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1 Introduction

When heat is supplied to the fluid from above, the temperature makes the fluid
molecules lighter at the upper layer, and hence it stabilizes the system. But, when we
supply solute from above, the concentration of the solute molecules slowly enters
the system and settles at the bottom, and due to this movement, the system becomes
unstable and hence the concentration of solute destabilizes the system. In this case,we
can observe that temperature stabilizes the system and the concentration destabilizes
the system. The double diffusive instability induced by this case in literature is known
as salt fingers. Double diffusive convection is a fluid dynamics phenomenon that
occurs due to the difference in diffusivity rates of twodifferent density gradients in the
fluid. The difference in the thermal and salt diffusivity rates gives rise to instabilities
called “salt fingers”. Stern [1], Jevons [2], Ekman [3], and Stommel et al. [4] were
among the first to explain the physical mechanism of double diffusive convection.
Instability at the interface between a layer of denser fluid and an underlying layer of
temperature stratified water was observed. Later researches verified that salt fingers
develop at the thin interfacewhere two layers of the fluidwith constant concentrations
of its two distinct density gradients, with different molecular diffusivities, meet. In
nature, double diffusive convection is more often observed in large water bodies
like seas and oceans. Other occurrences in nature include convection in molten-rock
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chambers and sea-wind formations [4]. The study of this convection has found its
way intomany researches due to its wide range of applications in nature and industry.

First introduced by Eringen [5], micropolar fluid theory establishes a class of
fluids which demonstrates microrotational effects and can sustain body couples. In
terms of its physical aspect, micropolar fluids comprise arbitrarily oriented rigid
particles which can deform and rotate independently of the motion of the fluid,
where the deformation of the particles is not considered.Micropolar fluids canmodel
anisotropic fluids, liquid crystals with inflexible molecules, magnetic fluids, dusty
clouds, muddy fluids, and a few biological fluids [5]. The theory of micropolar fluids
is discussed in detail in the books of Eringen [5] and Lukasazewicz [6].
The goal of this paper is to investigate the stability of the system on the onset of salt
finger convection under the influence of different non-uniform temperature profiles
and to analyze the effect of certain micropolar parameters.

2 Mathematical Formulation

A layer of Boussinesquian micropolar liquid is considered between two horizontal
plates of infinite length. These plates are kept at a distance “d” as shown in Fig. 1. Let
T0,C0, and T,C be the temperature and solute concentration of the fluid at the lower
and upper plates, respectively. Also, �T and �C be the temperature and solute
concentration deviation of the fluid between the lower and upper plates. Suitable
transport equations for both temperature and solute concentration are chosen consid-
ering effective heat capacity ratio and effective thermal diffusivity. The diagrammatic
representation is examined under a Cartesian coordinate systemwhere the origin and
the x-axis coincide with the lower boundary and the z-axis is vertically upward [7].
Given below are the governing equations for the Boussinesquian micropolar liquid
under double diffusive convection:

Fig. 1 Schematic diagram



Stability Analysis of Salt Fingers for Different Non-uniform Temperature … 373

∇.q = 0, (1)

ρ0

[
∂q
∂t

+ (q.∇)q
]

= −∇ p − ρgk̂ + (2ξ + η)∇2q + ξ∇ × ω, (2)

ρ0 I

[
∂ω

∂t
+ (q.∇)ω

]
= (λ + η)∇(∇.ω) + η∇2ω + ξ(∇ × q − 2ω), (3)

[
∂T

∂t
+ (q.∇)T

]
= χ∇2T + β

ρ0Cv

(∇ × ω).∇T, (4)

ρ = ρ0[1 − αt (T − T0) + αs(C − C0)], (5)[
∂C

∂t
+ (q.∇)C

]
= χs∇2C. (6)

Here, q, ω, and p are the velocity, angular velocity, and pressure, respectively. ρ
is the density of the liquid at temperature T and ρ0 is the density at temperature T0. g
and I are the acceleration due to gravity and moment of inertia, respectively. ξ is the
coefficient of coupling viscosity, λ, η, and λ′, η′ are the coefficients of bulk and shear
spin viscosity, χ and χs are the thermal and solute conductivity, β is the coefficient
of micropolar heat conduction, αt and αs are the coefficients of thermal and solutal
expansion, respectively, σ is the electrical conductivity, and Cv is the specific heat
at a constant volume.

3 Basic State

The basic state of the liquid in its quiescent condition is depicted by

q = qb = (0, 0, 0),ω = ωb = (0, 0, 0), p = pb(z) = ρ = ρb(z), (7)
dTb
dz

= ∇T

d
f (z),

dCb

dz
= ∇C

d
g(z), (8)

where the subscript “b” denotes the basic state. The basic temperature gradient f (z)
and concentration gradient g(z) are non-dimensional and non-negative and satisfy
the condition

∫ d=1
d=0 f (z) dz and

∫ d=1
d=0 g(z) dz, respectively. The concerned basic state

variable satisfies Eqs. (1) and (3) equivalently. This paper considers four different
temperature profiles to analyze the onset of convection which is given below in
Table1.

4 Linear Stability Analysis

To examine the instability, an infinitesimal thermal perturbation is now introduced
to the quiescent basic state of the liquid. We now have
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Table 1 Non-uniform basic temperature profiles

S.No. Profile f (z)

CM1 Linear f (z) = 1

CM2 Piecewise linear f (z) = 1
ε

∀ 0 ≤ z ≤ ε

0 ∀ ε ≤ z ≤ 1

CM3 Inverted parabolic f (z) = 2(1 − z)

CM4 Parabolic f (z) = 2z

q = qb + q′,ω = ωb + ω′, ρ = ρb + ρ ′, p = pb + p′, (9)

T = Tb + T ′,C = Cb + C ′. (10)

The subscript “b” indicates the basic state of the quantity and the primes denote
the infinitesimal perturbations. By substituting Eq. (9) and (10) in Eqs. (1)–(6), we
get the following linearized governing equations with respect to the infinitesimal
perturbations:

∇.q′ = 0, (11)

ρ0

[
∂q′

∂t
+ (q′.∇)q′

]
= −∇ p′ − ρ ′gk̂ + (2ξ + η)∇2q′ + ξ∇ × ω′, (12)

ρ0 I

[
∂ω′

∂t
+ (q′.∇)ω′

]
= (λ′ + η′)∇(∇.ω′) + η′∇2ω′ + ξ(∇ × q′ − 2ω′), (13)

[
∂T ′

∂t
+ w

�T

d
f (z)

]
= χ∇2T ′ + β

ρ0Cv

[
(∇ × ω′).

(
�T

d
f (z)

)
k̂

]
, (14)

ρ ′ = −ρ0αt T
′ + ρ0αsC

′, (15)[
∂C ′

∂t
+ (w

�C

d
g(z)

]
= χs∇2C ′. (16)

The perturbation Eqs. (11)–(16) are non-dimensionalized using the following defi-
nitions:

(x∗, y∗, z∗) =
( x
d

,
y

d
,
z

d

)
,∇∗2 = d2∇2,q∗ = q

k
d

, t∗ = t
d2

χ

, (17)

p∗ = p

p0
, T ∗ = T

�T
,C∗ = C

�C
,W ∗ = W

χ

d

. (18)

Using Eq. (15) in Eq. (12), curl is applied twice on the following equation. Curl
is applied once on Eq. (13) as well and the derived two equations are then non-
dimensionalized along with Eqs. (14) and (16). After ignoring the asterisks, the
following equations are obtained:
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1

Pr

∂

∂x
(∇2W ) = R∇2

1T − Rs∇2
1C + (1 + N1)∇4W + N1∇2�z, (19)

N2

Pr

∂�z

∂t
= N3∇2�z − N1∇2W − 2N1�z, (20)

∂T

∂t
= ∇2T + (−W + N5�z) f (z), (21)

∂C

∂t
= τ∇2C − Wg(z), (22)

where Rayleigh Number
[
R = ρ0αg�Td3

(η+ζ )χ

]
, solutal Rayleigh Number[

Rs = ρ0αs g�Cd3

(η+ζ )χ

]
, coupling Parameter

[
N1 = ζ

ζ+η

]
, couple stress parameter[

N3 = η′
(ζ+η)d2

]
, micropolar heat conduction parameter

[
N5 = β

ρ0Cvd2

]
, and ratio of

diffusivity
[
� = χs

χ

]
are the non-dimensional parameters used.

A normal mode solution for the stationary convection is obtained as the infinites-
imal perturbations W,�z, T and C are assumed to be periodic waves [8]. The
solution is represented as

[W, �z , T,C] = [W (z).ei(lx+my),G(z).ei(lx+my), T (z).ei(lx+my),C(z).ei(lx+my)]. (23)

Here, the wave number a has horizontal components l and m. Equation (23) is
substituted in Eqs. (19)–(22) to obtain

− Ra2T + Rsa
2C + (1 + N1)(D

2 − a2)2W + N1(D
2 − a2)2G = 0, (24)[

2N1 − N3(D
2 − a2)

]
G + N1(D

2 − a2)2W = 0, (25)

(D2 − a2)T + (−W + N5G) f (z) = 0, (26)[
τ(D2 − a2)

]
C − Wg(z) = 0, (27)

where a2 = l2 + m2.
Applying the Galerkin procedure to Eqs. (24)–(27), we obtain general results on

the eigenvalue for different temperature gradients under the given boundary condi-
tions by considering trial functions for velocity W (z, t), microrotation G(z, t), and
temperature T (z, t), concentration perturbations C(z, t).

W (z, t) =
∑

Ai (t)Wi (z), G(z, t) =
∑

Ei (t)Gi (z),

T (z, t) =
∑

Bi (t)Ti (z), C(z, t) =
∑

Fi (t)Ci (z),

where Ai (t), Ei (t), Bi (t), and Fi (t) are constant functions and Wi (z),Gi (z), Ti (z),
and Ci (z) are polynomials in z, that generally satisfy the given boundary conditions.

Now taking i = j = 1, Eqs. (24), (25), (26), and (27) are multiplied byW,G, T,

and C , respectively. The resulting equation is integrated by parts with respect to
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z from 0 to 1. The equation for the Rayleigh number is generated by substituting
W = AW1;G = EG1; T = BT1;C = FC1, where A, B, E, and F are constants
and W1,G1, T1, and C1 are the trial functions:

R =
[

X1X3L7

a2L1(〈W1T1 f (z)〉X1 − N1N5〈T1G1 f (z)〉L5)

]
, (28)

where

X1 = N3L2 − 2N1L3, X3 = Rsa2L8〈W1C1〉
−τ L10

+ L14

L1 = 〈W1T1〉, L2 = 〈G1(D
2 − a2)G1〉, L3 = 〈G2

1〉, L4 = 〈T1G1〉,
L5 = 〈G1(D

2 − a2)W1〉, L6 = 〈T 2
1 〉, L7 = 〈T1(D2 − a2)T1〉,

L8 = 〈W1C1〉, L9 = 〈C2
1 〉, L10 = 〈C1(D

2 − a2)C1〉,
L11 = 〈W1(D

2 − a2)2W1〉, L12 = 〈W1(D
2 − a2)W1〉, L13 = 〈W1(D

2 − a2)G1〉,

L14 = (1 + N1)L11 + N2
1 L5L13
X1

, L15 = 〈W1T1 f (z)〉, L16 = 〈T1G1 f (z)〉.

Here, integral with respect to z under the limits z = 0 and z = 1 (for calculation
purpose, we have taken the distance between the plates as d = 1) is denoted by 〈. . . 〉.
The value of the concentration gradient g(z) is taken as 1 in Eq. (27) to examine the
effect of non-uniform temperature profiles.

The combinations of boundary conditions considered in this problem are Free–
Free Isothermal-Permeable No-Spin condition, Rigid–Free Isothermal-Permeable
No-Spin condition, and Rigid–Rigid Isothermal-Permeable No-Spin condition. The
critical Rayleigh number is subjected to the three boundary conditions and the value
of the trial functions that satisfy them are taken as W1 = 3z − 2z2 + z4,4z − 6z3 +
3z4 and 5z4 − 6z3 − z2, respectively, and G1 = T1 = C1 = 2z(z − 1).

5 Results and Discussion

5.1 Effects of Non-uniform Temperature Gradient Profiles

The effects of one uniform and three non-uniform temperature gradient profiles on
the onset of salt finger convection in a micropolar liquid are examined in this paper.
The values of these profiles are discussed in Table1. To analyze the effect of the
temperature gradient, the value of the concentration gradient g(z) is taken as 1 and
the following observations are made:
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For Free–Free and Rigid–Free boundary condition,
RCM3 < RCM1 < RCM4 < RCM2.

For Rigid–Rigid boundary condition, RCM4 < RCM1 < RCM2 < RCM3.

Figures2 and 3 represents the graphs of critical Rayleigh number RC plotted against
micropolar liquid parameters N1, N3, and N5 taken one at a time while keeping the
other two fixed for various solutal Rayleigh number RS and ratio of diffusivity under
free–free and rigid–rigid boundary conditions, respectively. The graphs are obtained
for the non-uniform temperature profiles mentioned in Table1.

Under free–free boundary conditions, the inverted parabolic function appears to
be the temperature profile that destabilizes the system considerably compared to the
other profiles and the piecewise function profile comparatively stabilizes the system.
(The same effect can be observed for rigid–free boundary conditions), whereas, for
rigid–rigid boundary conditions, the parabolic function is the temperature profile
that destabilizes the system the most, and the inverted parabolic function profile
comparatively stabilizes the system.

(a) (b) (c)

Fig. 2 a Rc is plotted against N1 by fixing N3 = 0.1, N5 = 5, and τ = 0.2, b Rc is plotted against
N3 by fixing N1 = 0.5, N5 = 10, and τ = 0.2, c Rc is plotted against N5 by fixing N1 = 0.5, N3 =
0.1, and τ = 0.2 for free–free boundary condition

(a) (b) (c)

Fig. 3 a Rc is plotted against N1 by fixing N3 = 0.1, N5 = 5, and τ = 0.2, b Rc is plotted against
N3 by fixing N1 = 0.5, N5 = 10, and τ = 0.2, c Rc is plotted against N5 by fixing N1 = 0.5, N3 =
0.1, and τ = 0.2 for rigid–rigid boundary condition
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(a) Free-Free boundary
condition

(b) Rigid-Free boundary
condition

(c) Rigid-Rigid boundary
condition

Fig. 4 Phase of temperature flow

5.2 Phase of Temperature Flow

The graphs for the phase of temperature flow are plotted for free–free, rigid–free,
and rigid–rigid boundary conditions (Fig. 4a, b, c). They are obtained by solving
the conservation of energy equation (temperature equation) numerically for different
cases as mentioned. The x-axis and the y-axis represent the distance between the
parallel plates and the amount of the temperature supplied fromabove into the system,
respectively. These plots are basically the graphical representation of the solution of
T (z) and its first and second derivatives. FromFig. 4a, b, c, the following observations
can be made: (i) Temperature is more at z = 1 (upper plate) and decreases gradually
as we move towards z = 0 (lower plate ). This is because the temperature is supplied
from above and the diffusion rate will be higher or faster near the upper plate. Later,
it slows down as it comes in contact with the colder molecules in the system (it is
also because heat diffuses much faster than solute in the beginning). (ii) The phase of
temperature flow of T (z) is lesser than its derivatives. (iii) For rigid–rigid boundary
conditions, the temperature flow effect will be seen only towards the center of the
system and near the upper plate. This is mainly because the plates are rigid, hence
more amount of temperature is required for the onset of convection.

6 Conclusion

• The inverted parabolic function appears to be the temperature profile that destabi-
lizes the system in free–free and rigid–free boundary conditions.

• The piecewise function profile comparatively stabilizes the system in free–free
and rigid–free boundary conditions.

• The parabolic function is the temperature profile that destabilizes the system the
most in rigid–rigid boundary conditions.

• The inverted parabolic function profile comparatively stabilizes the system in
rigid–rigid boundary conditions.

• The Micropolar parameters N1 and N5 destabilize the system with respect to Rc

in all the boundary conditions.
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• The Micropolar parameters N3 stabilize the system with respect to Rc in all the
boundary conditions.

• Thephase of temperatureflowwill explain the variation of the temperature between
the parallel plate boundary (i.e., at z = 0 and at z = d). Finally, it is observed that
the temperature distribution is more at the upper plate boundary and this is due to
the nature of salt fingers (as shown in the schematic diagram).
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