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Abstract Reinforcement learning (RL) is being intensely researched. The rewards
liewith the goal of transitioning fromhuman-supervised tomachine-based automated
decision making for real-world tasks. Many RL-based schemes are available. One
such promising RL technique is deep reinforcement learning. This technique com-
bines deep learningwith RL. The deep networks havingRL-based optimization goals
are known as Deep Q-Networks after the well-known Q-learning algorithm. Many
such variants of Deep Q-Networks are available, and more are being researched. In
this paper, an attempt is made to give a gentle introduction to Deep Q-networks used
for solving RL tasks as found in existing literature. The recent trends, major issues
and future scope of DQNs are touched upon for benefit of the readers.
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1 Introduction

Significant advances have been made in the area of deep learning-based decision-
making, viz. deep reinforcement learning (DRL) [1–4]. These include DRL appli-
cations to tasks like traditional games, e.g. Go [5, 6], real-time game playing [7, 8],
self-driving in vehicles [9], robotics [10, 11], computer vision [12, 13] and others
[14–16]. The resounding success of DRL systems can be attributed to deep learning
for function approximation [17]. Amajority of such techniques is single entity based;
i.e., they use one RL agent or operator. As against this, there stands the technique
of using more than one entity for RL, i.e. multi-entity-based RL. These agents or
entities mutually operate in a single shared environment, with each of them aiming
to optimize its reward return. Besides the above applications, multi-entity-based RL
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Fig. 1 Atari 2600 space invaders game scores benchmarking (state of the art) [28]

systems have been successfully applied to many areas like telecommunication &
sensor networks [18, 19], financial systems [20, 21], cyber-physical systems [22,
23], sociology [24, 25], etc. As a success story of RL task solving, we highlight the
Atari 2600 games suite [26] which is an important benchmark in assessing an RL
algorithm’s efficacy. Significant prowess of RL systems, in particular DRL systems,
is seen in the game score as is shown in Fig. 1. It should be noted that the average
human score for this particular game is 1668.7 [27].

Multi-entity RL systems or multi-agent rl systems using Deep Q-Networks
(DQNs) [9, 17, 29–37] have been used in the past. In these systems, the reward and
penalty data need to be shared between the agents or entities so that they learn either
through exploration or exploitation as deemed feasible during training. This reward
sharing ensures that there is cooperative learning, similar to that of an ensemble
learning, which facilitates cooperative decision-making. This cooperative decision-
making strategy has time and again been found to bemore advantageous as compared
to single-entity-based strategies due to the former’s rich environment exposure, par-
allel processing, etc. The human body immune system may be regarded as a marvel
of the multi-agent RL system with respect to the millions of white blood cells or
leucocytes all learning, working and adapting seemingly individually, but serving,
optimizing and ultimately benefitting the same human body. Coming back to the
state of the art in multi-agent RL systems, three crucial factors decide its success:
(1) the data-sharing scheme, (2) the inter-agent communication scheme and (3) the
efficacy of the deep Q-Network.

With the explosion of RL-based systems on the scene many issues in the above
RL systems have come to the fore, e.g. training issues, resource hunger, fine-tuning
issues, low throughput, etc. Ensemble learning [38–40] has come a long way and is
being studied for potential application to this area. The parallel processing approach
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of the brain, which is the basis for the ensemble approach is a well-known success
story of nature. And, if this line of action is followed, more good results are expected
to follow.

The rest of the paper is organized as follows. Section 2 discusses the significant
works in the area. Section 3 touches upon recent trends in the area. Section 4 discusses
major issues faced and future scope in the area. Conclusion is given at last.

2 Related Work

Since deep learning [41–46] came to the fore, there have been numerous machine
learning tasks for which deep neural networks have been used. And, many of these
tasks are closely related to RL, e.g. autonomous driving, robotics, game playing,
finance management, etc. The main types of Deep Q-Networks or DQNs are dis-
cussed below.

2.1 Deep Q-Networks

[17] uses a DQN for optimization of the Q-learning action-value function:

Q∗ (s, a) = max
π

E

[ ∞∑
s=0

γ srt+s |st = s, at = a, π

]
(1)

The above expression gives the maximized reward sum rt by using the discount
factor γ for every time step t . This is achieved by the policy π = P(a|s), for the
state s and the action a for a certain observation.

Before [17], RL algorithms were unstable or even divergent for the nonlinear
function neural networks, being represented by the action-value function Q. Sub-
sequently, several approximation techniques were discovered for the action-value
function Q(s,a) with the help of Deep Q-Networks. The only input given to the
DQN is state information. In addition to this, the output layer of the DQN has a
separate output for each action. Each DQN output belongs to the predicted Q-value
actions present in the state. In [17], the DQN input contains an (84 × 84 × 4) Image.
The DQN of [17] has four hidden layers. Of these, three are convolutional. The last
layer is fully connected (FC) or dense. ReLU activation function is used. The last
DQN layer is also FC having single output for each action. The DQN learning update
uses the loss:

Li (θ i ) = E(s,a,r,s ′)∼U (D)

(
r + γ max

a′ Q(s
′
, a

′ ; θ−
i ) − Q(s, a; θ i )

)2

(2)
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Fig. 2 Overview of deep Q-network-based reinforcement learning

where γ is entity discount, θ i gives the DQN parameters for the ith iteration, and θ−
i

gives the DQN parameters for ith iteration.
For experience replay [47], the entity or DQN experience et is tuple stored as:

et = (st , at , rt , st+1) (3)

This consists of the observed state st during time period t, reward received rt in
the time period t, value of the action taken at in the time period t, and the final state
st+1 in the time period t + 1. This entity experience data is stored for the time period
t along with other past experiences:

Dt = [e1, e2, . . . , et ] (4)

Figure 2 shows the overview of the deep Q-Network-based learning scheme.

2.2 Double Deep Q-Networks

The maximizing operation used in DQNs as propounded by Mnih et al. [17] used a
common value for selecting and as well as evaluating an action. This results in over-
estimated value selection, as well as overoptimistic value estimation. To overcome
this problem, the work of Van Hasselt et al. [36] introduced the decoupling of selec-
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tion and evaluation components for the task, in what came to be known as Double
Q-learning. In this technique, the two functions are learned by random assignment
of every experience leading to the use of two weight sets, viz. θ and θ ’. Hence, by
decoupling the selection and evaluation components in the original Q-learning, we
have the new target function as:

Y Q
t ≡ Rt+1 + γ Q(St+1, argmaxaQ(St+1, a; θ t ); θ t ) (5)

And now, the Double Q-learning algorithm for the Network becomes:

YDoubleQ
t ≡ Rt+1 + γ Q(St+1, argmaxaQ(St+1, a; θ t ); θ

′
t ) (6)

2.3 Return-Based Deep Q-Networks

Meng et al. [32] introduced a combination framework for the DQN and the return-
based RL algorithm. The DQN variant introduced by Meng et al. [32] is called
Return-Based Deep Q-Network (R-DQN). Conventional DQNs can be improved
significantly in their performance by introducing the return-based algorithm as pro-
posed in the paper. This is done by using a strategy having 2 policy discrepancy
measurements. After conducting experiments on different OpenAI Gym tasks and
Atari 2600 games, SOTA performances have been achieved. Replay memory transi-
tions are borrowed. The transition sequences for R-DQN are used to compute state
estimate and TD error. The loss function is given as:

L
(
θ j

) = (Y (xt , at ) − Q(xt , at ; θ j ))
2 (7)

where θ j are the R-DQN parameters at step j.
Also, Y (xt , at ) is given as:

Y (xt , at ) = r (xt , at ) + γ Z (xt+1) +
t+k−1∑
s=t+1

γ s−t

(
s∏

i=t+1

Ci

)
δs (8)

where k are the transitions.
For the learning update, gradient descent is performed as:

�θ j L
(
θ j

) = (
Y (xt , at ) − Q

(
xt , at ; θ j

))
�θ j Q

(
xt , at ; θ j

)
(9)

R-DQN also uses experience replay like its predecessors [17, 48]. The 2 important
differences between R-DQN [32] and DQN [17] are that, firstly in R-DQN for state
x, the policy μ(·|x) is stored, and that secondly in R-DQN, memory is sequential.
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2.4 Other Notable DQN Variants

For dealing with non-stationarity RL issues, Palmer et al. [49] proposed a technique
called Lenient-DQN (LDQN)which uses lenient adjustment of policy updates which
in turn are drawn from experience. LDQN has been successfully applied to multi-
entity-based RL tasks. Its performance has been compared to that of hysteretic-
DQN (HDQN) [50], and better results have been obtained. The leniency concept
combined with a experience replay has been also used in the weighted double Deep
Q-Network (WDDQN) [51] for dealingwith the same set of problems. It is shown that
WDDQN performs better than DDQN in two multi-entity environments. Hong et al.
[52] introduced aDeep Policy InferenceQ-Network (DPIQN) formulti-agent system
modelling. Subsequently, Deep Recurrent Policy Inference Q-Network (DRPIQN)
has been introduced for addressing issues arising out of partial observability. DPIQN
and DRPIQN perform better than their respective baselines, viz. DQN and DRQN
[53], as has been demonstrated experimentally.

3 Recent Trends

Gupta et al. [54] examined three separate learning schemes with respect to cen-
tralization, concurrence and parameter sharing, for multi-entity learning systems.
The centralized scheme uses a common action based on observations of the entities.
The concurrent scheme trains entities simultaneously by using a common reward.
The parameter-sharing scheme trains entities simultaneously by holistic use of their
individual observations. And of course based on these schemes, many multi-entity
DQN-based schemes have been proposed. One such technique is RL-based ensemble
learning which is rare, as is found in [55], wherein Q-learning agent ensembles are
used for time series prediction. The work involves Q-learning of various agents by
giving varied exposure. In other words, the number of epochs each Q-learning agent
undertakes for learning is different. The disadvantage of the technique is that the
exposure of the entities is non-uniform or varied, which may lead to sub-optimum
performance. Naturally, the next step in this direction would be to use a DQN-based
ensemble for solving RL tasks.

4 Major Issues and Future Scope

In spite of their initial success, DQN-based systems are far from done. They are still
in their infancy and have so far been chiefly applied to tasks like OpenAI Gym and
other simulation tasks, Atari 2600 platform and other games, etc. Implementing them
in real-world systems still remains a challenge. The main issues faced in this regard
are high complexity, need for extensive computation resources, training issues like
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long training times and excessive number of hyperparameters, fine-tuning issues,
etc. It is a well-known fact that millions of commercial dollars are spent on a single
DQN-based research project e.g. as was done by DeepMind Inc. of Google for [17].
Also, the misuse of the exploitation aspect of RL systems naturally passes on to
DQN-based RL systems also ,e.g. when used for financial tasks, etc.

Future scope for DQNs is ripe with options. To name a few, with the advent of
attention-based mechanisms [56, 57] applied to and incorporated into deep learning
techniques, it will be interesting to see if attention-based schemes (as present in
techniques like Visual Transformers (ViTs) [58]) can be applied to deep Q-Networks
for solving RL tasks. Also, it would be equally interesting to see parallelization in
DQN-based RL task solving, just as the multi-core processor technology has gained
a foothold with the flattening of Moore’s Law curve for transistor-based processor
hardware.

5 Conclusion

In this paper, the various important variants of deep Q-Networks used for solving
reinforcement learning (RL) tasks were discussed. Their background underlying
processes were indicated. The original Deep Q-Network of Mnih et al. was put forth,
followed by its notable successive variants up to the state of the art. The recent
trends in this direction were highlighted. The major issues faced in the area were
also discussed, along with an indication of future scope for the benefit of readers. It
is hoped that this survey paper will help in understanding and advancement of the
state of the art with respect to Deep Q-Learning.
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