current drug discovery process is extremely complex and requires
multidisciplinary efforts and action in cancer therapeutics. Cancer drug develop-
ment and discovery are leading the way in utilizing molecular biological and
genetic information for developing medicine. In this chapter, we discuss the role
of structural biology, including using X-ray crystallography and its role in drug
development, with a special focus on the status of the development and discovery
of cancer therapeutics. We further discussed how structural biology and systems
biology are integrated and give rise to a relatively new domain called “structural
systems biology.”
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Abbreviations

HTS High-throughput screening
FBDD Fragment-based drug discovery
SPR Surface plasmon resonance
PDB Protein DataBase
PKB Protein kinase B
CLL Chronic lymphocytic leukemia
TSG Tumor suppressor genes
MEK1 MAP-kinase kinase 1
mTOR Mammalian target of rapamycin
PI3K Phosphatidylinositol-3 kinase
HDAC Histone deacetylase

5.1 Introduction

Over the past decade, scientists and researchers have performed demonstration
analyses of successful drug movements to establish “rules” to select novel target
proteins (Surade and Blundell 2012). Thoughts about the employment of X-ray
crystallography in drug development more than 40 years ago, like the initial 3D
structures of proteins, have been established. However, these thoughts comprised the
synthesis of ligands of hemoglobin for reducing sickling (Beddell et al. 1976;
Goodford et al. 1980), the chemical alteration of insulins for enhancing half-lives
in circulation (Blundell et al. 1972), and the design of inhibitors of serine proteases
for controlling blood clotting. However, apart from an early endeavor in 1975
(Beddell et al. 1976), nearly all pharmaceutical companies believed X-ray crystal-
lography was also costly. Though structures of relevant drug targets have generally
not been openly accessible from X-ray crystallography, relative models based on
homologs have been proven helpful in significant topographies of corresponding
surfaces of ligands and protein targets, which began to be utilized in lead optimiza-
tion in the 1980s (Blundell et al. 1983; Blundell 1996; Campbell 2000).

The structural information of the drugs and drug applicants has been obtained
from X-ray crystallography. In recent years, NMR-based plans have become more
influential and broadly utilized in drug development and discovery. However, the
lead molecules that led to elarofiban have been designed to mimic the conformation
of a part of fibrinogen while bound to the receptor. Those confirmations have been
obtained from NMR analyses of fibrinogen peptides. The structural information
could not clearly show which atoms in the molecular scaffold would not be
alternated during optimization to conserve interactions with the target (Congreve
et al. 2008; Hardy and Malikayil 2003). This difference between NMR and crystal-
lographic moves toward requires that not be the case normally. Hence, NMR may
now honestly probe-target protein-small molecule interfaces in constructive cases.
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Hence, the impact of NMR techniques was delayed due to the extended intrinsic time
needed for protein structures to be established by NMR (Carr et al. 2005; Hardy and
Malikayil 2003; Scott et al. 2012).

Efforts to elucidate the molecular basis of cancer are not the latest. The recogni-
tion of the primary tumor-causing oncogenes and TSGs in the 1970s and 1980s and
the finding of the ways tumor genes undermine signal transduction pathways
(Varmus 2006). Cancer drug development has squeezed molecular cancer as a
resource of disease-causing targets for mechanism-based drug discovery (Workman
2005a, b). Structural biology is fundamental to identifying how proteins and genes
function, and provides us with the necessary clues to design effective cancer
therapies.

Modern advances in tumor biology and genetics are conducted in new cancer
drug development and treatment (Anwar et al. 2020; Beg et al. 2019; Garcia-Diaz
and Kunkel 2006; Gupta et al. 2019a, b, 2020; Thomas et al. 2017). Hence, natural
products and structural analogs have traditionally contributed to pharmacotherapy,
especially for cancer (Atanasov et al. 2021; Mohammad et al. 2019, 2020; Naz et al.
2017, 2018a, b, 2019; Shamim Jairajpuri et al. 2021). Clinical trials are currently
underway for several drugs derived from structure-based design methods (Hardy and
Malikayil 2003). Protein structure may influence drug discovery at each stage in the
design procedure. Protein structure might be utilized in target identification as well
as selection (Gulzar et al. 2019; Hassan and Ahmad 2011; Hassan et al. 2013; Khan
et al. 2016, 2017, 2019; Naqvi et al. 2018). Conventionally, this has involved
homology recognition supported via information about protein structure; although
now structural genomics programs are looking to define representative protein
structures. X-ray crystallography was used to assist in the recognition of hits through
virtual screening and, frankly, the screening of chemical fragments. However, the
key functions of bioinformatics and structural biology in lead optimization continue
to be as significant as ever (Lombardino and Lowe 2004; Whittle and Blundell
1994). Currently, an appreciation of the 3D structure of the compounds and their
targets is an ingredient of each drug-discovery scheme. Hence, this target structure
may be experimentally decided, a model created based on a virtual model of the
receptor constructed based on the chemical structure of the identified active com-
pound (Hillisch et al. 2004; Hubbard 2005).

5.2 Early Development of Structure-Guided Drug Discovery

John Kendrew and Max Perutz, their collaborators in Cambridge, have explained the
initial protein structures of hemoglobin and myoglobin in the 1950s and 1960s
(Bodo et al. 1959; Perutz 1997; Perutz et al. 1951, 1960). They have previously
been aware of the significance of the work for medicine. However, the impacts of
alterations in oxygen affinity and subunit cooperatively in abnormal hemoglobins
that affect sickle-cell disease have been identified as the main objective. Hence,
Dorothy Hodgkin’s Oxford laboratory worked together with Jørgen Schlichtkrull of
Novo to understand how diverse insulin’s crystalline appearances might be utilized
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as slow-acting therapeutics for diabetes treatment (Schlichtkrull 1958). This became
a factual opportunity when insulin structure was explained (Adams et al. 1969;
Blundell et al. 1971), as numerous insulin sequences have been described in
Cambridge in Fred Sanger’s laboratory (Sanger 1988). Structures and sequences
motivated thoughts concerning insulin storage and receptor attaching and
constructing more effectual therapeutics. Ideas regarding drug design have been
induced via the determination of the enzyme structures-lysozyme, trypsin, and
chymotrypsin and a promising set of interactions, which guided to the selectivity
of enzyme substrate binding (Beddell et al. 1976). The clinically significant drug
targets, including aspartic protease renin in the 1970s and 1980s (Atkinson et al.
1980; Schelling et al. 1980) that cleave angiotensinogen to form angiotensin I, have
been modeled on less exciting enzymes like fungal pepsins (James et al. 1977;
Subramanian et al. 1977). However, the utilization of protein crystallography in drug
development accelerated in the 1980s, principally through utilizing a combination of
interactive computer graphics and protein structure, including the Evans and
Sutherland machines (Tickle et al. 1984). Hence, the renin model (Blundell et al.
1983) has been exploited broadly in structure-guided drug design in pharma produc-
tion. However, the high-resolution X-ray structures of apo-enzymes and complexes
of renin and its close-up homologs were pursued later (Dhanaraj et al. 1992; Rahuel
et al. 1991). Over the last several years, numerous new approaches have
been initiated that utilize information about the architecture of targets and screening
of chemical libraries. Therefore, one of the most prominent was the development of
structure-guided-FBDD (Thomas et al. 2017).

5.3 Structural Biology and Cancer

The determination of the structure of a protein target, possibly complexes for partner
proteins, nucleic acid, lipids, or substrate, might provide a comprehensible imminent
into the mechanism of the action of a protein that in turn may frequently be linked to
its biological and therapeutic function (Capila and Linhardt 2002; Lee and Yaffe
2016). However, modern structural biology, predominantly protein crystallography,
produces the structure of an increasing number of therapeutically significant targets
(Hubbard 2005; Van Montfort and Workman 2017). The main problems limiting the
number of structures are the capability of producing adequate quantities of pure,
functional, soluble, homogenous proteins for crystallization trials and the capacity of
the protein for making regular crystals appropriate for diffraction experiments
(Gavira 2016; Hubbard 2005). However, this combination of limitations frequently
denotes a structure not accessible for the entire therapeutic target. Even the structure
of individual domains may be enough to have an actual impact on a discovery
assignment and provide a framework for understanding the overall role of the protein
(Davis et al. 2003; Hubbard 2005). Hence, the structure of the ligand-binding
domain is adequate against which featured structure-based design may effectively
design selective ligands (Congreve et al. 2011; Hillisch et al. 2004). The subtleties of
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the receptor role in the cell might be understood in terms of the relationship between
the diverse domains, which guides the receptor activity (Congreve et al. 2011).

Structural biology methods presently play an essential role in the progress of new
therapeutic drugs such as cancer therapies (Garratt 2013; Li et al. 2016). X-ray
crystallography is a predominantly influential instrument for discovering and devel-
oping new agents. However, X-ray diffraction solves the problem and improves the
final structure (Garratt 2013; Zheng et al. 2015). The methods’ limitations and
prospective errors found in protein structure dropped in the PDB (Read et al.
2011). Theoretical docking and fragment-based ligand discovery are two approaches
that structural biologists can use to focus their weapons in drug design
problems (Yuriev and Ramsland 2013). In many of the applications illustrated in
the literature, inhibitors of HSP90 and PKB are used as examples of how improved
precise protein-ligand interactions can be used to improve binding and pharmacoki-
netic roles (Congreve et al. 2008; Hopkins et al. 2014). However, the increasing
number of targeted therapeutics, abrasion rates for cancer drugs in the clinic are
inferior to those for disease regions (Kola and Landis 2004). Cancer treatment
assessments could benefit from statistical investigation with genetic and structural
studies. Simultaneously with experimental approaches, statistical, genetic, and clini-
cal trials, and basic theory, computational structural biology may assist in coining
and identifying novel paradigms for elucidating the origin of cancer and treatments
(Alam and Mishra 2021; Nussinov et al. 2019).

5.4 Protein X-ray Crystallography in Drug Discovery

X-ray crystallography has been and will continue to be the primary source of
experimental structural biology statistics used in drug discovery (Zheng et al.
2015). With the initiation of structural biology in drug development and discovery
procedures, medicinal chemists achieved the prospect of using full structural infor-
mation consecutively for progressing screening hits into drug aspirants (Congreve
et al. 2005; Maveyraud and Mourey 2020). X-ray crystallography was established as
an important tool in this admiration, as it is capable of providing delicately inclusive
structural information concerning the interface of a ligand with a drug or pharmaco-
logical target (Manzoni et al. 2018; Maveyraud and Mourey 2020). However, the
potential of X-ray crystallography has been previously proven to permit the unam-
biguous structure determination of penicillin (Hodgkin 1949). For example, X-ray
diffraction is regularly utilized in pharmaceutical companies for drug characteriza-
tion and polymorphism (Aitipamula et al. 2018; Thakral et al. 2018).

The information of a protein structure might assist the design of particular ligands
that is currently a broadly recognized obviousness, emerged in 1976 and the launch
of the PDB in 1971 (Beddell et al. 1976; Bernstein et al. 1977), then developed in
significance to the point that the “rational drug design cycle” has been detailed (Hol
1986). Hence, a drug may be realistically designed and optimized utilizing the
information offered through the structure determination by the macromolecular
target. However, the interface of the optimized compounds by drug target is
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structurally distinguished, permitting the subsequent cycle of chemical optimization.
Therefore, the cycle’s core is being utilized currently, though with more sophistica-
tion (Fig. 5.1). Like throughput augmented, X-ray crystallography improved from
protein target structure determination, probably in the existence of a few
prerecognized ligands, for structure-action association determination, wherever
numerous structures of complexes are established sequentially for guide ligand
optimization (Lesuisse et al. 2002).

The primary method for determining the 3D structures of proteins, viruses, and
nucleic acids was macromolecular X-ray crystallography. However, X-ray crystal-
lography has some basic limitations. A few can be conquered and balanced using
promising techniques in other regions of structural biology (Milroy et al. 2014;
Zheng et al. 2015). Hence, other structural biology methods help overcome the main
limitation of X-ray crystallography by providing complementary structural informa-
tion, which is valuable in drug development and discovery (Vénien-Bryan et al.
2017; Zheng et al. 2015). The information of 3D structures of proteins promises to
accelerate drug discovery, but current developments in genome sequencing, bioin-
formatics, and robotics have drastically transformed the chances. However, several
new protein targets were recognized from genome investigations and studied via
X-ray study or NMR spectroscopy (Congreve et al. 2005).

FBDD crystallographic
screening

X-ray analysis
of complexes Ligand

optimization
& synthesis

Experimental confirmation
of binding ADME/TOX

Evaluation

Biological
Evaluation

FBDD
Biophysical
screening

Clinical
phases

Drug
Candidate

HTS

Virtual screening

Target structure

Fig. 5.1 Schematic to demonstrate the theory of the drug discovery cycle. Several techniques and
tools are involved
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5.5 Protein Crystallography, FBDD, and Cancer

Crystallography is the main tool for structure-driven drug design, as it permits
knowledge of the 3D structures of protein targets and protein-ligand complexes.
The path for crystal structure determination engages various steps; some might
hinder its high-throughput use. However, current endeavors have generated consid-
erable advances in computational and experimental tools and protocols (Caliandro
et al. 2013). The recognition of chemical guides against the targets is the main step of
the drug discovery procedure. Hence, starting points for chemical leads include
natural products, HTS of large chemical libraries, and FBDD. However, a technique
has developed over the past several years to create high-affinity ligands to serve as
initial points for discovering drug aspirants (Larsson et al. 2011). The FBDD
approach exploits compounds’ molecular weight (<~300 Da) compared to those
utilized in HTS. The beginnings of FBDD are debatable. Although was reported
(Davies and Tickle 2011), X-ray crystallography was initially utilized for mapping
the interactions of small-molecule organic solvents on protein surfaces (English et al.
1999; Fitzpatrick et al. 1993). Surprisingly, approaches utilizing FBDD were suc-
cessful when large HTS screens have been unsuccessful, such as in the develop-
ment of β-secretase inhibitors (Wyss et al. 2011).

FBDD has appeared as an influential tool to discover drug leads. The approach
initially recognizes starting points: fragments concerning half the size of typical
drugs (Erlanson 2011). Early conducted experiments exploited ligand-based NMR
(Harner et al. 2013) and X-ray crystal screening (Blundell et al. 2002; Murray et al.
2012) documented at Astex primarily through the utilization of high-throughput
studies of cocktails of 6–10 fragments soaked in apo-protein crystals. The resultant
fragment hits have attained high-binding effectiveness per atom and frequently
superior physicochemical functions in contrast to those from the HTS move toward
that utilizes much bigger libraries of ~106 (Murray et al. 2012; Scott et al. 2012).
FBDD diverges with admiration from the more recognized HTS in numerous
features. Hence, as ligands become highly complex, the possibility of detecting
related interactions falls noticeably in a given library (Hann et al. 2001).

Early FBDD assignments exploited crystallography (Lesuisse et al. 2002) or
NMR (Fejzo et al. 1999) techniques as principal screening techniques. However,
validation of hits is a fundamental constituent of the FBDD approach and must
include a technique for estimating binding affinity. The comparatively fewer
affinities mean that combined biophysical, biochemical, and structural methods
should be utilized to monitor hit recognition, validation, and following explana-
tion of lead molecules, as summarized in Fig. 5.1. The choice of techniques depends
on factors including the accessibility of a perceptive biochemical test, the stability
and solubility of the protein, the subsistence of crystals of apo-protein, and so
on. However, numerous sets utilize a two-stage plan of HTS of fragment
libraries utilizing fluorescence-based thermal shift measurements (Niesen et al.
2007; Scott et al. 2012), ligand-based NMR, SPR, and progressively with robotized
screening amenities accessible on synchrotron beamlines and X-ray crystallographic
screening. Hence, the fragment hits general between the methods are then confirmed
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via optimization of the resolution of structures through X-ray diffraction and struc-
ture determination through NMR. The combination of these methods and others
provides assurance of the quality of the hit. Hence, the validated fragment hits are
then detailed via rising for a bigger molecular weight utilizing structure-guided
methods (Renaud et al. 2016; Thomas et al. 2017).

FBDD has been extensively documented and has increased the pharmaceutical
company's attractiveness as an influential option, complementing traditional HTS
approaches for hit recognition (Turnbull and Boyd 2012). The initial fragment-
derived drug, Vemurafenib, has been permitted, targeting a mutant type of BRAF
and enlarging the lives of skin cancer patients. The drug Venetoclax, discovered by
AbbVie and Genentech, binds with Bcl-2 and inhibits its interface with other
proteins, which the US FDA has approved for CLL (Lampson and Davids 2017;
Roberts et al. 2017). Ribociclib, by Novartis and Astex, has been approved to target
Cdk4 and has been utilized in combination with letrozole for the treatment of
advanced breast cancer (Peplow 2017; Yap et al. 2020). However, all of these
campaigns attributed a significant function to structure-guided plans with a combi-
nation of action in comparatively small companies, frequently established through
academics with an interest in protein structure, and identified as tumor therapeutics
with the sturdy scientific and financial participation of big pharma (Atanasov et al.
2021; Thomas et al. 2017). Hence, natural products and structural analogs have
traditionally made up the main contribution to pharmacotherapy, especially for
cancer (Atanasov et al. 2021). However, several compounds/inhibitors are utilized
for cancer therapy (Alam et al. 2021a, b, c, 2022).

5.6 Structure-Based Approaches in Cancer Therapeutics

The achievement of new tumor drug development depends on the inventive interac-
tion between biology and chemistry. The traditional drug discovery procedure is
an iterative cycle connecting chemical synthesis and biological assessments. How-
ever, the introduction of new methods has been essential mainly different high-
throughput genomic plans for targeting and biomarker finding (Dalton and Friend
2006), HTS for hit identification (Clemons 2004; Wesche et al. 2005), as well as a
structure-based design (Noble et al. 2004). However, numerous individual
developments are increasing in speed and quality, emphasizing that the majority of
clinical achievements to date have resulted from the close integration of various
types of equipment and disciplines (biology, medicine, and chemistry), as well as the
application of “joined-up thinking,” particularly for addressing the problems that
lead to drug failure in the clinic (Kola and Landis 2004). However, chemical biology
assists assessment of compounds on a genome-broad range by interaction screens,
which observe several biological systems concurrently in a fine-described way, as in
the explication of kinase inhibitor selectivity outlines (Becker et al. 2004; Fabian
et al. 2005); the recognition of attractive polypharmacy and combined therapies by
the finding of synthetic lethality (Farmer et al. 2005; Morgan-Lappe et al. 2006).
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Efforts to elucidate the molecular basis of tumors are not the latest. In the 1970s
and 1980s, it was discovered that the discovery of tumor-causing oncogenes and
TSGs undermined signal transduction pathways (Varmus 2006). Cancer drug devel-
opment has squeezed molecular cancer as a resource of disease-causing targets for
mechanism-based drug discovery (Workman 2005a, b). However, the initial gener-
ation of effective tumor drugs has been the cytotoxics that form the basis of most
management and treatment regimens (Workman 2005b). However, the development
and improvement of molecular cancer potential therapeutics has established that
genes are involved. The procedure of utilizing cancer genes for developing molecu-
lar therapeutics and biomarkers is currently well recognized. The incorporation of
these types is the basis for the progress of cancer medicine (Workman 2005a, b).
Hence, oncogene activation and inactivation of TSGs are-frequently assisted via
inactivation of DNA repair genes that affect genetic instability and lead to hijacking
of signal transduction pathways and thus to the variety of well-identified phenotypic
hallmark features of tumor (Vogelstein and Kinzler 2004). Oncogene products can
be excellent targets; however, proteins downstream of the pathway might be suit-
able, including MEK1 and MEK2 in the MEK-ERK signaling and mTOR/PI3K
signaling. However, the use of chemical probes has revealed that oncogenic support
procedures including protein chaperoning (HSP90) and chromatin regulation
(HDAC) may provide important drug targets (McDonald et al. 2006; Minucci and
Pelicci 2006).

Medicinal chemistry persists as the stepwise cycles of drug design, biological
evaluation, and chemical synthesis and recognizes SARs. The examination of the
interface of ligands and proteins by co-crystallography updates and speeds up the
procedure and was incredibly successful in kinase, HSP90, and HDAC inhibitor
design. However, crystallographic recognition of promising small-molecule
attaching positions surrounded by the bigger surfaces, which generally induce
protein-protein interactions, was essential in determining pro-apoptotic agents that
block MDM2-p53 and Bcl-2 (Alam et al. 2017, 2019; Fry and Vassilev 2005).
Hence, structural biology has discovered numerous attaching modes for protein
kinase inhibitors (Liu and Gray 2006; Noble et al. 2004). The sequence and
structural relationship of kinases have looked like a potential liability; hence, they
are identified as druggable targets (Cohen 2002). The binding position includes
conserved features, which allow hydrogen bonding for adenosine, ribose, and
phosphate constituents of ATP. MEK1 and MEK2 inhibitor PD318088 attach
distantly and allosterically block enzyme action. Inhibition can engage attaching to
locations that induce protein-protein interactions, as observed with ligands of the Akt
pleckstrin homology domain (Barnett et al. 2005) and mTOR inhibitor rapamycin
(Choi et al. 1996). The 3D structure is more apparently conserved among activated
kinases than inactive forms. Hence, inhibitors that target stabilization of inactive
enzymes may be highly selective (Liu and Gray 2006; Noble et al. 2004). Gate-
keeper and mutational hot spots are documented invariants of Gleevec-resistant
BCR-ABL (Gorre et al. 2001) and Iressa-resistant EGFR kinase (Paez et al. 2004).
However, making a gatekeeper mutant of EGFR insensible to Iressa paralleled the
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recognition of an EGFR T790M Iressa-resistant mutant in clinical studies (Blencke
et al. 2003).

The result of kinase prevention on signaling might be probed via kinase mutants,
which are susceptible to chemically orthogonal inhibitors not influencing the wild
type (Shokat and Velleca 2002). Structure-based design was important in optimizing
and identifying HSP90 inhibitors. However, the structure of natural products
geldanamycin and radicicol bound to the N-terminal ATPase domain of HSP90
exposed the existence of an exclusive folding model in ATP attaching position,
which comprises a network of firmly bound water molecules (Roe et al. 1999).
However, co-crystallization of arylpyrazole HTS hit CCT018159 was revealed; the
resorcinol motif of the small molecule utilizes the water network in a way similar to
that of radicicol (Cheung et al. 2005). The initial synthetic inhibitors of HSP90
ATPase, a series of purines, have been identified from modeling based on HSP90-
ATP (Chiosis et al. 2001). Following co-crystallography of the inhibitor, PU3, an
unexpected change in conformation was discovered, forming a novel attaching
pocket (Wright et al. 2004). However, iterative research of ligand-protein structures
for the period of lead optimization is greatly expensive to understand the conforma-
tional changeability of the target and its outcome for drug design.

5.7 Structural Systems Biology in Cancer Therapeutics

The previous sections discussed structural biology applications, with an emphasis on
X-ray crystallography. In this section, we will look at how structural and system
biology come together to form a new field known as “structural systems biology.” A
large part of systems biology focuses on predicting the behavior of biological
systems based on the molecules involved. As a result, understanding the interactions
between these molecules is critical to these efforts. Although thousands of
interactions are known, only a small fraction of them have precise molecular details.
Because experimentally determining atomic structures for interacting proteins is
difficult, predictive methods are essential for progress. In the end, structural details
can transform abstract system representations into models that better reflect
biological reality.

The amalgamation of structural and systems biology mainly focuses on the eluci-
dation of protein-protein interactions as a part of significant biological pathways and
structural details of the proteins involved in those pathways (Aloy and Russell 2006;
Beltrao et al. 2007; Murray et al. 2021). Integration of systems biology with
structural biology largely benefits from the power of the former in studying molecu-
lar entities as systems which function together to perform various complex tasks.
This capability of systems biology improves the use of structural information of
macromolecules involved in biological pathways, allowing researchers to get around
the restrictions of examining such entities as isolated parts. Proteins, for example, are
important macromolecules that play a role in complex regulatory networks that
guide cell function. The majority of these proteins form complexes and interaction
networks with other proteins, i.e., protein-protein interaction networks. Systems
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biology plays a critical role in identifying and analyzing disease-related protein-
protein interaction networks. Furthermore, protein-mediated expression regulation is
a critical mechanism in a variety of disorders, and understanding these processes in
depth allows for more effective disease management and the creation of better
therapies. These interactions are crucial in the genesis and progression of cancer.

As previously discussed, the introduction of structural biology techniques and the
expansion of protein structures have resulted in the production of more organized
structural information, such as the origins of the Protein Data Bank. Systems biology
makes extensive use of structural data to predict novel protein complexes (using
protein-protein docking techniques), protein-protein interaction networks, and
molecular pathways. Protein-protein docking (Vakser 2014) is a useful method for
predicting protein complexes. These complexes perform vital biological functions
such as transcription, DNA replication, translation, and other tasks. Irregularities in
such cellular processes are associated with disease formation. Predicting and
analyzing protein complexes can help researchers better understand the underlying
causes of diseases like cancer. So far, several successful techniques and prediction
systems for predicting protein-protein complexes based on the three-dimensional
structure of the proteins have been created.

A key application of systems biology is the identification, analysis, and curation
of biological pathways. As previously stated, proteins, as part of molecular pathways
and interaction networks, regulate major cellular activities. As a result of various
underlying circumstances, these pathways become disrupted in illness states. There-
fore, a thorough understanding of these molecular pathways and their mechanisms of
action is critical for disease therapeutic intervention. Incorporating structural infor-
mation with these routes has numerous advantages and can aid in the comprehension
of complex regulatory systems. When pathways are combined with structural infor-
mation, they become more valuable for systems biology. It is easier to determine the
affinity of an association when the nature of the interaction is understood.

5.8 Conclusion and Future Prospects

Crystallography is involved in multidisciplinary science, including biophysics,
biology, medicinal chemistry, physics, mathematics, and earth sciences. Structural
biology methods currently play a considerable role in the development of new cancer
therapeutic drugs. However, X-ray crystallography has been recognized as the domi-
nant instrument for developing new compounds. FBDD appeared with X-ray crys-
tallography and has turned into potent screening equipment. Information about the
3D structures of protein targeting is nowadays the main function in drug discovery.
However, its place in lead optimization is recognized with big groups of structural
biologists employed in all the main pharmaceutical industries.

Structural biology and bioinformatics explain several key targets for cancer drug
discovery: multidomain and multiprotein complexes. Drug discovery is an
extremely complex and multidisciplinary activity involved in cancer therapeutics.
A theory of tumor biology that is likely to be essential for targeted cancer
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therapeutics is that of cancer heterogeneity, particularly the existence of cancer stem
cells. However, a progressive advance in the development and improvement of
truthfully personalized tumor medicine may be expected over the next few years.
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Computational Tools and Databases
for Fusion Transcripts: Therapeutic Targets
in Cancer

6

Aditya Narayan, Bhavya Pahwa, and Shailesh Kumar

Abstract

In recent years, a rapid expansion in the field of RNAomics has led to a steep rise
in data regarding expressed genes. This expansion in data has necessitated a
consequent increase in the breadth and depth of tools which may be used for the
study of RNA types. Gene fusions are considered hallmarks of many cancer types
and may occur through chromosomal rearrangement or through noncanonical
mechanisms in which chimeric RNA forms without rearrangement of the
genome. To more effectively identify, validate, and understand the function of
these novel RNA molecules, we present this chapter as a resource. In it, we
discuss the role of fusion transcripts, identification of fusion transcripts, relevant
software packages, and databases.

6.1 Introduction

Gene fusions are often considered to be a common feature present in cancer cells and
present with rare cytogenetic signatures which may offer applications for disease
identification, characterization, and treatment. Gene fusions are genes that possess
DNA sequences from two different parental genes and may be created through
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several mechanisms including chromosomal translocations, inversions, deletions,
and duplications. This may lead to proteins with domains derived from two genes in
a novel fusion protein, a shift in reading frame, rearrangements of gene regulatory
elements, and so on.

There has been a wide array of efforts to understand their prevalence, mechanism
of creation, and function which have in turn lead to improvements in the ability to
study several cancer subtypes. Broadly, well-studied examples of such gene fusions
in cancer cells are described below:

• The first identified chromosome abnormality which was found to be strongly
associated with cancer is BCR-ABL1, or the Philadelphia chromosome. This
fusion of the BCR and ABL1 genes resulting from a reciprocal translocation
event leads to the creation of a constitutively active tyrosine kinase (Ren 2005).

• In Burkitt’s lymphoma, an aggressive mature B-cell neoplasia, chromosomal
rearrangement leads to the creation of the IGH-MYC fusion and subsequent
overexpression of the c-myc oncogene, a transcription factor which in turn
leads to lymphomagenesis as well as accumulation of double-strand breaks in
DNA (Yan et al. 2007).

While recurrent fusion genes are often associated with cancer phenotypes, fusion
events are not necessarily limited to oncogenic processes. The formation of fusion
genes in normal, noncancerous cells has been identified and has been shown to
contribute to the development of more complex, multidomain proteins. This, in turn,
contributes to protein evolution over longitudinal time scales.

While fusion genes are defined by the combination of DNA sequences, their
precursor, chimeric RNAs, are hybrid RNA transcripts which contain nucleotides
from different parental genes. These chimeric RNAs are not necessarily produced
through the creation of the fusion of genes at the genomic level, and instead refer
more broadly to any hybrid transcript based on gene annotations (Elfman et al.
2020). A critical reason for this distinction is that many means of chimeric RNA
production in which there are no changes to the corresponding genome have been
elucidated.

• Chimeric RNAs may be produced through the process of intergenic splicing. This
most commonly occurs through a read-through of genes which lie in cis to create
a hybrid mRNA. This is referred to as cis-splicing of adjacent genes (cis-SAGe)
and has been found to be the primary way in which chimeric RNA production
forms in noncancer cells (Singh et al. 2020).

• Chimeric RNA may form from parental genes which are found on different
chromosomes. This process may be referred to as trans-splicing and is theorized
to take place through splicing of precursor mRNAs (Jia et al. 2016).

• Parental genes may be separated by large linear distances on the same
chromosomes.

• Trans-splicing of sense and antisense transcripts may occur between sense and
antisense transcripts of a single gene.
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• “Back-splicing” in which a downstream gene is transcribed prior to an upstream
gene, leading to the creation of a circular fusion chimera (Wu et al. 2019).

Broadly, due to their ubiquity, varying mechanisms of formation, and diversity,
chimeric RNAs are seen as a way in which the body expands the functional genome.
Our understanding of chimer RNA identification and function has been expanded
through large-scale analysis of datasets (GTEx, TCGA, Ensembl, etc.). The creation
of such datasets has rapidly expanded in recent years given the advent of novel
sequencing technologies which have improved researchers’ access to critical
insights. Despite this veritable explosion of databases and associated software
tools, our knowledge of chimeric RNAs remains incomplete. Challenges which
arise in the study of chimeric RNA are numerous, but not insurmountable. These
are as follows:

• Relatively low levels of chimeric RNA expression may lead to biased statistical
analyses leading to over or underestimation of certain sequences.

• The possibility of chimeric RNA developing from template switching events
during RT-PCR.

• The only unique sequence in the chimeric RNA lies at the relatively small
junction between the two parent sequences.

• Homology between chimeric RNA and parental genes causes bioinformatic
predictive tools, biochemical techniques such as sequence-targeted assays, and
the like to be particularly challenging.

Despite the barriers to studying this novel class of molecules, chimeric RNA is a
fertile field of study for geneticists at all levels. To better support future generations
of researchers in exploring this field, this chapter will explore software tools which
may be applied to effectively identify and characterize chimeric RNA.

6.1.1 Identification of Chimeric RNA

A wide array of chimeric RNA prediction tools exists to support researchers in their
search for potential candidates. These tools employ RNA-Seq datasets as purely
genomic DNA datasets do not encompass the full potential for chimeric RNA
production. This is since genomic instability is a hallmark of cancer cells. Further,
RNA seq captures only the expressed parts of the genome (exome) which are
transcriptionally active. This reduces the cost of the entire process to detect fusion
transcripts in cancer. Datasets may be obtained from online databases such as
TCGA. TCGA offers the GDC Data Transfer Tool to download raw sequencing
data and we suggest that readers attempt to apply these tools for themselves. Raw
data must first be processed by applying basic software tools to ensure their usage for
various detection software.
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• First, it is necessary to engage in quality control of raw sequencing reads.
Example tools for this purpose are described below:

• ClinQC: This a highly accessible pipeline which may be used for converting
between raw data formats, quality control, and trimming of raw sequencing data
from both Sanger and NGS sequencing platforms. Data are converted to FASTQ
format, which is among the most accepted formats for chimeric RNA prediction
software which will be described later. The software prepares a quality control
report which further facilitates downstream analysis (Pandey et al. 2016).

• NGSQC Toolkit: The NGSQC toolkit allows for highly efficient processing of
NGS data with filtration of high-quality results as well as quality checking. It is an
open-source application freely available online and implemented in perl. The
toolkit offers high ease of use and is effective for sequencing data sourced from
Rorche 454 and Illumina platforms (Patel and Jain 2012).

• FastQC: FastQC is one of the most applied tools to perform quality control
screens on raw data from high-throughput sequencing methods. It allows for
the import of data as BAM, SAM, or FastQ formats, creates summary graphics to
assess data, and allows for export of data as various file types (Andrews n.d.).

Following quality control steps and conversion to file types appropriate for
downstream analysis, it is possible to pass the data to fusion transcript prediction
tools. There are over 35 software tools that are implicated in the identification of
fusion transcripts. Fusion detection occurs in three stages, namely, (1) mapping and
filtering, (2) fusion junction detection, and (3) fusion assembly and selection.

These mechanisms establish the categorical basis of division of tools for the
identification of fusion transcripts.

1. Mapping and filtering: This is the initiation step in the identification of fusion
transcripts and much software are based solely on this principle. After mapping is
completed, pairs are evaluated for alignment and the irrelevant reads are removed.
This is referred to as split mapping. Example software which applies split
mapping are FusionMap and TopHat-Fusion. While some software, for example
SnowShoes-FTD, utilizes spanning reads in which all mapped reads are pre-
served without filtration. Further incorrect reads are discarded by filtering
techniques, as exemplified by FusionSeq with ten filters to remove illegitimate
fusions. One such filter is when the fusion is intrachromosomal, such that the two
genes are located on the same chromosome, and they can be recognized as a read-
through transcript. This is applied by tools such FusionMap, FusionHunter,
ShortFuse, SnowShoes-FTD, and TopHat-Fusion.

2. Fusion junction detection: This is the second step in fusion junction detection via
“split read” mapping. It involves the independent alignment of first and last
segments of the each “split read” that are generated by the discarding of
unmapped reads in the previous stage. Alignment patterns are recognized,
boundaries of the original fragments are adjusted, and realignment is performed
to accurately identify fusion transcripts. Split read mapping is influenced by the
size of partitioned segments. Small fragments not only sensitize the process but
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are also more likely to provide false-positive results. To combat this, either the
read is further split into two segments or a fixed “proposed” segment is utilized.
Spanning reads facilitate the detection of fusion breakpoints followed by extrac-
tion of candidates by split read.

3. Fusion assembly and selection: In this step, mapped reads are referred to as
“supporting reads”. Owing to the presence of fusion junctions in the insert
sequences, spanning reads also are good supporting modalities. Supporting
reads are beneficial in the sense that they help in eliminating false candidates;
however, the risk of true-positive results which are simply expressed at low levels
being removed increases at the same rate. This problem is tackled by the
availability of scoring functions in the tools. These functions are dependent on
factors like, read depth, mapping quality, and number of supporting reads. Final
scores are derived via empirical analysis (FusionSeq) or machine learning
modalities (deFuse).

Here we describe the basic applications for commonly used tools.

6.1.1.1 FusionSeq
FusionSeq is a computational suite designed to detect candidate chimeric RNA/gene
fusions through analysis of paired-end RNA seq data and offers high ease-of-use
given that it is able to function irrespective of the mapping approach. The output of
FusionSeq is a list of high confidence fusion candidates which are scored to provide
for ease of follow-up validation studies. The results are accessible through a web
browser. Drawbacks to the use of FusionSeq arise when considering the high CPU
time and memory usage, particularly when analyzing large numbers of samples in
parallel. This is because FusionSeq selects for all possible exons involved in the
junction sequence and produces a junction library from all possible pairs of “tiles”
which cover the exons and are each offset by one nucleotide. RNA-seq reads are
mapped to these junctions but particularly with higher exon counts, this approach
can be time consuming due to somewhat inefficient screening of false-positives
(Sboner et al. 2010).

6.1.1.2 TopHat
TopHat is an algorithm to identify chimeric RNA transcripts representing fusion
gene products. TopHat-Fusion is the most recent and updated version of this tool and
offers the ability to align reads across fusion junctions. The software accepts and
aligns RNA-seq reads but critically, does not rely on gene annotation. This is
relevant as it allows for the tool to identify novel fusions which are derived from
parental genes which are known, unknown, or unannotated variants of known genes
(Kim and Salzberg 2011).

6.1.1.3 JAFFA
Frequently, methods used for the identification of chimeric RNA are designed for
use with short read lengths. JAFFA is a software tool which compares cancer
transcriptomes to references, as opposed to the genome and is optimized for read
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lengths that are 100 bp or greater. The cancer transcriptome is inferred through long
reads or de novo assembly of short reads.

JAFFA operates through a pipeline in which RNA-seq reads serve as the input
and candidate fusion genes with breakpoint sequences are the output. Features
include the presence of three modes which vary in appropriateness based on input
read length: Assembly (wherein short reads are assembled de novo into contigs prior
to detecting fusions), Direct (RNA-seq reads which do not map to known transcripts
are employed), and Hybrid (combination of direct and assembly approaches)
(Davidson et al. 2015).

6.1.1.4 EricScript
EricScript (chimERIC tranSCRIPT detection algorithm) is a tool for the detection of
chimeric transcripts in paired-end RNA seq data (Benelli et al. 2012). This software
differs from other prediction tools in that it is highly efficient due to its use of an exon
junction reference which allows for reduced run times. Importantly, the package
presents scores that allow for highly efficient detection of true from false-positive
transcripts, which is a common challenge when distinguishing between potential
fusions. For researchers, this scoring mechanism allows for efficient screening of
potential output transcripts and allows for a reduced number of targets for data
analyses. A study performed by Kumar et al. identified that EricScript was distin-
guished in its balance between time and memory requirements relative to sensitivity
(Kumar et al. 2016).

6.1.1.5 SOAPfuse
SOAPfuse is an open-source tool that may be applied for the detection of fusion
transcripts from paired-end RNA-seq data inputs. It can identify features of
RNA-seq datasets such as insert size and read length, so full homogeneity of the
dataset is less critical. This software was developed in perl and is limited in that it is
only executable in Linux OS. SOAPfuse functions through alignment of RNA-seq
paired-end reads against human reference sequences to detect candidate fusions. It
employs both discordant mapping paired end reads as well as junction reads to
confirm the sites. A junction library is constructed and is used to filter out false-
positive fusions. The output of the program is a list of high likelihood fusions as well
as their locations, junction sequences with single-nucleotide resolution, and
diagrams displaying the varying location of reads relative to junction sequences
and exon expression levels. This output data allows for effective follow-up analysis
(Jia et al. 2013).

6.1.1.6 STARChip
A rapidly expanding field of research states that circular isoforms of RNA are
expressed across the genome and may be correlated with disease. The value in
detecting such nonlinear RNA alignments lies in the fact that it allows for more
rapid detection of chromosomal rearrangements which are commonly associated
with cancer. STAR Chimeric Post (STARChip) is a software package which applies
the STAR aligner to chimeric alignments in order to produce annotated circRNA and
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fusions. This tool is effective for high-dimensional datasets and offers high perfor-
mance at relatively low computing time (Akers et al. 2018).

6.1.1.7 FuSeq
FuSeq is a fusion detection method which applies a recent quasi-mapping method for
alignment which allows it to operate with far lower computational time than many
other tools. The tool functions through a pipeline for mapped read-pairs and another
junction split-reads. Following the process, false-positive results are minimized
through application of a range of filters (Vu et al. 2018). Additional tools are
summarized in Table 6.1.

6.2 Fusion Transcripts Databases

There are several fusion transcripts databases available for scientific community.
Almost all these resources are freely available, harboring the information of fusion
coordinates, tissue, condition, sample information, cancer type, etc. Our research
group also developed a database of fusion transcripts for model plant Arabidopsis
thaliana. Most popular fusion transcripts databases are mentioned in the Table 6.2.

6.3 Validation of Transcripts

Following the generation of potential fusion transcript lists, there is a wide range of
possible approaches to validating the chimeric RNA and ensuring that they are not
false-positive results. Some of the most readily applied approaches are described
below:

• In-Silico Validation: By utilizing the predicted junction sequence at the
breakpoint between parental gene sequences, it is possible to identify commonly
expressed chimeric RNA. This is performed by searching for the junction
sequence in the raw RNA sequencing reads using string-matching software.

• Validation Through Query of Online Databases: Databases containing chimeric
expressed sequence tags and junction sequences and may be queried for certain
sequences to determine if they have been previously validated. Table 6.2
describes some of these databases.

• Application of Wet Lab Approaches: Reverse-transcription polymerase chain
reaction (RT-PCR) may be used to detect and measure the expression of chimeric
RNA transcripts. After isolating RNA from a sample and creating cDNA, PCR
may be applied specifically to the junction sequence to determine expression
levels. Primers may be designed such that they flank this unique junction
sequence and allow the researcher to amplify the sequence if present.
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Table 6.1 Summarizes the tools available to identify fusion transcripts along with their
methodologies

Method Brief overview of methodology

Arriba (Uhrig 2019) Arriba extracts gene fusions from the chimeric alignments
reported by STAR (Dobin et al. 2013) by applying a collection of
filters which recognize frequent types of artifacts found in
RNA-Seq data

ChimeraScan (Iyer et al.
2011)

Identifies candidate fusions from discordant Bowtie (Langmead
et al. 2009) genome alignments. Unmapped reads are trimmed and
realigned. Junction breakpoint reads are resolved by aligning to
candidate fused exons. Fusions are filtered based on an abundance
of fusion-supporting reads

ChimPipe (Rodriguez-
Martin et al. 2017)

The GEMtools RNA-seq pipeline (GEMTools 2019) and GEM
alignment utility (Marco-Sola et al. 2012) are used to capture
discordant and chimeric read alignments, and fusion candidates
are filtered according to fusion evidence and additional gene-
based filters

deFuse (McPherson et al.
2011)

Aligns reads to spliced and unspliced gene sequences using
Bowtie (Langmead et al. 2009), resolves split read junctions using
a novel dynamic programming algorithm, and uses an AdaBoost
classifier to discriminate between likely true versus false fusions

EricScript (Benelli et al.
2012)

BWA (Li and Durbin 2009) is used to align reads to the genome.
Discordant reads are used to identify candidate gene fusions.
BLAT (Kent 2002) is then used in an iterative local alignment step
to define precise fusion breakpoints by aligning to customized
targets of fused exons. An AdaBoost classifier trained with
synthetic data is used to score and rank fusion predictions

FusionCatcher (Nicorici
et al. 2014)

Leverages a collection of alignment utilities including Bowtie
(Langmead et al. 2009), Bowtie2 (Langmead and Salzberg 2012),
BLAT (Kent 2002), and STAR (Dobin et al. 2013) with a
collection of customized target databases to identify and
characterize fusion candidates. Rigorous filtering of fusion
predictions according to gene and fusion annotations is employed

FusionHunter (Li et al.
2011)

First uses Bowtie to align reads to the genome and identify
candidate fusions based on discordant read pairs. Then creates a
“pseudoreference” by positioning candidate fusion genes with
canonical ordering, realigns reads using a custom algorithm, and
identifies both split and spanning reads providing evidence for
gene fusions

InFusion (Okonechnikov
et al. 2016)

Reads are first aligned to the reference transcriptome using
Bowtie2. Unaligned and discordantly aligned reads are further
examined in the context of the genome and transcriptome to
cluster evidence and define candidate fusions

JAFFA-Assembly
(Davidson et al. 2015)

After removing intronic and intergenic region aligning reads
defined by Bowtie genome alignments, the remaining reads are
assembled using Oases (Schulz et al. 2012) and the assembled
contigs are mapped directly to the transcriptome using BLAT.
Chimeric BLAT alignments are further assessed as fusion
candidates

(continued)
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Table 6.1 (continued)

Method Brief overview of methodology

JAFFA-Direct (Davidson
et al. 2015)

After removing intronic and intergenic region aligning reads
defined by Bowtie genome alignments, the remaining reads are
mapped directly to the transcriptome using BLAT. Chimeric
BLAT alignments are further assessed as fusion candidates

JAFFA-Hybrid (Davidson
et al. 2015)

After removing intronic and intergenic region aligning reads
defined by Bowtie genome alignments, the remaining reads are
assembled using Oases. Both the assembled transcripts and the
original reads that failed to map to the genome are then mapped
directly to the transcriptome using BLAT. Chimeric BLAT
alignments are further assessed as fusion candidates

MapSplice (Wang et al.
2010)

An RNA-seq aligner based on Bowtie similar to TopHat (Trapnell
et al. 2009) and includes fusion-finding capabilities, although
specific algorithmic details are lacking

nFuse (McPherson et al.
2012)

Designed for use with WGS-seq and RNA-seq but can be
executed with RNA-seq only, leveraging its included deFuse with
Bowtie2

Pizzly (Melsted et al. 2017) Uses a k-mer-based strategy to examine reads that do not map to
isoforms consistently via kallisto (Bray et al. 2016)
pseudoalignment

PRADA (Torres-Garcia
et al. 2014)

Reads are aligned to a combined genome and transcriptome
reference using BWA. Discordant reads identify fusion
candidates, and junction reads are identified by mapping to a
database of all possible 50-30 chimeric exon junction database

SOAP-fuse (Jia et al. 2013) The SOAP2 aligner (Hurgobin 2016) is used to map reads to
genomes and spliced transcripts to identify fusion candidates

STARChip (Akers et al.
2018)

Uses chimeric reads reported by STAR aimed primarily at
identifying circular RNAs but also reports fusion candidates

STAR-Fusion (Haas 2019a) Uses chimeric read alignments reported by STAR in its Chimeric.
out.junction file to identify candidate fusions followed by
extensive filtering of likely artifacts

STAR-SEQR (STAR-
SEQR 2019)

Uses chimeric reads reported by STAR to find fusions

TopHat-Fusion (Kim and
Salzberg 2011)

A modified execution of the TopHat aligner (Trapnell et al. 2009;
Kim et al. 2013) to examine initially unmapped reads as
supporting fusion events

TrinityFusion-C (Haas
2019b)

De novo assembles only the chimeric reads defined by STAR
using the Trinity assembler (Tomczak et al. 2015), and
subsequently leverages GMAP (Jang et al. 2020; Kim and Zhou
2019) for chimera candidate detection

TrinityFusion-D (Haas
2019b)

De novo assembles all input reads using Trinity, and subsequently
leverages GMAP for chimera candidate detection

TrinityFusion-UC (Haas
2019b)

De novo assembles both chimeric and unmapped reads defined by
STAR using the Trinity assembler, and subsequently leverages
GMAP for chimera candidate
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6.4 Conclusion

In the years following the discovery of the Philadelphia chromosome, there has been
an explosion of evidence supporting gene rearrangements as correlates and/or
causative agents of oncogenesis. This has led to databases, software tools, and
biochemical techniques which have allowed for increasingly efficient and effective
analysis of the novel field of chimeric RNA production. While the majority chimeric
RNA is of unclear functional significance, advances in genomic editing approaches
may expand the potential for novel explorations of the functional genome.

Table 6.2 Different databases available to identify fusion transcripts along with their
methodologies

Database Brief overview of database

The Cancer Genome Atlas (TCGA)
(Tomczak et al. 2015)

TCGA seeks to create a comprehensive profile of
genomic alterations associated with cancers through
profiling human tumor cohorts

ChimerDB (Jang et al. 2020) ChimerDB is one of the most comprehensive
databases available for the study of gene fusions. It
includes deep sequencing data as well as information
from publications

Fusion Gene Annotation Database
(FusionGDB) (Kim and Zhou 2019)

FusionGDP provides functional annotations as well as
information on protein structure, fusion transcript
amino acid sequences, breakpoint mapping, and the
like for a range of known fusion genes

FusionCancer (Wang et al. 2015) FusionCancer is a database based on gene fusion
identification from RNA-seq datasets in human
cancers. This is a query engine with annotated
information of cancer fusion genes and which offers
high ease of use for researchers

FusionHub (Panigrahi et al. 2018) This is a web platform which allows for querying of
multiple gene fusion databases. It allows for multiple
visualization approaches and allows for ease of
annotation

AtFusionDB (Singh et al. 2019) AtFusionDB is a comprehensive database which
contains fusion transcript information specific to
Arabidopsis thaliana. There are a variety of annotation
tools, search modules, and visualization approaches
which facilitate the study of plant genomes

ChiTaRS (Balamurali et al. 2020) ChiTaRS is an incredibly comprehensive chimeric
transcript database with annotated information from
eight species’ genomes. A number of features exist
within the database including information on
druggable fusion targets and transcripts with clinical
correlates
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Understanding the Molecular Kinetics
in NSCLC Through Computational Method 7
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Abstract

Lung cancer is one of the most common causes of cancer-related death in both
men and women worldwide. Over the years, NSCLC has been demonstrated to
have a relatively high incidence and fatality rate. Non-small cell lung cancer
(NSCLC) accounts for around 85% of all lung cancer cases. Computed tomogra-
phy (CT) or positron emission tomography (PET) can aid in the early detection
and correct staging of non-small cell lung cancer, as well as selecting the best
course of treatment. Chemotherapy is beneficial for people with metastatic
disease, and concurrent chemotherapy and radiation are indicated for stage III
lung cancer patients; furthermore, surgical removal of the tumor remains the
single most consistent and successful curative option. Suppression of angiogene-
sis, the advent of epidermal growth factor receptor inhibitors, and other novel
anticancer drugs are transforming the current and future of lung cancer and will
undoubtedly enhance the number of survivors. However, around 70% of patients
with non-small cell lung cancer have locally advanced or metastatic disease at the
time of diagnosis, which increases the mortality rate even after concurrent
therapies are administered, as cancer quickly becomes uncontrollable, and
mutations in tumor cells can lead to resistance to existing therapies. Potential
targets must be identified to solve this challenge, and innovative therapies, such
as inhibitor development or other novel techniques, must be used. Computational
methods have benefited from seeing these targets, which might help limit or block
tumor development and proliferation.
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7.1 Introduction

Lung cancer has become one of the number one causes of death among cancers
worldwide. It accounts for 85–90% of all lung cancers (Clark and Alsubait 2021).
According to GLOBOCAN, lung cancer has been the most common cancer globally
for several decades. GLOBOCAN estimated the worldwide incidence of lung cancer
in 2020 to be 11.4% of the entire world population and that of India to be 5.5% of the
entire population of India. GLOBOCAN estimated the global mortality rate of lung
cancer in 2020 to be 18% and the mortality rate in India in 2020 to be 7.8%.
According to the statistical analysis carried out by GLOBOCAN, the number of
new cases reported worldwide in 2020 of males (all ages) with lung cancer was
14.3% of the entire male world population and of India was 8% of the total male
population of India. However, there were very few to no new cases of lung cancer in
females reported. Thus, as per the statistical data obtained from GLOBOCAN, the
World Health Organization (WHO) ranked lung cancer among the top 5 most
frequently occurring cancers worldwide; in males, it was ranked the first position
and that in females at third position, following the second rank with an incidence rate
in both sexes worldwide (Sung et al. 2021; Bray et al. 2018).

Out of the two types of lung cancers, viz. small cell lung cancer (SCLC) and
non-small cell lung cancer (NSCLC), NSCLC has shown to have a relatively high
rate of incidence and mortality over the decades (Clark and Alsubait 2021).
Non-small cell lung cancer accounts for approximately 85% of the total lung cancer
cases. Non-small cell lung cancer has been further classified into various types
among which the major three types are as follows: adenocarcinoma, squamous cell
carcinoma, and large cell carcinoma. Out of the three, adenocarcinoma occurs at a
comparatively higher rate; it starts in cells in the outer part of the lungs which
normally secrete mucus (Travis et al. 2015). The mutations most often defined in
adenocarcinoma occur in the KRAS and EGFR genes. Adenocarcinoma is more
easily found before it has spread. It is most commonly found in nonsmokers, and it
tends to occur at a younger age than other types of lung cancers. Squamous cell
carcinoma is related to the flat cells that line the inside of the airways of the lungs,
and they are often linked with a history of smoking; these tend to be found in the
central part of the lungs (bronchus). Approximately 80% of adenocarcinoma tumors
exhibit overexpression of the EGFR gene and 30% of squamous cell carcinoma
overexpress the HER2 gene. The genetic variations in squamous cell carcinomas are
diverse, and no targeted therapies are focused against its genetic alterations. Apart
from these, large cell carcinomas contribute only 3% to the total NSCLC cases. They
appear in any part of the lung and tend to grow and spread quickly which makes it
harder to treat them. Other subtypes of NSCLC include adenosquamous carcinoma
and sarcomatoid carcinoma; these are much less common. A glimpse of cancer cell
progressing by targeting various means and signaling pathways is shown Fig. 7.1.

The stage of the disease is directly correlated to survival and is a key determinant
of treatment. Stages of NSCLC are based on a permutation of factors including the
size and location of the tumor and whether it has spread to the lymph nodes or other
parts of the body. There are five stages of NSCLC lining up from Stage 0 (zero) and
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Stages I–IV. Stage 0 is referred to as in situ disease meaning the cancer is “in place”
and has not grown into nearby tissues.

1. Stage I lung cancer is a small tumor that has not spread to any lymph nodes,
making it possible for a surgeon to completely remove it; this stage is further
divided into four substages based on the size of the tumor: stage IA1 where the
cancer is no larger than 3 cm across and the part that has invaded into deeper lung
tissues is no more than 1/2 cm across, IA2-where the tumor is larger than 1 cm but
no longer than 2 cm across, IA3 where the tumor is larger than 2 cm but no longer
than 3 cm across, and stage IB where the tumor is larger than 3cm but not larger
than 4cm across.

2. Stage II lung cancer is divided into two substages: Stage IIA describes a tumor
larger than 4cm but not larger than 5 cm across; it has grown into the visceral
pleura (the membrane surrounding the lungs) and into the main bronchus, due to
which the airways are partially clogged. Stage IIB cancer describes a tumor that is
5 cm or less in size and has spread to the lymph nodes, it can also be a tumor more
than 5 cm wide which has not diffused to lymph nodes. Sometimes stage II
tumors can be resected with surgery.

3. Stage III lung cancers are classified into stages IIIA, IIIB, or IIIC based on the
size of the tumor and which lymph nodes the cancer has spread to. Stage III
tumors may be difficult to remove with surgery as they may spread to the lymph
nodes in the center of the chest outside the lungs or grow into nearby structures in

Fig. 7.1 Cancer progression due to mutations and abruptions in various cell processes signaling
pathways
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the lungs which make it less likely for the surgeon to completely remove cancer; it
can thus be treated with systemic therapy and radiation therapy.

4. Stage IV lung cancer means cancer has metastasized to more than one area in the
other lung including the fluid surrounding the lung or the heart or distinct parts of
the body through the bloodstream. At this stage, once the cancer cells get into the
blood, they can spread anywhere in the body. Non-small cell lung cancer is more
likely to spread to the brain, bones, liver, and adrenal glands. Stage IV NSCLC is
divided into two substages: Stage IVA where cancer spreads within the chest
and/or has spread to one area outside the chest; Stage IVB where cancer has
spread outside of the chest to more than one place in one organ or more than one
organ.

In general, surgery is not recommended for stages III and IV lung cancer as it is
impossible to remove the tumor since it tends to spread to the lymph nodes above the
collarbone and into vital structures (heart, large blood vessels, and main breathing
tubes leading to the lungs) within the chest (Goldstraw et al. 2011; Howington et al.
2013).

7.2 Modulation of Immunometabolism in Cancerous Cells

Cancer cells have been shown to exhibit metabolic characteristics that are signifi-
cantly different from those of normal tissues. Cancer cells, unlike normal cells,
reconfigure their cellular metabolic networks to meet their high needs for building
blocks and energy generation, allowing them to proliferate and flourish indefinitely.
Oncogenic mutations such as RAS, EGFR, MYC, and BRAF, which are common in
cancer cells, might impact metabolic alterations in cancer. Cancer cells, unlike
normal cells, reconfigure their cellular metabolic networks to meet their high
needs for building blocks and energy generation, allowing them to proliferate and
flourish indefinitely.

Immunometabolism is the interaction of metabolism and immunology and the
metabolic regulation of immune function and metabolic regulation by immune
system chemicals and cells. Based on the features of the tumor microenvironment,
two adverse outcomes in cancer immunity can arise. Tumor-infiltrating immune cells
(innate and adaptive immunity) can successfully inhibit tumor development and
finally eliminate tumor cells on the one hand. Through immunoediting, tumor cells
can gain the capacity to evade immunosurveillance and elimination.

Cancer cells have long been recognized to hijack cellular systems that control
survival, development, and proliferation, resulting in the creation and progression of
tumors. The genetic and epigenetic alterations that create stem cell-like features,
such as unrestricted cell division and blocked differentiation, are the most well-
known drivers of malignant transformation.

1. Glucose metabolism: The Warburg effect is the first known cancer-specific
metabolic change. In this process, cancer cells rely on glycolysis for glucose
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metabolism even when oxygen is present, resulting in high lactate levels and
decreased usage of the tricarboxylic acid (TCA) cycle. This metabolic
reprogramming has been suggested as an option to compensate for mitochondrial
malfunction in cancer cells since the TCA cycle and subsequent oxidative
phosphorylation create cellular energy more effectively than glycolysis. The
glucose-6-phosphate also participates in the pentose phosphate pathway, which
causes the tumor microenvironment to become acidic by increasing CO2 genera-
tion in cancer cells. The stimulation of the pentose phosphate route also causes
the nucleic acid synthesis pathway to become active, resulting in cancer cell
growth (Schuurbiers et al. 2014).
Loss-of-function mutations in succinate dehydrogenase cause a significant accu-
mulation of succinate in cancer cells, which functions as an oncometabolite and
can cause epigenetic modifications by inhibiting ketoglutarate-dependent
dioxygenases, ultimately leading to a malignant phenotype. The TCA cycle
also regulates amino acid and fatty acid synthesis to meet cancer cells' growth,
proliferation, and survival demands. Thus, cancer cells have been found to have
increased oxidative phosphorylation, and reduction of mitochondrial DNA has
been demonstrated to limit cancer cell tumorigenic capacity drastically. As a
result, metabolic shift to aerobic glycolysis, in addition to ATP generation,
appears to be a mechanism of supplying cancer cells with the precursors of
proteins, lipids, amino acids, and nucleic acids for sustaining their increased
proliferation and cellular structure.

Effector immune cells, such as activated cytotoxic T cells, undergo substantial
metabolic reprogramming in order to execute effector roles such as killing cancer
cells and secreting cytokines. T cells upregulate the key glucose transporter Glut1
in response to antigenic stimulation, followed by increased glucose uptake and
glycolysis. In contrast, cancer cells maintain and eventually increase high glucose
uptake and glycolysis, leading to a decrease in intratumoral glucose levels for T
cells. Glucose deprivation can directly impede the production of IFN-γ, a critical
T-cell effector molecule in tumor-infiltrating CD8+ T cells. Glyceraldehyde-3-
phosphate dehydrogenase is devoted to its metabolic job when T cells can
undertake high rates of glycolysis. Glyceraldehyde-3-phosphate dehydrogenase
blocks IFN-γ translation in the presence of low glycolytic flux. T-cell
hyporesponsiveness is thus caused by glucose restriction. On the other hand,
rather than being oxidized in mitochondrial respiration, pyruvate, one of the
terminal products of glycolysis, is mainly reduced to lactate in cancer cells,
contributing to the acidity of the tumor microenvironment, which inhibits T-cell
activity. As a result, tumor glucose metabolism might be thought of as a mecha-
nism of tumor rejection resistance (Vanhove et al. 2019).

2. Amino acid metabolism: Aside from glucose metabolism, amino acid metabolism
is also significant in cancer cell immune metabolism. The amino acid glutamine
has been identified as a critical ingredient for T-lymphocytes’ effector activity. T
cells consume many arginine when antigens activate them, and tryptophan boosts
the development of memory T cells by causing a metabolic transition from
glycolysis to OXPHOS, which boosts antitumor activity. On the other hand,
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cancer cells frequently overexpress the amino acid catabolic enzyme
indoleamine-2,3-dioxygenase (IDO), which might result in tryptophan depletion
outside the cell. Cyclooxygenase-2 (COX) and prostaglandin E2 are required for
constitutive expression of indoleamine-2,3-dioxygenase. T-cell activity is
inhibited when tryptophan is depleted because it activates general control
nonderepressible 2 (GCN2), a stress–response kinase (Wei et al. 2021).
Furthermore, malignancies and myeloid-derived suppressor cells (MDSCs)
degrade arginine through arginase 1 overexpression, resulting in lower CD3 ζ
(zeta) chain expression, cell cycle arrest, and a weakened antigen-specific T-cell
response. The elevated indoleamine-2,3-dioxygenase activity resulted in the
accumulation of tryptophan metabolism byproducts, mostly kynurenines, which
inhibits CD8+ T-cell proliferation and effector function via aryl hydrocarbon
receptor (AHR). The interaction of kynurenines favors induction of regulatory
phenotype in naive T cells with AHR (Lukey et al. 2017).

3. Hypoxia and oxidative stress: Tumors are frequently hypoxic, and hypoxia can
act as a metabolic aid in promoting a malignant phenotype. Hypoxia can increase
glucose absorption and glycolysis by inducing numerous glycolytic genes.
Increased glycolysis is linked to long-term malignant development. TCR- and
CD28-mediated T-cell activation is less effective in hypoxic environments.
OXPHOS production and ROS production, both of which are required for normal
T-cell effector function and antigen-specific proliferation, require oxygen. For
appropriate T-cell signaling, low amounts of ROS are essential. ROS levels may
be inadequate in the presence of hypoxia (Deben et al. 2018).
High ROS levels, on the other hand, can be hazardous, and ROS produced in the
tumor microenvironment can compromise immune cells by downregulating the
CD3 (zeta) chain. Macrophages are sensitive to oxygen availability. It has been
shown that anti-inflammatory M2-like tumor-associated macrophages (TAMs)
cluster in hypoxic tumor locations. In contrast, pro-inflammatory M1-like TAMs
dwell in normoxic tumor regions. Intratumoral hypoxia-induced semaphorin 3A
phosphorylates vascular endothelial growth factor (VEGF) receptor 1 and recruits
M2-like TAMs to hypoxic areas (Tafani et al. 2016).

4. Nucleotide metabolism: Hypoxia causes adenosine buildup in tumors by increas-
ing adenine nucleotide breakdown via the 50-nucleotidase pathway. The
ectonucleotidases CD39 and CD73 convert ATP to AMP and AMP to adenosine,
respectively, convert ATP to AMP and AMP to adenosine, and quickly degrade
ATP to adenosine. T- and NK-cell activation and cytotoxic ability are both
inhibited by adenosine (Valles et al. 2012).

7.3 Treatment Options Presently Offered

a. Surgery: If the tumor is confirmed to be resectable and the patient can endure
surgery, patients with stages I, II, and IIIA NSCLC often receive surgery to
remove the tumor. A lobe or part of the lung that contains the tumor may be
removed by surgeons. Imaging investigations and biopsies are performed, as well

134 P. Nimsarkar et al.



as an assessment of patient variables to evaluate if the tumor is resectable. Many
surgeons now use video-assisted thoracoscopic surgery (VATS), which involves
making a small incision in the chest and inserting a thoracoscope (Howington
et al. 2013).

b. Chemotherapy: Cytotoxic combination chemotherapy is the first-line treatment
for stage IV NSCLC, with histology, age vs. comorbidity, and performance status
influencing treatment options (PS) (Ramalingam and Belani 2008). Platinum
(cisplatin or carboplatin) with gemcitabine, paclitaxel, vinorelbine, docetaxel,
pemetrexed, and irinotecan regimen is prescribed by the American Society of
Clinical Oncology for patients with a PS of 0 or 1 (Masters et al. 2015). The
patients in these investigations had an average overall survival of about 8–10
months (Kelly et al. 2001; Scagliotti et al. 2002; Schiller et al. 2002; Fossella et al.
2003). The particular combination is determined by the types and frequency of
harmful effects and should be done on an individual basis. Pemetrexed may,
nevertheless, be beneficial to adenocarcinoma patients. If cancer progresses or the
condition is stable, but the medication does not decrease the tumors after four
treatment cycles, therapy should be discontinued (Pisters et al. 2007; Scott et al.
2007). Patients with a PS of 3 are unlikely to benefit from cytotoxic chemother-
apy since the risk of side effects might severely reduce their quality of life.

c. Radiotherapy: High-energy beams are used in radiotherapy to eliminate cancer
cells by damaging their DNA. This treatment can aid in controlling or eliminating
tumors in particular areas of the body. Radiotherapy can benefit patients not
recommended for surgical resection and NSCLC with chest localization
(Sebastian et al. 2018). For early-stage NSCLC patients with a single small
nodule in the lung and no metastases to adjacent lymph nodes, a procedure
known as stereotactic body radiation treatment (SBRT) is employed. This method
employs an advanced coordinate system to precisely detect the tumor and guar-
antee that the tracking device is placed correctly (Grutters et al. 2010). SBRT was
reported to have higher 2-year overall survival rates, cheaper costs, and improved
patient convenience in a meta-analysis evaluating the efficacy of radiation with
photons, protons, and carbon ions for NSCLC. High rates of local control in
medically inoperable patients with stage 1 NSCLC were reported with receiving
SBRT, according to 50-month outcomes from a prospective phase II trial of
70 medically inoperable patients who had SBRT (Fakiris et al. 2009). The toxicity
and effectiveness of SBRT were investigated in phase III multicenter trial of
individuals with NSCLC that was an early stage but medically inoperable.
Patients who got SBRT had a three-year survival rate of 55.8% with substantial
treatment-related morbidity, according to the 55 patients studied. SBRT has been
reported to provide local control and results similar to surgical resection with
reduced rates of treatment-related morbidity due to these and other trials
(Timmerman et al. 2010; Lagerwaard et al. 2012).

d. Testing for biomarkers: Personalized therapy has improved survival in patients
with NSCLC by focusing on the correct molecular targets in tumors. EGFR
mutations and anaplastic lymphoma kinase (ALK) rearrangements have been
successfully treated with targeted medicines. Other molecular abnormalities
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discovered by genomic testing include gene rearrangements in the MET amplifi-
cation, RET, and ROS1 genes and activating mutations in the KRAS, HER2, and
BRAF and genes, which might be future therapeutic targets (Riely et al. 2008,
2009; Lynch et al. 2004; Brose et al. 2002; Soda et al. 2007).

Computed tomography or positron emission tomography can help in the early
diagnosis and accurate staging of non-small cell lung cancer playing a crucial role
in determining appropriate therapy. Chemotherapy is considered valuable for
patients with metastatic disease, and the administration of concurrent chemotherapy
and radiation is recommended for stage III lung cancer patients; also, the feasibility
of surgically removing the tumor remains the single most consistent and successful
option for cure. The suppression of angiogenesis, the introduction of epidermal
growth factor receptor inhibitors, and other new anticancer agents are changing the
current and future of this disease and will certainly increase the number of lung
cancer survivors. An overview of flow of therapies adopted for NSCLC patients has
been depicted in Fig. 7.3.

7.4 Immunotherapy

Immunotherapy is a groundbreaking oncology treatment that relies on the body’s
natural defense mechanism to combat cancer. Because specific cancer cells resemble
healthy cells, the immune system cannot distinguish between normal and malignant
cells in the body (Jemal et al. 2011; Siegel et al. 2015). Immunotherapy is thought to
function by enhancing the immune system's ability to target cancer cells and stop or
limit their development or by preventing cancer cells from spreading to other regions
of the body. According to research, improved survival has been linked to a robust
antitumor immune response. Patient survival is linked to more natural killer cells,
CD8+ T cells, dendritic cells, and CD4+ T cells. Working mechanism of various
therapies is represented in Figs. 7.2 and 7.3.

Inhibiting the inhibitory receptors cytotoxic T-lymphocyte-associated antigen
4 (CTLA-4) and programmed cell death 1 (PD-1) and its ligand, PD-L1, is part of
this strategy. The immune system uses these immunological checkpoints to maintain
self-tolerance and control the immune response in the body to protect tissues from
harm as the immune system responds to a pathogen (Gajewski et al. 2013; Neurath
and Finotto 2012; Zhang et al. 2015). Table 7.1 depicts the strategies adopted in
immunotherapy targeting mechanisms modulating immune processes helping tumor
cell survival.

7.5 Vaccine Development as a Technique of Immunotherapy

In NSCLC, the purpose of vaccination treatment is to bend the immunological
balance in favor of activation, allowing the host to respond to tumor-associated
antigens. Antigen-specific immunotherapy and tumor vaccines are two vaccine-
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Fig. 7.2 Subsist and potential therapies for NSCLC: The immunological microenvironment of
non-small cell lung cancer (NSCLC) is shown, with approved first-line therapy methods (red boxes)
and attractive experimental targets (yellow boxes) underlined. Within each area, particular thera-
peutic drugs are mentioned as examples. TAA tumor-associated antigen, TCR T cell receptor, TIGIT
T-cell immunoreceptor with Ig and ITIM domains, TIL tumor-infiltrating lymphocyte, TKI a
tyrosine kinase inhibitor

Fig. 7.3 Systematic flowchart of therapies given to patients of NSCLC
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based treatments for NSCLC that are currently under development. Autologous or
allogeneic tumor cells develop tumor (whole-cell) vaccines. The host’s immune
system is exposed to several tumor-associated antigens by these vaccinations.
Antigen-specific immunotherapy entails antitumor immunity directed to target
antigens expressed on tumor cells. Due to the fact that these vaccinations target a
specific antigen, they may not be suitable for all individuals.

7.6 Whole-Cell Tumor Vaccine

7.6.1 Cell-Based Vaccine

7.6.1.1 Belagenpumatucel-L (Lucanix®)
The allogeneic tumor cell vaccine belagenpumatucel-L (Lucanix®, NovaRx Corp.)
utilizes genetically engineered entire tumor cells. It consists of four irradiation
NSCLC lines, two of which are adenocarcinoma lines, one squamous line, and
one large cell carcinoma line (H520, RH2, H460, and SKLU-1, respectively), all
of which have been gene-modified using the transforming growth factor TGF-β2
(Iyengar and Gerber 2013). Higher levels of TGF-β2 are linked to immune system
suppression, which results in natural killer cell neutralization and dendritic cell
suppression. Through the expression of antisense RNA, the vaccine’s plasmid
TGF-β2 transgene component may decrease tumor formation (Kong et al. 1999).

In the phase II trial, 75 NSCLC patients at stages II–IV were tested with
belagenpumatucel-L. It positively responded to candidates with an increased anti-
body level and better tolerance. Patients without progression after frontline chemo-
therapy (phase IIIA, n ¼ 42; phase IIIB/IV, n ¼ 490) were randomized 1:1
(belagenpumatucel-L or placebo) between 4 and 17.4 weeks after the end of frontline
chemotherapy (Nemunaitis et al. 2006; Giaccone et al. 2015). They were treated
until disease progression or withdrawal in a phase III trial of belagenpumatucel-L.

Table 7.1 Immunotherapy trials by vaccine development in NSCLC yield some promising
outcomes

Types of
immunotherapy Agents Phase Outcomes

PD-1 Nivolumab vs. docetaxel III Demonstrated better overall survival in
comparison to docetaxel and benefitted
sustained survival over varied histology

PD-L1 MK-3475 III Shows antitumor functionality with
better tolerance in patients expressing
PD-L1

Anti-CTLA-4 Ipilimumab III Compared to gp100 alone, ipilimumab
with or without gp100 enhanced
survival

Ipilimumab + paclitaxel
+ carboplatin

II Immune-related advancement was
better when given in a phased manner
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The effectiveness of belagenpumatucel-L in enhancing overall survival was
investigated in this study. The study’s secondary objectives were progression-free
survival, response rate, and safety. Adenocarcinoma was found in 57% of the
included individuals (270 vaccination and 262 placeboes), whereas squamous cell
carcinoma was found in 27%. The primary goal of this research was not met; median
overall survival in the vaccination group was 20.3 months compared to 17.8 months
in the placebo group [hazard ratio (HR) 0.94; P ¼ 0.594]. A predetermined COX
regression helped uncover predictive markers for an improved outcome. The vacci-
nation group outlived the placebo group by a considerable and clinically relevant
margin. For patients randomized within 12 weeks of finishing chemotherapy, overall
survival was enhanced by 7.3 months in the vaccination group. With
belagenpumatucel-L, the median overall survival was 20.7 months, compared to
13.7 months with placebo (HR 0.75; P ¼ 0.083). Improved median overall survival
was observed in patients who had previously received pretreatment radiation
(Giaccone et al. 2015).

7.6.2 Recombinant Vaccine

7.6.2.1 TG4010 (MVA-MUC1-IL-2) Vaccine
TG4010 is a recombinant vaccine virus (modified virus of Ankara or MVA) that
encodes human MUC1 and IL-2, targeting the MUC1 antigen on malignant cells.
Two regimens of TG4010 coupled with first-line chemotherapy were evaluated in
patients with stage IIIB/IV NSCLC in phase II randomized, open-label research.
Patients in arm 1 (n ¼ 44) received TG4010 plus cisplatin (100 mg/m2 day 1) and
vinorelbine (25 mg/m2 days 1 and 8). In contrast, patients in arm 2 (n¼ 21) received
TG4010 monotherapy until disease progression and then TG4010 with the same
treatment as in arm 1. Arms 1 and 2 had median survival rates of 12.7 and 14.9
months, respectively (Trevor et al. 2001).

The researchers included 138 patients with stage IIIB/IV NSCLC who had
MUC1 immunohistochemistry. Seventy-four patients got TG4010 with cisplatin
and gemcitabine for up to six cycles, whereas the remaining 74 patients received
just chemotherapy. Patients in the TG4010 with chemotherapy arm and those in the
chemotherapy-only arm did not have substantially different progression-free sur-
vival rates at six months (43.2% (95 % CI: 33.4–53.5%) and 35.1% (95% CI:
25.9–45.3%), respectively, P ¼ 0.307). Patients in the TG4010 group had a median
overall survival of 10.7 months (95% confidence interval: 8.8–18.0), while those in
the chemotherapy-only group had a median overall survival of 10.3 months (95%
confidence interval: 8.3–12.5); however, these findings were not statistically signifi-
cant (Ramlau et al. 2008; Quoix et al. 2011).

7.6.2.2 CIMAVax EGF
Human recombinant EGF coupled to the P64K Neisseria meningitides recombinant
protein led to the development of CIMAVax EGF. Cuba, Peru, and Venezuela have
all given their approval. The impact of cyclophosphamide in reducing inhibition of
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T-suppressor cells was investigated in a pilot study. Serial antibody measurements of
EGF were performed using an enzyme-linked immunosorbent assay (ELISA)
throughout the trials and were stratified based on their results; a good antibody
responder produced an antibody response to a titer greater than 1:4000, while a poor
antibody responder produced an antibody response to a titer less than 1:4000. The
outcomes of the pooled studies revealed that pretreatment with cyclophosphamide
prior to EGF delivery had no meaningful effect on antibody responses. There was a
substantial difference in antibody responders when ISA 51 was used instead of
aluminum hydroxide. Anti-EGF antibody titers and immune response length appear
to have a survival time connection (Neninger Vinageras et al. 2008).

Eighty patients with stage IIIB/IV NSCLC who had completed first-line chemo-
therapy took part in a phase II experiment examining the immunogenicity, safety,
and effect on survival of an EGF-based cancer vaccine. The finest supportive care or
EGF vaccines were given to patients at random. The median overall survival of good
antibody responders who were immunized was 11.7 months, compared to 3.6
months for poor antibody responders who were not vaccinated. Vaccinated
individuals with serum EGF levels less than 168 pg/mL had a longer median overall
survival of 13 months compared to 5.6 months in those with serum EGF levels more
than 168 pg/mL. The trial’s study indicates a tendency toward improved overall
survival for vaccinated patients, statistically significant in the subgroup of patients
younger than 60 against those over 60 (11.57 and 5.33 months, respectively, P ¼
0.124). There was a direct link between serum EGF levels falling and survival and a
link between antibody response and survival (Gonzalez et al. 2003).

7.6.2.3 GVAX®

Irradiated autologous or allogeneic tumor cells that have been genetically engineered
to release recombinant granulocyte-macrophage colony-stimulating factors are used
in GVAX (GM-CSF). GVAX has been found to promote CD8+ and CD4+ T-cell
responses and antibody responses by inducing the infiltration of antigen-presenting
dendritic cells into the vaccination site (Eager and Nemunaitis 2005). Melanoma,
renal cell carcinoma, prostate cancer, and non-small cell lung cancer have all been
examined using the GVAX platform. A successful autologous vaccination was
developed for 34 patients with stages IIB-IV NSCLC in a phase I study (97%)
(Salgia et al. 2003). The vaccination was given weekly for three weeks and biweekly
until the patient was taken out of the research or the vaccine supply ran out. Local
skin response at the immunization site was the most common adverse event reported.
Five patients had stable cancer, one had a mixed response, and two patients who had
previously undergone surgical resection had no signs of disease for more than
42 months (Geary and Salem 2013; Antonarakis and Eisenberger 2013).

A phase I/II research with GVAXNSCLC was performed after this trial. The
research included 83 patients, 20 of whom were in the early stages (I/II) and 63 in the
late stages (III/IV). Ten individuals with early-stage NSCLC and 33 patients with
late-stage NSCLC received vaccinations. Patients received 5 � 106 to 100 � 106

vaccine cells each dose throughout 3–6 biweekly immunizations, followed by
6 months of monthly therapy. The toxicity of GVAXNSCLC was not dose-limiting,
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with local responses at the immunization site being the most prevalent. Three of the
late-stage patients with severe disease experienced long-term tumor regression. Two
of them had total remission for more than five years. Despite some encouraging
results in NSCLC, the disappointing VITAL studies for prostate cancer have damp-
ened enthusiasm for phase III trials utilizing the GVAX platform at this time
(Yu et al. 2016).

7.7 Antigen-Specific Vaccines

7.7.1 Peptide- and Protein-Based Vaccines

7.7.1.1 Liposome BLP25 Vaccine (Stimuvax®, Tecemotide)
L-BLP25 is a peptide-based vaccine (Vlad et al. 2004). The exposed core peptide of
membrane-associated glycoprotein (MUC1) located on the apical surface of epithe-
lial cells of the digestive, genitourinary, and respiratory systems is the target for
L-BLP25. In a randomized phase IIb research in patients with stages IIIB and IV
NSCLC, the effects of the L-BLP25 vaccine on survival and toxicity were
investigated. According to revised survival analyses, patients in the L-BLP25 +
BSC arm had a median survival time of 17.2 months and a 31% 3-year survival rate,
compared to 13.0 months and 17% 3-year survival rate in the BSC alone group.
Based on the phase IIb research findings, a phase III trial (START) was launched.
Patients with unresectable stage III NSCLC who did not advance after initial
chemoradiotherapy were randomly assigned to receive L-BLP25 or placebo (n ¼
1513). Although L-BLP25 was well tolerated, the START trial’s primary effective-
ness endpoint was not met. Patients treated with L-BLP25 with concomitant chemo-
therapy and radiation, on the other hand, had a considerable survival benefit (Butts
et al. 2005, 2011, 2014).

7.7.1.2 Melanoma-Associated Antigen A3 (MAGE-A3)
MAGE-A3 is expressed mainly on tumor cells (35% of NSCLCs) but not on normal
cells, except testicular germ cells and placental trophoblast, where greater expression
is linked to advanced illness and a worse prognosis (Woo et al. 2002).

The tolerance and effectiveness of MAGE-A3 as a tumor-specific vaccination
target in NSCLC were assessed in a multicenter, double-blinded phase II clinical
study. One hundred eighty-two patients with totally resected MAGE-A3 (+), stage
pIB or pII were randomly randomized to receive recombinant MAGE-A3 protein
plus adjuvant or placebo after surgery in a 2:1 ratio. Patients received five immuni-
zation rounds every 3 weeks, followed by eight vaccination cycles every 3 months.
The disease-free interval was the study's primary goal, with secondary endpoints
including safety, disease-free survival, and overall survival. Disease-free survival
and overall survivals were 0.73 (95% CI: 0.45–1.16) and 0.66 (95% CI: 0.36–1.20),
respectively, after a median follow-up of 28 months. The study’s findings revealed
an excellent trend for MAGE-A3 activity in the treatment of NSCLC, with a 27%
increase in the disease-free interval and disease-free survival. Although the
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improvement was not statistically significant, the promising results inspired the
MAGRIT phase III experiment (MAGE-A3 as adjuvant non-small cell lung cancer
immunotherapy) (Linsley et al. 1991; Takagi et al. 1998).

The MAGRIT research examined disease-free and overall survival, as well as
yearly disease-free survival from 2 to 5 years, lung cancer-specific survival, disease-
free specific survival, and adverse events in patients with MAGE-A3-positive lung
malignancies. There were 2270 patients in the MAGE-A3 or placebo groups, all in
stages IB, II, or IIIA. In the overall population or individuals who did not undergo
chemotherapy, MAGE-A3 as an adjuvant medication did not improve disease-free
survival compared to placebo. The MAGRIT study confirms that vaccinations are
well tolerated with moderate side effects and no apparent rise in immune-mediated
diseases. However, the primary endpoint was not met (Vansteenkiste et al. 2016).

7.8 Molecular Biology of Non-small Cell Lung Cancer

The tumor initiation and progression involve an array of steps that encloses DNA
damage or mutations induced by external risk factors. This field carcinogenesis and
pre-neoplasia in airway epithelium for development of the tumor. Every step has a
critical focus in intense clinical and laboratory investigations for cancer therapies
(Larsen and Minna 2011). In non-small cell lung cancer malignancies, tumorigenesis
relates to the activation of growth-promoting proteins (KRAS, EGFR, BRAF,
MEK-1, HER2, MET, ALK and RET, PI3K) as well as inactivation of tumor
suppressor genes (p53, phosphatase with tensin homology (PTEN), LKB-1).

Activation of growth-promoting oncogenes can occur by gene amplification or
other genetic modification including point mutations and structural rearrangements
leading to uncontrolled signaling through oncogenic pathways. Signaling pathways
regulated by oncogenes and tumor suppressor genes are often related with cross-talk
between pathways involved in carcinogenesis which adds to the complexity in the
incidence of mutational tumor facilitating disease progression (Lynch et al. 2004;
Luo et al. 2009). Non-small cell lung cancer can be defined by specific mutations in
the majority of genes encoding EGFR, KRAS, MAPK, and PI3K signaling
pathways. Mutations in these genes are mutually exclusive; EGFR and ALK
mutations prevail in adenocarcinomas that develop in nonsmokers; KRAS and
BRAF mutations are more common in smokers or former smokers (Ju et al. 2012).
In NSCLC, EGFR mutations occur in the first four exons of the intracellular tyrosine
kinase domain, most commonly Exon 19 in-frame deletion having over 20 variants,
the commonest being “delE746-A750” (accounts for ~45%), and the next
commonest EGFR mutations are missense mutations mainly in Leu 858R, a single
nucleotide point mutation in exon 21 directing to single amino acid change from
leucine to arginine at codon 858 (accounts for ~40%). In NSCLC, almost all EGFR
mutations occur in adenocarcinoma although they may also be seen in
adenosquamous carcinomas. These mutations are more frequently but not exclu-
sively found in patients who are females, younger, and with no history of smoking
(Kohno et al. 2012; Lipson et al. 2012). These studies give a complete picture of
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genetic changes in lung malignancies; distinguishing physiologically significant
driver mutations from the overwhelming number of passenger variants remains
difficult. The scarcity of high-frequency recurrent mutations underlines the
variability and complexity of lung cancer molecular biology, with shared pathways
impacted by a variety of genetic changes, making personalized treatment challeng-
ing to achieve.

7.9 Tumor Suppressor Genes

Tumor suppressor genes are essential inhibitors of normal cell proliferation. As
indicated in Knudson’s two-hit theory, loss of tumor suppressor gene (TSG) activity
is an effective mechanism of carcinogenesis that necessitates the inactivation of both
gene alleles. Individual genes are frequently inactivated in one allele due to
mutations, epigenetic silencing, or other aberrations. In contrast, the second allele
is frequently inactivated due to loss of heterozygosity (LOH), which occurs when a
chromosome region is lost due to deletion, nonreciprocal translocation, or mitotic
recombination. TSGs such as TP53, retinoblastoma 1 (RB1), serine–threonine
kinase 11 (STK11), CDKN2A, FHIT, RASSF1A, and PTEN are often inactivated
in lung cancer. Individual genes are frequently inactivated in one allele due to
mutations, epigenetic silencing, or other aberrations (Knudson 1993). In contrast,
the second allele is frequently inactivated due to loss of heterozygosity (LOH),
which occurs when a chromosome region is lost due to deletion, nonreciprocal
translocation, or mitotic recombination. TP53, retinoblastoma 1 (RB1), serine–
threonine kinase 11 (STK11), CDKN2A, FHIT, RASSF1A, and PTEN are TSGs
that are often inactivated in lung cancer, and these genes map to chromosomal areas
routinely discovered in LOH investigations. TSGs like TP53 (17p13), RB (13q12),
p16 (9p21), and PTEN, for example, are commonly implicated in areas of lung
cancer that show allelic loss (10q22) (Raso and Wistuba 2007). Mutations in many
TSGs not previously recognized to have a substantial role in lung adenocarcinoma
were discovered in research by Ding et al., including the TSG NF1 (associated in
neurofibromatosis type 1), which was mutated in 13 tumors, and the TP53 regulator
ATM, which was mutated in 13 patients.

1. TP53: The nuclear phosphoprotein TP53, which is encoded on chromosome
17p13, is a 53-kDa nuclear phosphoprotein that recognizes and binds to damaged
DNA and works as a transcription factor directing the expression of a variety of
genes (Mogi and Kuwano 2011). Damaged DNA or carcinogenic stress causes
TP53 to be activated, resulting in cell cycle arrest and the production of cyclin-
dependent kinase inhibitors, allowing for DNA repair or apoptosis. With the
hemizygous deletion of 17p13, which contains the TP53 locus, occurring in
90% of small cell carcinomas and roughly 65% of NSCLC, TP53 inactivation
is one of the most prominent genetic abnormalities in lung cancer. In 80–100% of
small cell lung carcinomas, inactivating mutations in TP53 (mainly missense
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mutations near the DNA-binding domain) have been observed (Wistuba et al.
2000).
A meta-analysis of TP53 in over 4000 NSCLC patients identified mutations or
protein accumulation in just 46.8% of cases. SCC is more prevalent than ADC
and is related to higher tumor stage, grade, and male gender (Wistuba et al. 2000;
Tammemagi et al. 1999). In the Cancer Genome Atlas (TCGA) study, TP53
mutations were discovered in at least 81% of SCCs that underwent extensive
genomic investigation. In 85 of 188 ADCs, Ding et al. discovered TP53
alterations (45%) (Husgafvel-Pursiainen et al. 2000). TP53 mutations are linked
to a history of smoking or exposure to tobacco smoke in the environment in
NSCLC. Smoking-related malignancies had a much greater frequency of G-to-T
transversions than G-to-C transversions (believed to be generated by polycyclic
aromatic hydrocarbons in tobacco smoke) and G to A transitions at CpG
dinucleotides, which are more prevalent in never smokers. In lung NSCLC,
abnormal p53 identified by protein expression or mutational analysis is an
unfavorable prognostic factor, according to a meta-analysis of 74 studies. Treat-
ment resistance has also been linked to mutations in the TP53 gene. Mutations in
the TP53 gene can develop with mutations in the EGFR and KRAS genes (Takagi
et al. 1998).

2. LKB1 (STK11): LKB1 is a TSG that encodes a serine–threonine kinase that
inhibits mTOR and has been linked to various biological processes, including
cell cycle control, chromatin remodeling, cell polarity, and energy metabolism
(Marignani 2005; Shaw et al. 2004). Thirty percent of ADCs have been shown to
have deregulated mTOR pathway components (excluding KRAS mutations).
Patients with Peutz–Jeghers syndrome have LKB1/STK11 gene mutations.
LKB1 is suppressed in lung cancer by a variety of somatic mutations or deletions
that result in shortened proteins, with inactivation of LKB1 occurring in 11–30%
of lung ADC, making it the third most prevalent genetic aberration in lung ADC
after TP53 and KRAS. Inactivation of LKB1 is more prevalent in lung ADCs than
in SCCs. There is evidence of a relation between LKB1 mutations and male
smoking history and a link with KRAS mutations (Sanchez-Cespedes et al. 2002;
Koivunen et al. 2008a, b; Matsumoto et al. 2007; Onozato et al. 2007).

3. PTEN: On chromosome 10, PTEN encodes a lipid and protein phosphatase that
dephosphorylates PI-(3,4,5)-triphosphate, inhibiting the PI3K/AKT/mTOR sig-
naling cascade (Brognard et al. 2001). PTEN’s TSG function is inactivated,
resulting in unfettered activation of AKT/protein kinase B unaffected by ligand
binding. PTEN mutations are found in roughly 5% of NSCLC cases, with SCC
being more prevalent than ADC (10.2% vs. 1.7%) and linked to smoking history.
On the other hand, reduced protein expression has been documented in roughly
75% of NSCLC cases (Jin et al. 2010; Marsit et al. 2005).

4. The p16INK4a-Cyclin D1-CDK4-RB Pathway: The p16INK4A/RB pathway
regulates the cell cycle progression from G1 to S phase (Harbour et al. 1988).
RB1 is a tumor suppressor gene that produces the RB protein, regulating the G1/S
transition in the cell cycle by binding the transcription factor E2F1. RB1 was the
first TSG identified in lung cancer. It is inactivated in roughly 90% of small cell

144 P. Nimsarkar et al.



lung carcinomas but only 10–15% of non-small cell lung carcinomas. The
pathway is primarily shut down in NSCLC because of changes in cyclin D1,
CDK4, and the cyclin-dependent kinase inhibitor p16 (CDKN2A) (Brambilla
et al. 1999; Raso and Wistuba 2007). p16INK4A prevents cell cycle progression
across the G1/S checkpoint by inhibiting cyclin D1-dependent phosphorylation
of RB protein. Inactivation of p16INK4A in roughly 80% of NSCLC was changed
in 72% of lung SCCs studied by TCGA, primarily due to homozygous deletion,
methylation, or inactivating mutations. Furthermore, nearly 40% of NSCLC
patients have cyclin D1 overexpression caused by gene amplification or other
causes (Brambilla et al. 1999; Otterson et al. 1994).

7.10 Genetic Mutations Leading to Cancer Development

1. Epidermal growth factor (EGFR): EGFR mutations have a role in developing
several cancers, including NSCLC. EGFR is a transmembrane tyrosine kinase
that has an external ligand-binding domain and an intracellular tyrosine kinase
domain. When the ligand epidermal growth factor binds to the receptor, it forms
homodimer or heterodimer with other members of the EGFR family, and the
tyrosine kinase domain is activated (Prenzel et al. 2001). The PI3K/AKT/
mTOR, RAS/RAF/MAPK, and JAK/STAT signaling pathways involve
EGFR-stimulated signaling. Survival, cell proliferation, neovascularization,
differentiation, metastasis, and invasion are all regulated by EGFR. Constitutive
tyrosine kinase activation and oncogenic transformation of lung epithelial cells
in vitro are caused by activating mutations in the EGFR gene. Multiple lung
ADC was developed in a transgenic mouse model with inducible expression of
the most frequent EGFR mutations, which were susceptible to slight drug
inhibition. Enhanced protein expression or gene copy numbers are two different
strategies for increased EGFR signaling (Bethune et al. 2010; Yarden and
Sliwkowski 2001; Sordella et al. 2004; Greulich et al. 2005).
EGFR mutations are found in the first four exons of the intracellular tyrosine
kinase domain in NSCLC, with the most prevalent exon 19 in-frame deletions
(45%). There are over 20 variations, with delE746-A750 being the most com-
mon. Missense mutations, notably L858R, a single nucleotide point mutation in
exon 21 that results in a single amino acid shift from leucine to arginine at codon
858 (40%), are the second most prevalent EGFR alterations (Yip et al. 2013).

EGFR mutations are seen nearly exclusively in ADC in lung cancer, although
they can also be found in adenosquamous carcinomas. Patients who are female,
younger, and have never smoked are more likely to have EGFR mutations;
however, this is not always the case. In histologically thoroughly sampled pure
SCCs, EGFR mutations occur only extremely rarely. EGFR mutations were
found in two instances out of 188 SCCs, both with L861G mutations. While
EGFR mutations are uncommon in SCCs, variant III mutations affect EGFR’s
extracellular domain, copy number increases, and protein overexpression are
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more prevalent in SCCs than in ADCs (Kosaka et al. 2004; Shigematsu et al.
2005a, b; Marchetti et al. 2013; Wu et al. 2008; Heist et al. 2012).

In individuals who acquire resistance to EGFR-TKIs, secondary mutations in
EGFR arise or are clonally chosen, the most frequent of which is the T790M
activating point mutation in exon 20, which replaces a “bulkier” methionine for
threonine, interfering with reversible TKI binding. T790M is detected in around
50% of tumors from individuals who develop TKI resistance. Exon
20 mutations, including T790M variants linked to EGFR-TKI treatment resis-
tance, were found in 29% of patients with EGFR mutations in a therapy-naive
cohort. EGFR-TKI resistance can also be caused by the activation of down-
stream pathways that circumvent EGFR inhibition, such as the PI3K pathway
via MET amplification (Wu et al. 2008; Balak et al. 2006; Engelman et al. 2007).

2. KRAS: KRAS is a proto-oncogene which encodes a G protein that controls
signal transduction pathways that govern cell proliferation, differentiation, and
survival. It belongs to the RAS family of proto-oncogenes (KRAS, NRAS, and
HRAS are all found in humans) (Downward 2003; Karnoub and Weinberg
2008). In typical quiescent cells, Ras proteins are linked to GDP and inactive.
Following activation of upstream growth factor receptors, a transition to the
activated guanosine triphosphate (GTP) bound form occurs. Ras-GTP that has
been activated binds to and activates a variety of downstream pathways, includ-
ing the mitogen-activated protein kinase (MAPK) pathway, the RAS/RAF/
MEK/MAPK pathway, and the PI3-K [PI3K/AKT/mammalian target of
rapamycin (mTOR)] pathways. KRAS is involved in downstream signaling
generated by several growth factor receptors, including EGFR, and constitutive
activation of the protein eliminates the need for growth factor signaling
(Karnoub and Weinberg 2008). Activating mutations impair the protein’s
GTPase function, preventing the active RAS-GTP from being converted to
GDP, resulting in enhanced signaling across various downstream growth-
promoting pathways. The MAPK/RAF/RAS/MEK signal transduction cascade
is implicated in numerous lung malignancies, with alterations in the system
found in 132 of 188 tumors, with mutations in KRAS being the most frequent
(Ding et al. 2008).
The most prevalent oncogenic change in lung ADC is activating mutations in the
KRAS oncogene, which occur in roughly 25–40% of patients. In contrast,
HRAS and NRAS mutations are sporadic. KRAS mutations are more prevalent
in Western countries than in Asian ones. They are more common in males and
smokers; hence, differences in the prevalence of KRAS mutations in lung ADC
are most likely due to different patient groups. KRAS mutations have been
found in 0–15% of ADC in never smokers. KRAS mutations are also uncom-
mon or nonexistent in SCCs and small cell cancers (Sequist et al. 2011; Ding
et al. 2008; Yip et al. 2013). Only one KRAS mutation at codon 61 was
discovered in a comprehensive genomic study of 188 SCCs. Single amino
acid changes in hotspots situated predominantly in codon 12 and codons
13 and 61 are seen in KRAS mutations in lung cancer. In smokers, G-to-T
transversions are the most prevalent mutations (84%). In contrast, never
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smokers are more likely to have G to A transitions (Riely et al. 2008; Rodenhuis
and Slebos 1992; Schmid et al. 2009).

KRAS mutations seldom occur in tandem with EGFR mutations, in line with
their role as driving mutations. According to a meta-analysis, KRAS mutations
cause constitutive activation of pathways downstream of EGFR, making KRAS
mutant tumors resistant to EGFR tyrosine kinase inhibitors (TKIs) (Kosaka et al.
2004; Mao et al. 2010; Shigematsu et al. 2005a, b; Tam et al. 2006). Distinct
KRAS mutant proteins have different clinical importance, according to data. In
the BATTLE study (prospective phase II biomarker-integrated approaches of
targeted therapy for lung cancer elimination), G12C or G12V mutant KRAS
predicted shorter progression-free survival than other KRAS mutation wild-type
KRAS. Furthermore, distinct amino acid changes were linked to activation of
different pathways (MEK with Gly12Asp and PI3-K and mutant Gly12Val or
Ral with Gly12Cys) due to divergent protein conformations resulting in changed
capacity to bind with downstream protein mediators (Linardou et al. 2008; Ihle
et al. 2012). This emphasizes the need to evaluate the clinical and therapeutic
implications of individual genetic changes in lung cancer before using targeted
treatments and designing clinical trials. The high incidence of KRAS mutations
in lung cancer makes it an excellent therapeutic target. Nevertheless, clinical
trials of targeted medicines have largely failed.

3. MEK: MEK1, also called as MAPK1, is a serine–threonine kinase that plays a
crucial role as a RAS downstream target. MEK1 stimulates MAPK2 and
MAPK3 in the BRAF pathway (Downward 2003). In NSCLC, two of
107 lungs ADC were discovered to have an activating mutation in exon two
that did not implicate the kinase domain. The mutations were exclusive to other
driver mutations and were linked to in vitro function gain (Marks et al. 2008).

4. PI3K/AKT/mTOR: The PI3K/AKT/mTOR signaling system regulates cell pro-
liferation, survival, differentiation, adhesion, and motility. Both NSCLC and
small cell carcinoma have been linked to changes in this pathway. EGFR,
HER2, insulin-like growth factor receptor, vascular endothelial growth factor
receptor, and platelet-derived growth factor receptor are among the membrane
tyrosine kinase receptors that activate the pathway (Engelman et al. 2006; Cully
et al. 2006). PI3K is recruited to the cell membrane by activated receptor
tyrosine kinases, where it phosphorylates PIP2 to PIP3 (phosphatidylinositol
4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate). PIP3 then
recruits the serine–threonine kinase AKT to the membrane, phosphorylated by
PI3 kinase and mTOR. AKT's downstream target, mTOR, is a serine/threonine
kinase (Brognard et al. 2001). Tuberous sclerosis and Bcl-2 are linked to death
promotors advancing to cell proliferation. Survival is among the numerous
targets activated by activated AKT. Other pathways that interact with
RAS/RAF/MEK (rat sarcoma/rapidly accelerated fibrosarcoma/MAPK or Erk
kinase) include RAS/RAF/MEK (rat sarcoma/rapidly accelerated fibrosarcoma/
MAPK or Erk kinase/MAPK or Erk kinase/MAPK or Erk kinase/MAPK
or Erk).
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In many tumors, including 50–70% of NSCLC, the PI3K/AKT/mTOR pathway
is typically disrupted. The Cancer Genome Atlas research found significant
changes in the PI3K pathway in 47% of SCCs. Activating mutations in
EGFR, KRAS, PI3K, or AKT, and PIK3CA amplification or loss of negative
regulation by the tumor suppressor gene PTEN all play a role in pathway
activation in lung carcinogenesis (Papadimitrakopoulou 2012; Vivanco and
Sawyers 2002).

Phosphatidylinositol 3-kinases (PI3Ks) are intracellular lipid kinases, and the
PIK3CA gene encodes the primary catalytic subunit, the p110 alpha isoform.
Constitutive ligand-independent pathway activation results from activating
mutations and amplification of PIK3CA. PIK3CA mutations, which usually
affect the catalytic domain, have been found in 1–3% of NSCLCs, with SCCs
being more prevalent than ADCs. PIK3CA mutations, unlike other oncogenic
driver mutations, can arise in combination with EGFR or KRAS mutations,
suggesting that they are not genuine driver mutations (Vivanco and Sawyers
2002). In vitro investigations of lung cancer cell lines with PIK3CA mutations
or copy number increases, on the other hand, reveal enhanced PI3 kinase activity
responsive to small-molecule inhibition, while in vivo animal models with
PIK3CA mutant expression develop multiple ADC, showing oncogenic poten-
tial. In NSCLC, especially in SCCs, PIK3CA may be amplified. An increased
copy number of PIK3CA has been documented in 5% of small cell carcinoma
cell lines. Although uncommon, AKT mutations have been identified in 0.5–2%
of NSCLC, particularly SCCs, activating the PI3K/AKT/mTOR pathway
(Vivanco and Sawyers 2002).

5. MET: On chromosome 7q21-q31, the proto-oncogene MET encodes a mem-
brane tyrosine kinase receptor known as hepatocyte growth factor receptor.
When the ligand hepatocyte growth factor binds to the receptor, it causes
homodimerization, kinase activation, and signaling via downstream pathways
such as RAS/RAF/MEK/MAPK, PI3K/AKT, and c-SRC kinase (Sadiq and
Salgia 2013). MET gene amplification is identified in 1–7% of treatment-naive
NSCLC patients; however, amplification was reported in 21% of patients in one
research. Increased MET copy number is possibly more prevalent in SCC than
in ADC. It is mutually exclusive with KRAS mutations. Overexpression of the
MET protein occurs due to MET amplification, which activates downstream
signaling pathways (Bean et al. 2007; Cappuzzo et al. 2009; Onozato et al. 2009;
Go et al. 2010). Evidence of gene amplification related to constitutive receptor
phosphorylation, activation of the PI3K/AKT pathway, and susceptibility to
MET inhibition has been established in vitro. Secondary EGFR-TKI resistance
is caused by MET amplification, which occurs in around 20% of individuals
with acquired resistance. In this situation, MET amplification drives and
maintains the PI3K/AKT pathway, circumventing TKI-mediated EGFR block-
ade, implying that concurrent MET inhibition might be a mechanism to over-
come TKI resistance. About 3–5% of ADC has MET mutations (Beau-Faller
et al. 2008).
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6. ROS1: OS1 is a proto-oncogene that encodes a transmembrane tyrosine kinase
receptor with substantial similarity to ALK in the protein kinase domain. It is
found on chromosome 6q22 (Chin et al. 2012). The PI3K/AKT/mTOR, STAT3,
and RAS/MAPK/ERK pathways are activated when ROS1 is activated. ROS1
fusion was found in an NSCLC cell line (1 of 41) and a patient sample (1 of 150)
(SLC34A2-ROS1 and CD74-ROS1, respectively) in a large-scale
phosphoproteomic search for tyrosine kinase activity in lung cancer in 2007
(Bergethon et al. 2012). Following that, employing whole-genome and
transcriptome sequencing, a new KDELR2-ROS1 in-frame fusion was discov-
ered in adenocarcinoma from a nonsmoker. ROS1 rearrangements were discov-
ered in 18 of 694 ADCs (2.6 %) and 13 of 1116 ADCs in two significant
investigations utilizing FISH (1.2%). KDELR2, FIG, SDC4, TPM3, EZR,
LRIG3, EZR, CD74, and SLC34A2 are some of the 50 fusion partners reported
in the ROS1 gene rearrangements; however, it is unclear what role, if any, the
partner plays in the fusion kinase's oncogenic activity (Takeuchi et al. 2012).
Similarly, as ALK rearrangements, ROS1 rearrangements appear to be more
prevalent in younger individuals who have never smoked or are of Asian origin.
Lung tumors with ROS1 rearrangements are also responsive to kinase inhibitors,
such as the ALK/MET inhibitor crizotinib, according to in vitro and early
clinical data (Bergethon et al. 2012).

7. ALK: In a fraction of lung malignancies, fusions of the intracellular kinase
domain with the amino-terminal end of echinoderm microtubule-associated
protein-like 4 (EML4) occur (Koivunen et al. 2008a, b; Choi et al. 2008). A
brief inversion causes the rearrangement on chromosome 2p, in which intron
13 of EML4 is joined to intron 19 of ALK [inv (2) (p21; p23)] in the most
frequent variation. Exons 1–13 of EML4 joining exons 20–29 of ALK have
been identified as the most prevalent EML4-ALK fusion variant. KIF5B
(kinesin family member 5b), TFG (TRK-fused gene), and KLC-1 have all
recently been discovered as partner genes in a small % age of ALK
rearrangements (1% of cases) (kinesin light chain1) (Soda et al. 2007). In
vitro, the oncogenic EML4-ALK fusion protein displays gain of function
activity. In vivo mice models expressing EML4-ALK develop numerous lungs
ADC sensitive to pharmacologic ALK inhibition. Through the RAS/RAF/
MAPK1, PI3K/AKT, and JAK3-STAT3 signaling pathways, ALK activation
is associated with cell growth and apoptosis suppression (Choi et al. 2008; Mao
et al. 2010; Shaw et al. 2004). Although other studies have indicated a somewhat
lower incidence, ALK rearrangements have been observed in about 4% of
unselected NSCLC. They are more prevalent in ADCs from younger patients
who do not smoke or smoke lightly, and they virtually always show up in ADCs
(Shaw et al. 2004; Rikova et al. 2007; Takeuchi et al. 2009). While ALK
rearrangements usually are mutually exclusive with EGFR and KRAS
mutations, examples of coexisting EGFR mutations have been described,
indicating that TKI resistance is possible (Solomon et al. 2009). Drug resistance
develops with evidence of new ALK point mutations and activation of EGFR
signaling involvement in some cases, even though ALK inhibition with the
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tyrosine kinase inhibitor crizotinib provides dramatic responses (Sasaki et al.
2011).

8. BRAF: BRAF is a serine/threonine protein kinase, the downstream effector
protein of KRAS. It stimulates the MAPK signal transduction pathway, which
is involved in cell proliferation and survival regulation. BRAF activates down-
stream mediators MEK1 and MEK2, activating ERK1 and ERK2, which regu-
late growth-regulating proteins such as c-JUN and ELK1. Increased kinase
activity and transforming activity in vitro result from activating mutations in
BRAF (Schmid et al. 2009; Davies et al. 2002).
In melanoma, activating BRAF mutations are prevalent, while only around 3%
of NSCLC patients have them. NSCLC has a lower percentage of V600E
mutations that disrupt the protein’s kinase domain than melanoma and colorectal
cancer. Exon 15 V600E mutations contribute to up to 50% of BRAF mutations
in lung ADC, followed by exon 11 G469A and exon 15 D594G. Some BRAF
mutations in NSCLC are found in the kinase domain (e.g., V600E, D594G, and
L596R), whereas others are found in the G-loop of the activation domain (e.g.,
V600E, D594G, and L596R) (such as G465V and G468A) (Davies et al. 2002;
Brose et al. 2002; Marchetti et al. 2011; Naoki et al. 2002; Paik et al. 2011).
Because the BRAF and KRAS genes are part of the EGFR-mediated signaling
system, mutations in these genes are virtually invariably mutually exclusive,
consistent with a similar downstream route to transformation. ADC nearly
invariably has BRAF mutations in lung cancer. BRAF variants that are not
V600E have been linked to current or former smokers, whereas V600E
mutations have been linked to female never smokers (Falchook et al. 2012).
While BRAF mutations are infrequent, they are an attractive therapeutic target
since targeted treatments for melanoma are currently in clinical use, albeit there
is less data on how well this approach works in NSCLC.

FGFR1: Several genes, including SOX, PDGFRA, and FGFR1, have
exhibited somatic gene amplification in SCCs (Cancer Genome Atlas Research
Network 2012). The MAPK and PI3K pathways are activated by FGFR1, a
membrane receptor tyrosine kinase that governs cell growth (Tran et al. 2013).
In vitro, FGFR1 amplification exerts an oncogenic impact responsive to small-
molecule inhibition in NSCLC cell lines. Amplification of the FGFR1 gene has
been found in around 20% of SCCs, while they are rare in ADCs (Tran et al.
2013; Dutt et al. 2011).

9. RET: RET is a receptor tyrosine kinase that plays a role in neural crest formation.
It is found on chromosome 10q11.2 (Wells Jr and Santoro 2009). Although RET
mutations have long been linked to papillary and medullary thyroid carcinoma,
activation of RET by chromosomal rearrangement has only recently been
discovered in a small percentage of lung malignancies (Lipson et al. 2012; Ju
et al. 2012). The functional RET kinase domain from exons 12–20 is fused to
KIF5B (kinesin family 5B gene), which is 10 Mb away from RET on chromo-
some 10 and encodes a coiled-coil domain involved in organelle trafficking
(Ju et al. 2012; Kohno et al. 2012). KIF5B-RET fusions have been detected in
1–2% of lung ADC using massively parallel sequencing methods. They are
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mutually exclusive of other driver mutations affecting EGFR, KRAS, or ALK.
RET rearrangements were found in 10 of 159 lung ADC from never or light
smokers who were known to be the wild type for other driver mutations (EGFR,
KRAS, ALK, HER2, BRAF, and ROS1) (Lipson et al. 2012). Rearrangements
of RET, like ALK and ROS1, appear to be linked to ADC in never smokers.
Notably, numerous multi-kinase inhibitors are effective against RET, and cell
lines producing KIF5B-RET fusions are susceptible to RET suppression in vitro
(Lipson et al. 2012; Kohno et al. 2012).

10. DDR2: In SCCs, mutations in DDR2 were found in 3.8% of patients after a
sequencing screen that included the complete tyrosine kinome. DDR2 is a
collagen-binding membrane-bound receptor tyrosine kinase involved in cell
proliferation and survival control. In vitro, DDR2 mutations are linked to
carcinogenic activity, responsive to dasatinib suppression (Hammerman et al.
2011).

11. HER2: Along with EGFR, the human epidermal growth factor receptor
2 (HER2/ERBB2) genes encodes a membrane-bound receptor tyrosine kinase
(Tzahar et al. 1996). It does not directly bind ligands, unlike other ERBB
receptors. However, it can form heterodimers with other ligand-bound members
of the receptor family. Signaling occurs through several signal transduction
pathways, including PI3K, MAPK, and JAK/STAT. HER2 activation occurs
in a limited percentage of lung tumors, with overexpression occurring in around
20% of cases, gene amplification in 2%, and activating mutations in 1.6–4% of
NSCLC (Graus-Porta et al. 1997; Heinmöller et al. 2003; Stephens et al. 2004).
Exon 20 in-frame insertions of 3–12 base pairs in length are HER2 activating
mutations. Multiple adenosquamous carcinomas developed in a transgenic
mouse model expressing mutant HER2 and were susceptible to small-molecule
inhibition, indicating that HER2 had carcinogenic potential (Tomizawa et al.
2011). In studies, HER2 mutations are related to the female gender, Asian
ethnicity, and nonsmoking status, similar to the clinical profile of EGFR mutant
tumors. HER2 mutations occur predominantly in ADC, and mutations occur in
tumors that are wild-type for EGFR and KRAS (Perera et al. 2009).

7.11 Mathematical Modeling of AKT Signaling Pathway
for Cancer Development

Cancer is the world’s leading cause of death, especially lung cancer. In order to
create anticancer medications, a thorough understanding of oncogene and tumor
suppressor signaling networks in cancer cells is essential. To govern cell develop-
ment, cell division, cell death, and cell migration, various transcription factors work
in concert. The AKT which has been proven to either prevent or stimulate tumor
development is the subject of this research. The PI3K/AKT/mTOR pathway has
been linked to carcinogenesis and disease progression in NSCLC patients. Several
PI3K, AKT, and mTOR inhibitors are now being developed and tested in preclinical
studies and early phase clinical trials for NSCLC. AKT is a protein kinase that
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belongs to the AGC (PKA/PKG/PKC) family. It has three homologs: AKT1, AKT2,
and AKT3 found on chromosomes 14q32, 19q13, and 1q44, respectively. Following
AKT activation, a variety of downstream consequences are possible. BAD and
BAX, two pro-apoptotic Bcl2 family members, may be inhibited as a consequence.

Mdm2 is phosphorylated by AKT, which inhibits p53-mediated apoptosis and
forkhead transcription factors that create cell death promoters. The transcription
factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is
essential in PI3K/AKT pathway activation. Apoptosis, cell cycle regulation, immu-
nological modulation, cell survival, and cell adhesion and differentiation are all
regulated by NF-κB. 18 AKTs stop the IB family, namely IκB, from negatively
regulating NF-κB. IκB returns NF-κB to the cytoplasm after removing it from DNA.
The activation of the protein kinase mTOR is another essential downstream pathway
activated by AKT activation. TSC2 is phosphorylated, which activates Rheb, which
drives the multiprotein complex mTORC1. mTORC1 promotes carcinogenesis, cell
cycle regulation, and apoptosis suppression by activating the eIF4 complex further
downstream. AKT activation is triggered by phosphorylation of serine 473 by
another mTOR complex, mTORC2.

The AKT pathway is upregulated in a large number of patients with NSCLC. In a
study of 110 NSCLC tumors, immunohistochemistry found that 51% had elevated
AKT activation. There was also a link between AKT activation and enhanced mTOR
and forkhead activity, which are essential AKT downstream targets. The disparity
between levels of AKT overexpression and the existence of somatic mutations might
point to coexisting mutations or amplifications that activate AKT. AKT activation
has been seen in preclinical investigations in NSCLC cell lines, with loss of PTEN,
EGFR or PIK3CA mutation, or HER2 amplification being implicated.

Mathematical modeling is essential for identifying underlying mechanisms in
malignancies, interactions with other cells such as immune cells, cellular invasion,
cancer treatment, apoptotic mechanisms, and particular signaling pathways such as
JAK-STAT, MYC-p53, and microRNAs. The primary mechanism of
AKT-mediated cancer cell death is yet unknown. To our knowledge, no mathemati-
cal research has looked at the fundamental processes of AKT’s apoptosis mediation
in cancer cells. A mathematical model of AKT-mediated apoptosis pathways in
controlling tumor development and cancer cell death has been established. We look
at the best anticancer medicine dosing schedule using optimal control theory.
Figure 7.4 shows a mathematical model of AKT’s influence on various pathways
for tumor growth.

RTKs are the high-affinity cell surface receptors for many polypeptides growth
factors, cytokines, and hormones. When the ligands such as growth factor bind to the
RTKs, PI3K activation takes place through phosphorylation, which further activates
the signal cascade ultimately activating AKT.

Once AKT is activated, it is translocated from the plasma membrane to the
cytoplasm and nucleus, where many of its substrates reside. Phosphorylation by
AKT can be inhibitory or stimulatory, either suppressing or enhancing the activity of
target proteins. Depending on the target protein, AKT can regulate different cell
functions.
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AKT enhances the survival of cells by blocking the function of proapoptotic
protein BAD (BCL2 associated agonist of cell death) and its downstream processes,
leading to the antiapoptotic activity of the cancer cells to take place.

AKT activation through the VEGF results in AKT activating the transcription
factors—HIF1α, Ets-1, NFKB, and STAT3, which help in enhancing the process of
angiogenesis and lymphangiogenesis which facilitates the tumor in performing
metastatic and invasive activities. AKT also promotes tumor survival and prolifera-
tion via mediating the NFKB pathway where it indirectly activates NEMO
(NF-kappa-B essential modulator) which in turn activates the transcription factors
responsible for tumor cell survival and proliferation. AKT also plays an important
role in promoting protein synthesis, glucose metabolism, and cell cycle metabolism
via inhibiting the TSC1/TSC2 complex, GSK3 protein, and p21and p27 tumor
suppressors along with their downstream processes respectively as it is essential
for the survival and proliferation of tumor cells.

AKT has been found to be mediating one of the most important tumor suppressor
pathways, i.e., the p53 signaling pathway. p53 signaling pathway is activated due to
DNA damage caused by extracellular factors such as UV, stress, hypoxia, and

Fig. 7.4 Mathematical model representing AKT and its effect during NSCLC
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genotoxic drugs. AKT inhibits the activity of tumor suppressor gene p53 indirectly
via activating its feedback inhibitor MDM2.
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