
Chapter 11
Cationic Amphiphilic Molecules
as Bactericidal Agents
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Abstract Cationic amphiphiles belong to the large as well as assorted category of
antimicrobial agents, which has emerged as a sizzling topic of discussion among
scientists these days. These antibacterial molecules are being evaluated preclinically
and clinically for the treatment of infection caused by drug-resistant bacteria. Due to
the widespread application of the cationic amphiphilic molecule (CAM), it’s vital to
know the effects and detailed chemistry related to the solid surfaces, degrees of
confinement on aggregation morphologies, plus chemical kinetics in the self-
assemblies of cationic amphiphilic systems. This chapter has included the points
described above and phase transitions exhibited by CAMs in the peptides. CAM
offers a new tool designed for scientific research with various industrialized appli-
cations required for bacterial membrane permeabilizations by optimizing the goal of
antibacterial activity, reaching the target drugs, and thereby compromising their
structural integrity by cell rupture and death. These results revealed that the varied
supramolecular morphologies of CAMs could be controlled by tuning ionic-
hydrophobic, hydrophobic-hydrophobic, ionic-hydrophilic, and charge-transfer
interactions.
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Abbreviations

CAD Cationic amphiphilic drug
CAM Cationic amphiphilic molecules
MRSA Methicillin-resistant Staphylococcus aureus
SWNT Single-walled nanotubes

11.1 Introduction

Amphiphilic molecules usually include surfactants, ionic liquids, block copolymers,
and other essential bioactive molecules, composed of at least two discrete groups,
hydrophilic and hydrophobic. Unique structural designs of the amphiphiles may
cause different aggregation morphology at the interfaces as well as diverse self-
assemblies in the solutions.

As a result of the unique performances of amphiphiles, they can be extensively
utilized in the material, chemicals, food industries, and petroleum products (Ash and
Ash 1993). Mainly, self-assemblies in the amphiphiles engage in a crucial role of a
biological system, synthesis of varied functional materials. Surfactants or block
copolymers are universal templates to direct synthesis of organized nanostructures,
while lipids and proteins constitute the main components of the biological mem-
brane. As a result of their structures, amphiphiles possess unique properties
(Holmberg et al. 2003; Myers 1999). Strong adsorption in diverse interfaces and
self-assemblies in the various solvent (Meleshyn 2009; Sammalkorpi et al. 2008; Ma
et al. 2008; Heinz et al. 2008; Jodar-reyes et al. 2008; Gu et al. 2008; Xu et al. 2008;
Rodriguez and Laria 2007; Li et al. 2007; Dominguez 2007; Zhang et al. 2007a;
Heinz et al. 2007; Zheng et al. 2006; Shah et al. 2006; Israelachvili 1992;
Israelachvili et al. 1976). Larson et al. (1985) suggested a lattice model of the self-
assembly among amphiphiles in bulk solutions (Larson et al. 1985). Atkin et al.
showed adsorption of the amphiphile molecules on silica, graphite, etc., by various
experimental techniques (Atkin et al. 2003). Besides adsorption morphologies,
surface phase transitions also have essential importance for aqueous surfactants.
Surfactant phase transition at the air-water boundary was experimentally discovered
(Patti et al. 2007; Ramirez et al. 2007; Hynninen and Panagiotopoulos 2006).

In addition to aggregation on solid surfaces, adsorption of the amphiphiles at
various interfaces (Ma et al. 2008; Rodriguez and Laria 2007) in recent years is also
studied. With the recent progress of nanotechnologies, studies on the micellization of
surfactants in confined systems have turned out to be increasingly important (Chen
et al. 2009; Wang 2009; Tummala and Striolo 2009; Angelikopoulos and Bock
2008; Arai et al. 2008; Zhang et al. 2007b; Koopal et al. 2005). Critical micelle
concentration (CMC) of amphiphiles is affected through interaction in a surfactant
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with a degree of incarceration (Zhang et al. 2007a). Experimentally Wu et al. (2004)
compared chains of a sphere, straight cylinders, single helixes, double helices, stack
doughnuts, and arrangement of concentric inner shells (Zheng et al. 2007; Yu et al.
2006; Wu et al. 2004). Surfactants have been used as outlines to stimulate orderly
nanostructured objects using experimental techniques (Wan and Zhao 2007; Wan
et al. 2006; Beck et al. 1992). Carbon nanotubes (SWNTs) are structurally unique,
exhibiting mechanical, thermal, electrical, and optical properties, which may offer
promises for several novel applications using amphiphiles that would act as a
dispersion medium (Wan et al. 2007; Iijima and Ichihashi 1993). Besides adsorption
equilibrium, kinetic aspects of amphiphiles at hydrophilic solid surfaces progress
rapidly for broad experimental studies (O'Connell et al. 2002). A necessary kinetic
process in the case of aqueous surfactant is the micelle/vesicle fission and fusion
(Müller et al. 2006; Venturoli et al. 2006; Paria and Khilar 2004). Li et al., in recent
studies, investigated the kinetics of collision-based solute exchanges in aqueous
phases (Yamamoto and Hyodo 2003).

11.1.1 Bacterial Infection and the Need for Antibacterial
Drugs

In this chapter, we have focused on the role of cationic amphiphiles in the environ-
ment. Cationic amphiphiles are large as well as various categories of antimicrobial
mediators. Though its modes of action are not yet entirely determined, they have
emerged as a sizzling topic of discussion among scientists these days as cationic
amphiphilic drugs act as a potential candidate in cancer therapy (Geertje et al. 2020;
Li et al. 2008). The resistance of antimicrobials (bacteria) against commercially
available antibiotic drugs has encouraged scientists to develop alternative safe anti-
infection agents (Salta et al. 2013). Emerging multidrug-resistant bacteria have
forced the therapeutic community to search for alternative antimicrobial treatments
(Omardien et al. 2018). Antimicrobials successfully treat and control different
infectious diseases and save several lives (Gunasekaran et al. 2019). Treatment of
infections by fighting against infection-causing microbial agents is becoming chal-
lenging as per WHO (Zhang et al. 2018), and these infections are tuberculosis,
foodborne diseases, gonorrhea, pneumonia, and throat infections (Wahab et al.
2021).

Ever since the discovery of penicillin, various antibiotics have been used for the
treatment of infections (Díaz et al. 2012). However, with the widespread use and
misuse of antimicrobial agents, various multidrug-resistant bacteria have become a
global threat (Santajit and Indrawattana 2016). These superbugs are emerging as a
severe concern to pharma industries and pose a significant threat to the human
population (Liscovitch and Laviey 1991). Many drug-resistant pathogenic bacteria,
the so-called “ESKAPE” bacteria group, include Staphylococcus aureus, Entero-
coccus faecium, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
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aeruginosa, and Enterobacter (Indoria et al. 2020; Gunasekaran et al. 2019; Kim
et al. 2017). Ever since the report of methicillin-resistant S. aureus (MRSA) in 1960
(Gunasekaran et al. 2019; Santajit and Indrawattana 2016), it has been identified
commonly as a drug-resistant bacteria (Gunasekaran et al. 2019; Liscovitch and
Laviey 1991). Various antimicrobial agents inspired by nature have been developed
and are still being explored to overcome these resistant pathogens’ challenges
(Wahab et al. 2021; Omardien et al. 2018; Salta et al. 2013). These antimicrobial
agents can be organic or inorganic compounds; nanoparticle-based formulations
(Zhang et al. 2018; Anderson and Borlak 2006), antimicrobial coatings, fabrics,
textiles, cationic amphiphilic peptides (Indoria et al. 2020), and composite materials
have been tested as antimicrobial agents. The antimicrobial drugs, either derived
from natural microbes or synthesized in a lab, either destroy the bacteria or hinder
bacterial growth, and the bactericidal drugs can kill the bacteria (Kim et al. 2017;
Penta 2015). These antimicrobial agents can work by targeting any one of these:
(a) translational machinery, (b) cell wall, or (c) DNA replication (Zou et al. 2021;
Montazer and Harifi 2020). Various interactions (may cause genetic or enzymatic
interference) can occur between the antimicrobial drug molecules and targeted
bacteria; among these, hydrophobic and electrostatic interactions occur when cat-
ionic amphiphilic (surfactant) disintegrates the membrane of bacteria (Zhou and
Wang 2020; Ciumac et al. 2019); however, excessive use of such agents can cause
bacterial defiance (Zhou and Wang 2020; Ciumac et al. 2019). Thus, there is a need
to improve the current treatment method or develop new biocides and antimicrobial
drugs (Zhou and Wang 2020; Ciumac et al. 2019).

11.1.2 Multidrug-Resistant Bacteria and the Search for New
Therapeutic Antibacterial Drugs Based on Cationic
Amphiphilic Molecules

Novel categories of macrocyclic amphiphilic molecules are achieving progressive
interest in the field of nanomedicine because of their basic aspects of molecular
identification and robust assemblies. Cationic amphiphilic drugs (CADs) have
common physicochemical properties such as a hydrophilic side moiety with a
cationic group attached to a hydrophobic part (hydrophobic ring structure or alkyl
group) (Vater et al. 2017; Halliwell 1997). Thus, an amphiphilic character is due to a
combination of hydrophilicity and hydrophobicity. The former arises due to ioniz-
able amine groups, which are hydrophobic alkyl chains or aromatic ring structures
(Vater et al. 2017; Santajit and Indrawattana 2016). The physicochemical properties
of CAD molecules are responsible for the distribution pattern of CAD drugs within
interacting biological systems; thus, their clinical efficacy involves a complicated
interplay of pharmacokinetics and pharmacodynamics (Vater et al. 2017; Halliwell
1997). The CAD-based drugs include different classes such as antipsychotics,
tranquilizers, antidepressants, and antiarrhythmics (Vater et al. 2017; Halliwell
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1997). CAD led to a morphological change to cells as CAD can accumulate into
intracellular compartments (Vater et al. 2017; Halliwell 1997). The intracellular
distribution behavior of CAD can be monitored by radio-labeling but may have
associated adverse effects due to the random distribution of radioactive tracers into
the neighboring sections (Vater et al. 2017). CAD molecules showing ability to act
as antidepressants, local anesthetics, neuroleptics, or antiarrhythmics can occur due
to their tendency to cause lipidosis (Halliwell 1997).

Owing to various interactions, CAD can accumulate into acidic intracellular
components such as lysosomes or endosomes (Salata et al. 2017). The physico-
chemical properties and structure of CAD, dose, duration of dose, inter- and
intraspecies susceptibility, and the mechanism by which CAD shows its action can
influence their accumulation in lysosomes, which may take a few minutes or hours
(Halliwell 1997; Salata et al. 2017). The intracellular accumulation of phospholipids
induced by drugs shows adverse side effects, but the association between drug-based
phospholipid accumulation and adverse effects cannot be explained (Liscovitch and
Laviey 1991). Mazzaglia et al. (2003), studied an amino-group customized and
amphiphilic cyclodextrin complex, which produced aggregation with porphine
ligand, a widely used in water-soluble photosensitization (Mazzaglia et al. 2003).
Consoli et al. (2018), reported polycationic calix(4) are new amphiphiles, forming
assemblies in aqueous solutions (Granata et al. 2017; Bari et al. 2016). Cationic
amphiphiles and supramolecules are speedily cleared by circulation and show a
greater ability to uptake cells (Blanco et al. 2015). There are specific challenges for
the development of these amphiphilic drug delivery systems. Firstly, rare models
tested stabilities in addition to target abilities in vivo. Secondly, long-term toxicities
of macrocyclic cationic amphiphiles are still now not discovered. On the way to deal
with these above concerning facts, interdisciplinary research in all scientific disci-
plines is needed.

11.2 Cationic Amphiphilic Molecules (CAMs)

CAM is designed to conflict speed rise in drug-resistant bacteria. The design targets
the structural integrities of the bacterial membrane, leading towards cell rupture and
death. The discrete characteristics of CAMs were wide-ranging; structural activity
relations were executed to direct rational designs on potential antimicrobials by
desired selectivity and cytocompatibility. Mainly, the effects of CAMs show con-
formational flexibilities, hydrophobic domain flexibilities, as well as hydrophobic
domain architectures. So, CAMs’ influences on the antimicrobial efficiencies of
Gram-positive and Gram-negative bacteria were determined; the safety profile was
created via their impact on the mammalian cells. Every CAM has various potential
activities against bacteria, hydrophobic sphere rigidity, and structural designs that
contribute to their specificities (Kobisy et al. 2021; Dahlin et al. 2021).

Several therapeutically effective as well as clinically valuable drugs are possibly
categorized as CAM drugs. Their classifications are based on physicochemical
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properties. In a group, CAM drugs are divided into two specific domains: hydro-
phobic (i.e., aromatic) spheres with ionizable nitrogen, which is capable of being
converted into positive charge atoms (Fig. 11.1).

11.2.1 Natural Cationic Amphiphilic Molecules

Naturally occurring CAM and associated ionic liquids form diverse antibacterial
agents, currently validated for preclinical and clinical treatment via antimicrobial
resistive bacteria (Kundu 2020). Several studies with cyclic, diastereomers, linear
CAM maintained hypotheses with physicochemical properties that are dependable
for microbiological activities. It is assumed topologies of CAM are vital for insertion
as well as disruption of cytoplasmic membranes. Particularly, the ability to kill
bacteria and the difficulties in which bacteria develop resistance make CAMs an
attractive target in drug development. However, therapeutic uses in CAMs are
hampered due to high manufacturing rates, poor pharmacokinetics, and low bacterial

Fig. 11.1 Structures of innovative cationic amphiphilic drugs (CADs). (Liscovitch and Laviey
1991)
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effectiveness in animal studies. Sequentially, to surmount the problems, various
novel and structurally varied CAMs which mimic amphiphilic topologies have in
recent times developed. Cationic peptide amphiphiles are a promising stage for the
development of novel antimicrobials which can toil as the nanocarriers can be used
in synergistic antibacterial therapy (Tague et al. 2019; Almeida et al. 2019; Weeks
et al. 2019). In 2014, Kabir-Ud-Din et al. (Yaseen et al. 2014) studied the binding
interaction of CAM, which acts as a drug with DNA; absorption studies proved the
stabilization of energy levels. In 2018, Joris et al. (2018) demonstrated that cationic
amphiphiles (CAM) acting as drugs could be repurposed for the stimulation of
lysosomes for siRNA in cancer cells (Joris et al. 2018). Many compounds display
finer pharmacokinetics and lower in vitro toxicities by preserving strong
antibacterial activities that are hostile to resistant and nonresistant bacteria.

In conclusion, CAM promises soon to provide a novel source of diverse
antibacterial compositions. The sphingoid base with amino bases constitutes
strength in every sphingolipid (shown in Fig. 11.1). Natural CAMs, also known as
sphingoid bases, vary in isomeric configurations, the occurrence of a double bond,
the extent of aliphatic chains, and N-methylation group existence. Hopefully, this
application can stimulate more research by naturally and synthetically exploring
further biochemical processes affected by CAM drugs.

The activity of sphingoid bases in biological modifiers was adequately demon-
strated in the latest researches, to appreciate the metabolism of sphingoid bases and
their task in cell physiology along with cell pathology (Santajit and Indrawattana
2016).

11.2.2 Synthetic Cationic Amphiphilic Molecules

We present here in this chapter new versatile synthetic strategies for CAM which
show tunable amphiphilicity. It is derived from reactive crosslinked precursor
molecules, which provide a stage for secondary functionalization by hydrophilic
and hydrophobic particles. Since hydrophilic moiety with changeable amphiphilicity
instigates from the same precursor, it, therefore, shows related particle size, size
distribution, and homogeneous morphology. Consequently, our explanation repre-
sents an innovative type of CAM nanocarrier that combines with biocompatible
hydrophilic moieties to transport the hydrophobic cargoes (Charrueau and Zandanel
2016; Mura et al. 2013). In 2020, Anje Dong et al. (Zhao et al. 2020) showed how
CAM polymers that mimic antimicrobial peptides show excellent antibacterial
activity. In 2017, Mark W. Grinstaff et al. (Prata et al. 2018) highlighted the role
of size, charge, hydrophobicity, and compaction in the binding of DNA-CAM
polyester dendrimer complexes, resulting in improved transfection efficiency. In
2021, Herve Javelot et al. (Xu et al. 2021) proposed that antihistamines and CAM
together show varied protective effects against SARS-CoV-2 in patients with mental
health disorders. In 2021, Fangong Kong et al. (Yuan et al. 2021) studied lignin-
based CAM surfactant properties by amine methylation, ketamine condensation with
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alkali lignin acting as raw material. Concluding, alkali lignin can be used as a CAM
surfactant in W/O emulsifiers. Therefore, lignin-based CAM surfactants will show
immense application prospects shortly soon. Further, Jingcheng Hao et al. (Sarkar
et al. 2021) showed the amphiphilicity of the copper nanocluster by tuning the
electrostatic interactions with CAM will find applications in light-emitting diodes
(LEDs).

Presently, much attention is paid to the organic synthesis catalyzed by ionic
liquids (ILs) (Pajuste et al. 2011; Mantarosie et al. 2008; Navajas et al. 2008).
According to literature, numerous pyridinium ILs are successfully used as catalysts
in various reactions (Wei et al. 2015; Hyvönen et al. 2002). Physicochemical
properties of pyrimidine-based CAM were analyzed for their antiproliferative plus
antitubercular behavior (Samarkina et al. 2017; Liu et al. 2007; Haldar et al. 2005).
D. H. Dagade et al. (Luczak et al. 2010) studied the influence of protic ionic liquids
on peptide solvation based on H-bonding, hydrophobicity, etc. and observed the
superior ionic-hydrophobic and hydrophobic-hydrophobic interactions.
Gabdrakhmanov et al. (Palermo et al. 2012) studied the cationic amphiphiles’
behavior with imidazole-based ionic liquids, showed their aggregation properties,
and proved their potential in the field of biotechnologies. Fridman (Grenier et al.
2012) reported cationic amphiphiles in the presence of light-induced isomerization
could act as antimicrobial drugs. Among various CAMs, surfactants from the
imidazolium group deserve special attention. Adjacent to that, imidazolium-based
CAM is appropriate for various biotechnological uses: their antibacterial property is
reported in the literature (Kunal et al. 2021; Mohammadi et al. 2015) in addition to
successful attempts at production of sustainable nanocontainers. CAM drugs
engaged clinically to treat a range of disorders; the prospect arises of exogenously
controlled sphingoid bases (as well as their synthetic derivatives), which also show
comparable therapeutic results. In support of evident reasons, research in pharma-
cokinetics in vivo is still below structural modifications (Santajit and Indrawattana
2016). CAM drugs that target the enzymes involving whichever sphingolipid hydro-
lysis or else sphingoid base utilize possibilities towards clinical benefits.

The development of bacteria-resistant strains is of global concern regarding
health issues. Scheming antibiotics limiting the rise of pathogen resistance is there-
fore necessary to treat pathogenic infections. Self-assembling CAMs are a fascinat-
ing platform to treat pathogens owing to their capacity to interrupt bacterial
membranes and function like drug nanocarriers. Specially designed peptides
(CAMs) that form micelles, twisted ribbons, nanofibers, etc., aim to perceptive
antimicrobial activities at the supramolecular level. It has been studied by scientists
that micelle-forming CAM peptides possess brilliant antimicrobial activities against
a variety of Gram-positive and Gram-negative pathogens, for example, MRSA,
multidrug-resistant Klebsiella pneumonia, and Pseudomonas aeruginosa with
(MICs) range 1–8 μg/mL, in contrast to the nanofiber which has (MIC>32 μg/
mL). All reported records suggest that antimicrobial activities in CAM peptides
depend on morphologies, length of alkyl chains, amino acid sequence, and overall
hydrophobicity. Various experimental and spectroscopic techniques using MRSA
and E. coli showed CAM increases cell membrane permeability plus dislocates
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integrity of the pathogen membrane, which leads to cellular lysis and, finally, death.
(CAMs) peptides are the most promising platforms to build novel antimicrobials that
might act like nanocarriers to develop synergistic antibacterial therapies.

11.3 Antibacterial Actions of the CAM Drug Molecules
and Mechanism

CAM is generally evaluated for its antibacterial efficacy adjacent to both Gram-
positive and Gram-negative bacteria. MIC determines antibacterial activities of the
test agent against a specific bacterium (Darya et al. 2017). Assays are carried out by
the micro broth dilution technique, and the lowest concentration of the subjected
CAM results is noted by seeing the bacterial growth. According to the literature,
most CAMs show MICs in proper therapeutic ranges between 15 and 50 μg/mL
(Darya et al. 2017; Lind et al. 2015; La Dow et al. 2011; Rotem and Mor 2009;
Delcour 2009; Brogden 2005). Conformational flexibilities of cationic head group
have less influence on the antibacterial efficacy in experimented pathogens. The
increased flexibility of CAM may result in electrostatic repulsions, thereby avoiding
simultaneous interactions with a negative charge constituent of the bacterial mem-
branes. So, these results indicate CAM membrane disruption is ruled by electrostatic
interaction at the short-charged linker length while at the long linker length; hydro-
phobic interaction controls hydrophobic domain flexibility (Palermo et al. 2012;
Shai 2002; Dagan et al. 2002; Wieprecht et al. 1997; Chikindas et al. 1993). Vemula
et al. (Sunnapu et al. 2020) suggested a simple model membrane with a high
concentration of antibacterial headed for membrane damages. It provided a prelim-
inary estimation of the potential effectiveness of the studied CAM. The authors
(Petaccia et al. 2016) mentioned that liposome-based forms could be used for future
studies to improve understanding of the interaction between membranes and CAM
(Zana and Xia 2003); one of the leading emergent parts of CAM is the Gemini
surfactant in pharmaceutical applications. Interactions of CAM with oppositely
charged cell membranes have been acknowledged for several years (Kronberg
et al. 2014). However, CAM Gemini surfactants curved to be incredibly capable
as bacterial and antimicrobial agents (Mittal and Bothorel 1986). Furthermore,
current research in this area indicates the cancerostatic phenomenon of CAM
Gemini, during selective interactions in CAM Gemini surfactant by cancer cells
(Sharma and Ilies 2014; Misra et al. 2013; Moroi 1992; Porter 1991). An additional
revolutionary area in research of CAM Gemini interaction with oppositely charged
electrolytes like DNA has importance with respect to gene transmissions through the
cell membrane to attain therapeutics within the nucleus (Tague et al. 2019; Pietralik
et al. 2015; Hoque et al. 2014; Paniak et al. 2014; Silva et al. 2014; Badr et al. 2010;
Moroi 1992; Taft 1952).

(CAM) drugs, also known as cationic amphiphilic drugs (CAD), interrelate with
the cell membrane and gather inside the acidic medium intracellular compartments,
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such as late endosomes or late lysosomes (LE/Lys). So, cellular uptake methods vary
among different CADs. Indeed, they collect in (Lys) specific time intervals follow-
ing in vitro cell exposition, resulting in more diverse kinetics from chemical to
physical distinctiveness of the particles. The amine group of CAD is mostly
unprotonated at physiological pH. The molecules turn out to be protonated inside
the acidic medium of (LE/Lys), since CAD can’t further permeate the membrane;
they are rapt within the organelle (shown in Fig. 11.2). Many CADs illustrated
stimulating phospholipidosis therapeutically, on significant concentrations follow-
ing chronic treatment (Salata et al. 2017). Though CADs in clinical use are endured,
changes in cells are held as a result of the interaction among CADs by the membrane
phospholipids. Abilities of precise CAD induced phospholipidosis erstwhile
connected with the potency of (drug/phospholipid) interaction. Thus CADs also
cross multiple cell membranes to arrive at their target site via catalytic reaction by
degrading phospholipid. So, we can find CADs screen to the polar–apolar section of
the membrane. At a definite pH, the positive group on the CAD is catalyzed by acid
hydrolysis. So, the entire processes, from CAD adsorption to the controlled drug
release inside the micelles, occur lying on the particular time-balance by in vivo
diffusion rate. So, this process may act significantly on CAD transport (Baciu et al.
2006).

Fig. 11.2 Lysosomal trapping of CADs acting as weak bases (B) as well as cumulates in the
intracellular acidic section since lysosomal membranes are to a large extent lesser permeable to
protonated base (BH+) in comparison to the uncharged structure. Growths in CADs within late
endosomes/lysosomes (LE/Lys)) induce arise in organelles, thereby creating large vacuoles. (Salata
et al. 2017)
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Many researchers have already reported in vitro special antimicrobials (shown in
Table 11.1), but less information is known regarding in vivo toxicities. So, further
in vivo studies are required sequentially towards understanding (CADs) therapeutic
efficacies. Another concerning point in the development of antimicrobial studies is
the deficiency of standard experimental procedures. This permits consistent clinical
studies to provide information on coating stability and its efficacies, which will cause
myriads of innovations (Li et al. 2018; Huang et al. 2016; Hsu and klibanov 2011).

11.4 Synthetic Cationic Amphiphiles in Combination
Therapy

Antibiotic resistance is a serious global issue which, without delay, needs efficient
solutions. Though small molecules (CADs) are protecting us for almost a century,
the emergence of a novel class of antimicrobial drugs also known as synthetic
antimicrobial polymers has driven advances in the polymerization as well as the
ability to mimic the natural occurrence of antimicrobial peptides which could play a
vital role in fighting multidrug-resistant bacteria at future. In exploiting the abilities
by controlling chemical as well as structural properties of polymers, the synthetic
antimicrobial polymeric materials formed initially from (CADs) could be strategi-
cally used in the combination therapies of diverse antimicrobial co-agents with the
diverse format to capitulate extra powerful (synergistic) results (Judzewitsch et al.
2018, 2020; Namivandi-Zangeneh et al. 2020; Chandna et al. 2020; O’Neill 2020;
Song et al. 2012). Acceptance of the combination therapies in other settings suggests
recital efforts by academicians, research funding bodies, international health agen-
cies, governments, regulators, and pharmaceutical manufacturers makes it available
at affordable prices worldwide. It is expected that widespread use of the combination
pills with routine modifications can bring about substantial risk reductions in several
diseases (mainly heart problems). Healthcare systems require deploying strategies
efficiently. If implemented, these combination therapy strategies could thereby avoid
millions of fatal as well as non-fatal events.

11.5 Challenges and Future Perspectives

Synthetic small-molecule antibacterial peptidomimetics (AMPs) represent a promise
in the innovative field of potent antibiotics. AMPs are found in a broad assembly of
organisms that protect against pathogens. They are naturally CAMs, which have
essential amino acids and hydrophobic side chains. The cationic group shows
electrostatic attraction with anionic bacterial membranes, whereas the hydrophobic
group gets inserted into the lipophilic core; this eventually leads to the disruption of
the bacterial membrane and cell death (Chen et al. 2021; Tague et al. 2021; Mauceri
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Table 11.1 Categories of cationic surfactants (CAM) identified in the literature and bacteria
involved show various applications presently under preclinical and clinical trial phase

Sl
no

Cationic surfactants Microorganisms involved

1 Rhamno lipids, Vicosin (Araújo et al. 2018;
Yazdany and Kazi 2016)

Pseudomonas aeruginosa, Pseudomonas
fluoroscens, Pseudomonas sp DSM 2874,
Pseudomonas aeruginosa Strain BS2,
Pseudomonas aeruginosa DS 10-129 4.31

2 Trehalose lipids (Ratnikova and Titok 2020;
Varjani et al. 2020; Nikolova et al. 2020;
Mawgoud and Stephanopoulos 2017)

Arthrobacter sp., Mycobacterium, Coryne-
bacterium, Rhodococcus erythropolis

3 Glucose lipids (Li et al. 2021) Bacillus subtilis

4 Glycolipids
Glycolipids (Pentasaccharide lipids) Sucrose
and Fructose Glycolipids (Jana and Kulkarni
2020; Vacca 2017; Brundish et al. 1966)

Alcanivorax borkumensis, Pseudomonas
cepacia, Streptococcus thermophilus, B,
Rhodococcus aurntiacus, Rhodococcus sp.
Strain H13A, Rhodococcus aurantiacus
(or R. aurantiacus), Nocardia coryne
bacteroides, Arthrobacter paraffineus

5 Triacylglycerols, steryl esters and wax esters:
Neutral lipids, fatty acid + neutral lipids
Fatty acids (Holert et al. 2020; Kalscheuer
et al. 2007)

Clostridium pasteurization Corynebacte-
rium salvonicum SFC Nocardia
erythropolis Corynebacterium lepus

6 Acyl glucoses (Haozhe et al. 2020) Corynebacterium diphtheriae

7 Surfactin peptides (Wu et al. 2019) Bacillus subtilis

8 Iturin peptides (Zhao et al. 2021) Bacillus subtilis

9 Fengycin peptides (Yaseen et al. 2018) Bacillus subtilis

10 Viscosin peptides (Bonnichsen et al. 2015) Pseudomonas fluorescens

11 Lichenysin peptides (Coronel et al. 2017) Bacillus licheniformis

12 Serrawettin peptides (Zhang et al. 2021) Serratia marcescens

13 Streptofactin peptides (Crnovčić et al. 2018) Streptomyces tandae

14 Lipo peptides (Sardar et al. 2021) Bacillus subtilis, Bacillus licheniformis JF2,
Bacillus licheniformis 86, Serratia
marcescens, Bacillus subtilis 2.7, Bacillus
subtilis ATCC 21332, Bacillus subtilis LB5a

15 Phospholipids
Protein phospholipids (Noba et al. 2019)

Corynebacterium lepus, Acinetobacter sp.,
Corynebacterium insidiosum

16 Gramicidins
Gramicidin S (deca peptide) (Wenzel et al.
2018)

Brevibacillus brevis

17 Polymixins
Polymyxin D (deca peptide) (Galea et al.
2017)

Bacillus polymyxa

18 Antibiotic TA (Heil et al. 2021) Myxococcus xanthus

19 Corynomicolic acids (Aisaka et al. 2007) Corynebacterium insidibasseosum

20 Emulsan based CAM
Lipoteteropolysaccharide (Amani and
Kariminezhad 2016)

Acinetobacter calcoaceticus Acinetobacter
calcoaceticus RAG – 1

(continued)
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Table 11.1 (continued)

21 Alasan-based CAM (Navon-Venezia et al.
1995)

Acinetobacter radioresistens

22 Liposan-based CAM (Steinmassl et al. 2018) Acinetobacter calcoacetices

23 Lipomanan-based CAM (Steinmassl et al.
2018)

Acinetobacter calcoacetices

24 Vesicle-based CAM (Villalón et al. 2019) Acinetobacter calcoaceticus

25 Microbial whole-cell biosensors (MWCBs)
(Michael Moraskie et al. 2021)

Cyanobacter

26 Phosphatidyl ethanolamine CAM (Tsubaki
et al. 2021)

Acinetobacter sp.

27 Lipopolysaccharides (Nikolay et al. 2010) Acinetobacter sp.

28 Polysaccharide-protein-based CAM, Pro-
tein-lipid-carboxy-based CAM, Sucrose
ester -based CAM (Li et al. 2019)

Corynebacterium hydrocarboclastus

29 Corynomycolic acid, fatty acid (Cooper et al.
1979)

Corynebacterium lepus

30 Ornithin-based CAM (Nigro Di Gregorio
et al. 2017)

Pseudomonas rubescens, Thiobacillus
thiooxidans

31 Trehalosedimycolates (Zhang and DeBosch
2020), Trehalose (mono and di)
corynomycolate, Phosphatidyl ethanolamine

Rhodococcus erythropolis

32 Rubiwettins R1 and RG1 (Matsuyama et al.
1990)

Serratiarubidae, Serratiarubidoea

33 Protein Carbohydrate complex (Ghosh et al.
2019)

Pseudomonas fluorescens

34 Methyl mannosylerythritol lipid (Okuhira
et al. 2020; Mohamed et al. 2018)

Streptococcus bovis, Fibrobacter
succinogenes, Ruminococci, Megasphaera
elsdenii, Selenomonas ruminantium,
Succinivibrio dextrinosolvens

35 Gemini surfactant
Gemini pyrimidine CAM (SPYRIT
68, SPYRIT 7) (Koziróg et al. 2017; Zhao
and Wang 2017)

Gram-positive sp (S. aureus), Asaia sp.

36 Methyl imidazolium-based CAM
(mim-based IL), Dicationic imidazolium
surfactant (Daniel et al. 2021; Liu et al. 2016)

Escherichia coli, Staphylococcus aureus,
P. aeruginosa, S. epidermidis

37 Lauryl isoquinolinium-based CAM (Yu et al.
2021)

Escherichia coli, B. cereus

38 Quaternary ammonium-based CAM (QASs)
(Borkowski et al. 2018)

Escherichia coli

39 Nucleotides, nucleosides, nucleolipids,
amino acids, lipo–amino acids, diterpenoids
(i.e., natural CAM) (Borkowskia et al. 2018)

Bifidus sp., E. coli, P. gingivalis, Strepto-
myces Iysosuperficus,
Pseudopedobactersaltans, Cyanobacteria

40 Pyrimidinophanes, pyrimidinocyclophane,
multiuracilophane, cryptand-like
uracilophane, pyrimidinicamphiphiles
(Kumar et al. 2021)

Escherichia coli, Bacillus subtilis, Myco-
bacterium tuberculosis (MTB), Neisseria
meningitides
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Table 11.1 (continued)

41 Gemini lipoaminoacids alkylated lauryl
arginine-based liposomes (Gemini analogs)
Lysine-based lipoaminoacids Serine-based
lipoaminoacids (Azimullah et al. 2020;
Pavlov et al. 2020)

Escherichia coli, Salmonella typhimurium,
Azospirillum lipoferum 4B, Bacillus subtilis

42 Cholesterol (Chol)-based CAM (Araya et al.
2019; Jameson and Wilkinson 2017)

Escherichia coli, Bacillus subtilis

43 Arginine-based QACs (Cairns 1980),
Alkylated arginine (LAM), Gemini alkylated
arginine (C6(LA2) micelles, C9(LA2), C12
(LA2) vesicles, diacylglycerol Arg vesicles
(Elwakeel et al. 2018; Savoini et al. 1984)

Enterobacter lignolyticus, Escherichia coli

44 Alanine (Gemini-ester-QAC-surfactant)
(de Camargo et al. 2017)

Pseudomonas striata 63, Salmonella
typhimurium, Streptococcus faecalis,
Staphylococcus aureus, Bacillus
stearothermophilus

45 Lysine-CAM in liposomes (Uyeda et al.
2016)

E. coli

46 Serine-gene delivery CAM systems
(Mukherjee et al. 2019)

E. coli, Aeromonas salmonicida, Vibrio
alginolyticus

47 CTAB for insulin delivery (Robeson et al.
1983)

Escherichia coli, Streptococcus mutans

48 Di-oleoyl-phosphatidyl-ethanol-amine
(DOPE) (Wu et al. 2016)

Escherichia coli

49 Di-acyl-glycerol-arginine (Brunello and
Marshall 2018)

Staphylococcus aureus

50 Di-palmitoyl-phosphatidyl-choline (DPPC)
(Thanh et al. 2018; Apisarnthanarak et al.
2017)

Acinetobacter baumannii, Staphylococcus
aureus, Bacillus cereus, Brochothrix
thermosphacta

51 Di-dodecyl-dimethyl- ammonium-bromide
(DDAB) (Laalami et al. 2021; Zhou et al.
2020)

E. coli, Bacillus subtilis

52 Cetylpyridinium chloride (Pardini et al.
2005)

Staphylococcus aureus

53 Diamidequat-based CAM (Im et al. 2019) Bdellovibrio bacteriovorus HD100

54 4-Vinyl-benzyl-phospholipids, Dexametha-
sone-21-di-sodium-phospholipids (Konuray
and Erginkaya 2018)

Bacillus coagulans

55 Benzalkonium chloride, Cetalkonium chlo-
ride (Forbes et al. 2019)

Enterococcus faecalis, Escherichia coli

56 Dopamine hydrochloride acetylcholine
chloride, 1-Tetradecyl-3-methylimidazolium
bromide (Mahajan et al. 2012)

K. pneumonia, Bdellovibrio bacteriovorus
HD100, Vibrio fischeri

57 Tryptophan-213-based CAM (Huang et al.
2012)

E. coli, B. cereus

58 Di-myristoyl-phosphatidyl-choline (DMPC)
(Taleb et al. 2016)

E. coli, S. aureus
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et al. 2020). There are certain limitations in AMPs because of their in vivo toxicity,
high industrialized costs, and susceptibility to the metabolism of proteases. Latest
developments in the small molecular AMPs eliminate all limitations; for example,
LTX-109, via Lytix Biopharma has already finished (Phase 2) clinical trials of
MRSA. Small molecular AMPs show a positive correlation between antibacterial
activities and cytotoxicity for on-selective disrupting membrane abilities, suitable for
antimicrobial drugs. Further elucidation of vital constituents can cover a broad
spectrum of antibacterial efficacy and membrane selectivity, thereby designing
potent, selective small AMP mimics in chemotherapeutic agents.

Among the reported antimicrobial (CAM) compounds with high drug-resistant
pathogenic activity, some can cause minor damage to the membranes of mammalian
cells. The cases presented in this assay suggest synthetic antimicrobial (CAM) may
ultimately be highly effective and safer for treating topical, systemic infections;
however additional studies are required to attain this goal.

11.6 Conclusions

Bacterial infections can cause various life-threatening diseases and have been
developed into severe public health problems by drug-resistant strains. As a result,
novel antibiotics with brilliant antibacterial activity and low cytotoxicity are urgently
required. Electrostatic interactions caused by the cell membrane of bacteria interfer-
ence are trailed by cellular component leakage and cell death. Due to bacterial
remarkable cell damage, AMPs emerged as valuable against drug-resistant bacteria
proved more effective than other classical antibiotics in definite cases. Moreover,
structural complexity deprived pharmacokinetic property; low antibacterial activity
of AMPs hinders progress in their development. So, researchers took more interest in
the modification of it and synthetic AMPs.

Nevertheless, it is crucial to build up complex carriers which are tunable and
simpler for industrial scale. To expand application in a domain for specified delivery,
two essential factors are required: (1) synthetic peptides to influence pathogens and
(2) through design prevention of the production of toxic synthetic peptides.

Table 11.1 (continued)

59 Bola-form analogue CAM (Orellana et al.
2017)

Enterobacter lignolyticus

60 1,4-Di-aza-bicyclo(2.2.2)octane-based CAM
(DABCO-n series) Quinuclidine (Q-Nuc-n)
(Burilova et al. 2018)

E. coli, B. aureus

61 Di-alkyl-amino and nitrogen analogue of
hexa-decyl- phospho-choline (Amino and
Suzuki 2017; Kurosawa et al. 2017)

Enterobacter lignolyticus

62 Di-butyl-amino-based analogue of CTAB
(Taleb et al. 2016)

E. coli, S. aureus
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Together, these two factors can develop novel technologies for synthesis and
innovative design strategies at a small price. Therefore, it is necessary to enhance
the discovery of potent antimicrobial therapeutic peptides for target bacteria, fungi,
viruses, helminths, and protozoa.
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