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Abstract This paper emphasizes the Soret and viscous dissipation effects on mixed
convective flow of an incompressible micropolar fluid over a vertical frustum of
a cone embedded in a non-Darcy porous medium subject to convective boundary
condition. The similarity solution does not attain for this complicated fluid flow
problem. Using non-similarity transformations, the governing boundary layer equa-
tions are converted into a set of non-dimensional partial differential equations. Prior
to being these non-similarity equations are linearized by quasilinearization method
and solved by the Chebyshev spectral collocation method. Several features emerg-
ing from these parameters, namely micropolar, viscous dissipation, Biot, and Soret
numbers on physical quantities of the flow, are explored in detail.

Keywords Convective boundary condition · Truncated cone · Micropolar fluid ·
Non-Darcy porous medium · Spectral quasi-linearization method

1 Introduction

The convective heat and mass transfer analysis in Darcy and/or non-Darcy porous
medium have received significant attention from theoretical as well as practical point
of view, owing to its applications mentioned in many areas such as geothermal
and petroleum resources, enhanced oil recovery, drying of porous solids, cooling of
nuclear reactors, thermal insulation, solid matrix heat exchanges, and other practical
interesting designs. The non-Darcy (Forchheimer model) is a modification of classi-
cal Darcy model by incorporating the inertial effects (i.e., addition of a squared term
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of velocity) in the momentum equation. The literary work on the convective flow due
to buoyancy and external forces in a non-Darcy (Forchheimermodel) porousmedium
has been provided by [1–3] (for more details, see the references cited therein).

Micropolar fluids are the subclass of micro-fluids initiated by Eringen [4]. Com-
pared to the classical Newtonian fluids, the flow motion of micropolar fluids distin-
guishes by two supplementary variables, i.e., the spin vector, responsible for the
micro-rotations, and the micro-inertia tensor describes the distribution of atoms
and molecules inside the fluid elements in addition to the velocity vector. Thus,
micropolar fluids are able to delineate the rheological behavior of animal blood,
drug suspension in pharmacology, liquid crystal, colloidal fluids, plasma, etc. The
comprehensive review of micropolar fluid mechanics has been reported by [5–8].
The locally produced thermal energy due to viscous stress mechanism, commonly
known as viscous dissipation, influences forced, mixed and free convective flows for
fluid saturated porous medium and clear viscous fluids. It has unavoidable role in the
convective transport mechanism when the fluid flow field is at low temperature or
in high gravitational force field or of extreme size. Extensive research can be found
in the literature to study the viscous dissipation effect on micropolar fluid flow over
different geometries. To mention a few [9–12].

From literature survey, it is found that this type of flow study over truncated cone is
applicable in polymer industry, processing of edible items or slurries, melted plastics
at industrial level due to involvement of cone-shaped bodies in these areas. However,
no literature is observed regarding the mixed convective transport in a Darcy/non-
Darcy porous medium saturated by Newtonian/non-Newtonian fluids with truncated
cone as a geometry. Yih [13] examined the numerical solution for the natural convec-
tion flow from the vertical truncated cone through saturated porous medium using
Keller box method. The buoyancy-driven convective flow of a nanofluid from the
frustumof a cone embedded in a porousmediumby taking thermophoresis andBrow-
nian motion effects has been elaborated by Cheng [14]. Postelnicu [15] considered
the local non-similarity solution for the micropolar fluid flow due to buoyancy forces
subjected to flux condition. Patrulescu et al. [16] discussed the mixed convection
boundary layer flow of a fluid with three nanoparticles through a truncated cone and
observed that existence of dual solution for flow reversal.

The main intention of this study is to understand the mixed convective transport
over a convectively heated truncated cone embedded in a non-Darcy porous medium
saturated by an incompressible micropolar fluid. In addition, viscous dissipation and
thermal diffusion effects are taken into consideration. The similarity solution does
not obtain for the intricate flow situation, and hence, the non-similarity solution is
attained by using spectral quasilinearization method and the usefulness of pertinent
parameters discussed through graphical representations.
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Fig. 1 Physical model and coordinates for a truncated cone

2 Mathematical Analysis

The steady, 2D, laminar mixed convective flow of a micropolar fluid over a truncated
cone in a non-Darcy porousmedium is considered. The porousmedium is considered
to be isotropic and homogeneous. The solutal concentration is taken to be constant
and is given byCw. The outer flowvelocity is in the formofU∞. At the ambientmedia,
the temperature and concentration are T∞ and C∞, respectively. By convection, the
surface of the vertical frustum of a cone is either cooled or heated from a fluid of
temperature Tf with Tf < T∞ relating to a cooled surface and Tf > T∞ relating to
a heated surface. The physical geometry of the problem is shown in Fig. ( 1). The
coordinate system is such that the x-coordinate is taken along the vertical frustum of
a cone and y-coordinate is measured normal to it.

By employing Boussinesq approximations, the governing equations for incom-
pressible micropolar fluid using Darcy–Forchheimer model [17] are given by

∂(u r)

∂x
+ ∂(v r)

∂y
= 0 (1)

ρ

ε2

(
u

∂u

∂x
+ v

∂u

∂y

)
=

(
μ + κ

ε

)
∂2u

∂y2
+ κ

∂ω

∂y
− μ

Kp
(u −U∞) − ρ b

Kp

(
u2 −U 2

∞
)

(2)
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+ ρg∗ (βT (T − T∞) + βC(C − C∞)) cosA

ρj

ε

(
u

∂ω

∂x
+ v

∂ω

∂y

)
= γ

∂2ω

∂y2
− κ

(
2ω + 1

ε

∂u

∂y

)
(3)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2 T

∂y2
+

(
μ + κ

ρ Cp

) (
∂u

∂y

)2

(4)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2 C

∂y2
+ DKT

Tm

∂2 T

∂y2
(5)

where u and v denote the components of velocity in x and y directions, respec-
tively, T represents the temperature, ω is the microrotation component, b indicates
the Forchheimer constant, g∗ represents the acceleration due to gravity, γ specifies
spin-gradient viscosity, r is the truncated cone radius, ρ is the fluid density, C is
the concentration, x0 represents the frustum of a cone leading edge distance mea-
sured from the origin, Cp is the specific heat, j represents the micro-inertia density, ε
indicates porosity, μ represents dynamic coefficient of viscosity, KT specifies ther-
mal diffusion ratio, βT represents coefficient of thermal expansion, D represents the
solutal diffusivity, κ represents the vortex viscosity, Kp indicates permeability, βC

is the coefficient of solutal expansion, Tm is mean fluid temperature, and α denotes
thermal diffusivity. Further, followed the work of several authors by presuming that

γ =
(
μ + κ

2

)
j [18].

The boundary conditions are

u = 0, v = 0, ω = −n
∂u

∂y
, −k

∂T

∂y
= hf (Tf − T ), C = Cw at y = 0

(6a)

u = U∞, ω = 0, T = T∞, C = C∞ as y → ∞ (6b)

here, the subscripts w and ∞ represent the conditions at the wall and boundary layer
outer edge, respectively, n is material constant parameter, k is thermal conductivity
of fluid, and hf indicates the convective heat transfer coefficient.

Now, introduce a stream function ψ as

u = 1

r

∂ψ

∂y
, v = −1

r

∂ψ

∂x
(7)

When the thickness of boundary layer is sufficiently less relative to the local radius
of a truncated cone, then the local radius to a point in the boundary layer can be
approximated by truncated cone radius:
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r = xsinA (8)

Here, defining the non-similarity transformations in the following form

η = y

x
Re1/2x , ξ = x

x0
= x − x0

x0
, ω = ν Re3/2x

x2
g (ξ, η) , (9)

ψ = rνRe1/2x f (ξ, η) , θ (ξ, η) = T − T∞
Tf − T∞

, φ (ξ, η) = C − C∞
Cw − C∞

where x = x − x0 and Rex = U∞ x

ν
is the local Reynolds number.

Substitute (7) - (9) into (2)- (5), the set of equations reduces to the following form

1

ε

(
1

1 − N

)
f ′′′ + 1

ε2

(
R + 1

2

)
f f ′′ + ξ

Da Rex0
(1 − f ′) + ξ

Fs

Da

(
1 − (f ′)2

)
(10)

+
(

N

1 − N

)
g′ + ξ λ (θ + Bφ) = ξ

ε2

(
f ′ ∂f ′

∂ξ
− f ′′ ∂f

∂ξ

)

(
2 − N

2 − 2N

)
g′′ + 1

ε

(
R + 1

2

)
f g′ + 1

2ε
f ′ g − ξ

(
N

1 − N

)(
2g + 1

ε
f ′′

)
= ξ

ε

(
f ′ ∂g

∂ξ
− g′ ∂f

∂ξ

)

(11)

1

Pr
θ ′′ +

(
R + 1

2

)
f θ ′ +

(
1

1 − N

)
ε (f ′′)2 = ξ

(
f ′ ∂θ

∂ξ
− θ ′ ∂f

∂ξ

)
(12)

1

Sc
φ′′ +

(
R + 1

2

)
f φ′ + Sr θ ′′ = ξ

(
f ′ ∂φ

∂ξ
− φ′ ∂f

∂ξ

)
(13)

where the primes denote partial derivative with respect to η alone.N =
(

κ

μ + κ

)

represents the coupling number [19], Gr = g∗βT (Tf − T∞)x3cosA

ν2
denotes the

thermal Grashof number, ε = U 2∞
Cp(Tf − T∞)

is the viscous dissipation parameter,

Gc = g∗βC(Cw − C∞)x3cosA

ν2
represents the solutal Grashof number, Fs = b

x0
rep-

resents the Forchheimer number, Pr = ν

α
indicates the Prandtl number, Da = Kp

x20

is the Darcy parameter, Sr = DKT (Tf − T∞)

νTm(Cw − C∞)
is the Soret number, Sc = ν

D
is the

Schmidt number, B = Gc

Gr
is the buoyancy ratio, λ = Grx0

Re2x0
indicates the mixed



134 T. Pradeepa and Ch. RamReddy

convection parameter and Rex0 = U∞ x0
ν

is the Reynolds number. Also, notice that

λ < 0, λ = 0 and λ > 0 correspond to opposing flow, forced convection flow, and
assisting flow, respectively.

The boundary conditions are

(
R + 1

2

)
f (ξ, η) + ξ

∂f

∂ξ
= 0, f ′(ξ, η) = 0, g(ξ, η) = −nf ′′(ξ, η), (14a)

θ ′(ξ, η) = −ξ 1/2 Bi(1 − θ(ξ, η)), φ(ξ, η) = 1 at η = 0,

f ′(ξ, η) = 1, g(ξ, η) = 0, θ(ξ, η) = 0, φ(ξ, η) = 0 as η → ∞. (14b)

where R = ξ

1 + ξ
, Bi = hf x0

k Re1/2x0

represents the Biot number. R becomes zero when

ξ = 0; hence, the present problem diminishes to mixed convective flow along a
vertical plate in a micropolar fluid. As ξ → ∞, R → 1, since ξ = (x − x0)/x0, ξ

becoming large means x is far downstream or cross section of truncated cone radius
leading edge is very small.

3 Skin Friction, Wall Couple Stress, Heat and Mass
Transfer Coefficients

The wall shear stress and wall couple stress are:

τw =
[
(μ + κ)

∂u

∂y
+ κω

]
y=0

,mw = γ

[
∂ω

∂y

]
y=0

,

The heat transfer and mass transfer rates:

qw = −k

[
∂T

∂y

]
y=0

, qm = −D

[
∂C

∂y

]
y=0

The non-dimensional skin frictionCf = 2τw
ρ U 2∞

, wall couple stressMw = mw

ρ U 2∞x0
,

the local Nusselt number Nux = qwx

k(Tf − T∞)
and local Sherwood number Shx =

qmx

D(Cw − C∞)
are given by
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Cf Re
1/2
x = 2

(
1 − nN

1 − N

)
f ′′(ξ, 0), MwRex =

(
2 − N

2 − 2N

)
g′(ξ, 0),

Nux

Re1/2x

= −θ ′(ξ, 0),
Shx

Re1/2x

= −φ′(ξ, 0).

⎫⎪⎪⎬
⎪⎪⎭

(15)

where Rex = U∞x

ν
is the local Reynold’s number.

4 Solution of the Problem

The non-homogeneous and nonlinear coupled partial differential equations(PDE’s)
(10)–(13) along with boundary conditions (14) have been solved numerically by
spectral quasi-linearization method (SQLM) [20, 21]. Essentially, quasilinearization
technique is the generalized Newton–Raphson method initiated by Bellman and
Kalaba [22] for solving the functional equations. By applying quasilinearization
procedure to Eqs. (10)–(13), the resultant equations are:

1

ε

(
1

1 − N

)
f ′′′
r+1 + a1,r f

′′
r+1 +

(
N

1 − N

)
g′
r+1 + a2,r f

′
r+1 + a3,r fr+1 + a4,r (16)

+ξ λ θr+1 + ξ λB φr+1 − a5,r
∂f ′

r+1

∂ξ
− a6,r

∂fr+1

∂ξ
= 0,

(
2 − N

2 − 2N

)
g′′
r+1 − ξ

ε

(
N

1 − N

)
f ′′
r+1 + b1,r g

′
r+1 + b2,r gr+1 + b3,r f

′
r+1 (17)

+b4,r fr+1 + b5,r − b6,r
∂gr+1

∂ξ
− b7,r

∂fr+1

∂ξ
= 0,

1

Pr
θ ′′
r+1 + c1,r θ ′

r+1 + c2,r f
′′
r+1 + c3,r f

′
r+1 + c4,r fr+1 + c5,r − c6,r

∂θr+1

∂ξ
− c7,r

∂fr+1

∂ξ
= 0,

(18)

1

Sc
φ′′
r+1 + d1,r φ′

r+1 + Sr θ ′′
r+1 + d2,r f

′
r+1 + d3,r fr+1 + d4,r − d5,r

∂φr+1

∂ξ
− d6,r

∂fr+1

∂ξ
= 0,

(19)
where

a1,r = 1

ε2

(
R + 1

2

)
fr + ξ

ε2
∂fr
∂ξ

; a2,r = −ξ

Da Rex0
− ξ

2Fs

Da
f ′
r − ξ

ε2
∂f ′
r

∂ξ
; a3,r = 1

ε2

(
R + 1

2

)
f ′′
r ;

a4,r = −1

ε2

(
R + 1

2

)
fr f

′′
r + ξ

Da Rex0
+ ξ

Fs

Da
+ ξ

Fs

Da
f ′2
r + ξ

ε2
f ′
r

∂f ′
r

∂ξ
− ξ

ε2
f ′′
r

∂fr
∂ξ

; a5,r = ξ

ε2
f ′
r ; a6,r = −ξ

ε2
f ′′
r ;
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b1,r = 1

ε

(
R + 1

2

)
fr + ξ

ε

∂fr
∂ξ

; b2,r = 1

2ε
f ′
r − 2ξ

(
N

1 − N

)
; b3,r = 1

2ε
gr − ξ

ε

∂gr
∂ξ

;

b4,r = 1

ε

(
R + 1

2

)
g′
r ; b5,r = −1

ε

(
R + 1

2

)
fr g

′
r − 1

2ε
f ′
r gr + ξ

ε
f ′
r

∂gr
∂ξ

− ξ

ε
g′
r
∂fr
∂ξ

; b6,r = ξ

ε
f ′
r ; b7,r = −ξ

ε
g′
r ;

c1,r =
(
R + 1

2

)
fr + ξ

∂fr
∂ξ

; c2,r = 2ε

(
1

1 − N

)
f ′′
r ; c3,r = −ξ

∂θr

∂ξ
; c4,r =

(
R + 1

2

)
θ ′
r ; c7,r = −ξθ ′

r ;

c5,r = −
(
R + 1

2

)
fr θ ′

r − ε

(
1

1 − N

)
f ′′2
r + ξ f ′

r

∂θr

∂ξ
− ξθ ′

r

∂fr
∂ξ

; c6,r = ξ f ′
r ;

d1,r =
(
R + 1

2

)
fr + ξ

∂fr
∂ξ

; d2,r = −ξ
∂φr

∂ξ
; d3,r =

(
R + 1

2

)
φ′
r; d6,r = −ξφ′

r;

d4,r = −
(
R + 1

2

)
fr φ′

r + ξ f ′
r

∂φr

∂ξ
− ξφ′

r

∂fr
∂ξ

; d5,r = ξ f ′
r ;

Discretize Eqs. (16) to (19) using the spectral collocation method (i.e., Chebyshev)
[23, 24] in the direction of η, and the implicit finite difference method is applied in
ξ direction. The collocation points on (η, ξ) are interpreted as

τj = cos

(
π j

Nx

)
, ξ n = n�ξ j = 0, 1, 2, . . . ,Nx, n = 0, 1, 2, . . . ,Nt (20)

where Nx+1 indicates the number of collocation points in η direction, �ξ is the
spacing, and Nt + 1 is total number of collocation points in the direction of ξ .

The primitive concept beyond this method is the representation of a derivative
matrix D, used to approximate the derivative coefficients f (η) of unknown variables
at the grid points as the matrix vector product:

df

dη
=

Nx∑
k=0

Dlk f (τk) = DF, l = 0, 1, . . . ,Nx, (21)

Here, the vector function at the collocation(grid) point is represented by F =
[f (τ0), f (τ1), f (τ2) . . . , f (τNx)]T ; similarly, the vector functions corresponding to
φ, g, and θ are termed as �, G, and �, respectively. The derivative is scaled as

D = 2D
L

; here, D represents derivative with respect to η. The derivatives of higher

order are expressed as exponents of D,

f (m) = DmF, g(m) = DmG, θ (m) = Dm�, φ(m) = Dm�. (22)
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where D indicates the Chebyshev derivative matrix of size (Nx + 1) × (Nx + 1), and
m is the order of derivative. With centering about a midpoint halfway between ξ n

and ξ n+1 finite difference scheme is imposed, this midpoint is elucidated as ξ n+ 1
2 =(

ξ n+1 + ξ n
)
/2. Applying ξ n+ 1

2 to any other function, for instance f (ξ, η) and its
related derivative obtained as

f (ξ n+ 1
2 , ηj) = f

n+ 1
2

j = f n+1
j + f nj

2
(23)

(
∂f

∂ξ

)n+ 1
2

= f n+1
j − f nj

�ξ
(24)

Applying finite difference in ξ and spectral methods on Eqs. (16)–(19) gives

⎡
⎢⎢⎣
A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

⎤
⎥⎥⎦

⎡
⎢⎢⎣
Fn+1
r+1

Gn+1
r+1

�n+1
r+1

�n+1
r+1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

⎤
⎥⎥⎦

⎡
⎢⎢⎣
Fn
r+1

Gn
r+1

�n
r+1

�n
r+1

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
K1

K2

K3

K4

⎤
⎥⎥⎦

where Aij, Bij, (i, j = 1, 2, 3, 4) are (Nx + 1) × (Nx + 1) matrices and Ki, (i =
1, 2, 3, 4) is (Nx + 1) × 1 vectors defined as

A11 = 1

2

[
1

ε

(
1

1 − N

)
D3 + a

n+ 1
2

1,r D2 + a
n+ 1

2
2,r D + a

n+ 1
2

3,r

]
− a

n+ 1
2

5,r D

�ξ
− a

n+ 1
2

6,r

�ξ
;

A12 = 1

2

[(
N

1 − N

)
D

]
; A13 = 1

2
ξ λI; A14 = 1

2
ξ λB I;

A21 = 1

2

[
ξ

ε

( −N

1 − N

)
D2 + b

n+ 1
2

3,r D + b
n+ 1

2
4,r

]
− b

n+ 1
2

7,r

�ξ
; A24 = 0;

A22 = 1

2

[(
2 − N

2 − 2N

)
D2 + b

n+ 1
2

1,r D + b
n+ 1

2
2,r

]
− b

n+ 1
2

6,r

�ξ
; A23 = 0;

A31 = 1

2

[
c
n+ 1

2
2,r D2 + c

n+ 1
2

3,r D + c
n+ 1

2
4,r

]
− c

n+ 1
2

7,r

�ξ
; A32 = 0;

A33 = 1

2

[
1

Pr
D2 + c

n+ 1
2

1,r D
]

− c
n+ 1

2
6,r

�ξ
; A34 = 0;
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A41 = 1

2

[
d
n+ 1

2
2,r D + d

n+ 1
2

3,r

]
− d

n+ 1
2

6,r

�ξ
; A42 = 0;

A43 = 1

2
SrD2; A44 = 1

2

[
1

Sc
D2 + d

n+ 1
2

1,r D
]

− d
n+ 1

2
5,r

�ξ
;

B11 = −1

2

[
1

ε

(
1

1 − N

)
D3 + a

n+ 1
2

1,r D2 + a
n+ 1

2
2,r D + a

n+ 1
2

3,r

]
− a

n+ 1
2

5,r D

�ξ
− a

n+ 1
2

6,r

�ξ
;

B12 = −1

2

[(
N

1 − N

)
D

]
; B13 = −1

2
ξλI; B14 = −1

2
λξB I

B21 = −1

2

[
ξ

ε

( −N

1 − N

)
D2 + b

n+ 1
2

3,r D + b
n+ 1

2
4,r

]
− b

n+ 1
2

7,r

�ξ
;

B22 = −1

2

[(
2 − N

2 − 2N

)
D2 + b

n+ 1
2

1,r D + b
n+ 1

2
2,r

]
− b

n+ 1
2

6,r

�ξ
; B23 = 0; B24 = 0;

B31 = −1

2

[
c
n+ 1

2
2,r D2 + c

n+ 1
2

3,r D + c
n+ 1

2
4,r

]
− c

n+ 1
2

7,r

�ξ
; B32 = 0;

B33 = −1

2

[
1

Pr
D2 + c

n+ 1
2

1,r D
]

− c
n+ 1

2
6,r

�ξ
; B34 = 0;

B41 = −1

2

[
d
n+ 1

2
2,r D + d

n+ 1
2

3,r

]
− d

n+ 1
2

6,r

�ξ
; B42 = 0;

B43 = −1

2
SrD2; B44 = −1

2

[
1

Sc
D2 + d

n+ 1
2

1,r D
]

− d
n+ 1

2
5,r

�ξ
;

K1 = −a
n+ 1

2
4,r ; K2 = −b

n+ 1
2

5,r ; K3 = −c
n+ 1

2
5,r ; K4 = −d

n+ 1
2

4,r .

The collocation points Nx = 100 are used in this study for all cases. Noticed that
the SQLM depends on the value of any quantity computation, suppose Fn+1

r+1 at each
time step. This is attained by iterating using the QLM. The iteration calculations
are carried until some appropriate tolerance level, ε1, is attained. The tolerance level
is stated as the maximum values of the infinity norm of the difference between the
values of the calculated quantities, that is
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max{‖f ′1n+1

r+1 − f ′1nr+1‖∞, ‖gn+1
r+1 − gnr+1‖∞, ‖θn+1

r+1 − θn
r+1‖∞, ‖φn+1

r+1 − φn
r+1‖∞} < ε1

(25)
An adequately small step size �ξ is considered to ensure the results accuracy.

5 Results and Discussion

The resulting nonlinear, non-homogeneous coupled partial differential equations
(10)–(13) together with the boundary conditions (14) have been solved numerically
using spectral quasilinearisation method. To analyze the effects of Soret, coupling
number, viscous dissipation and Biot number the computations are executed for
Rex0 = 200, Da = 0.5, Pr = 0.72, ε = 0.6, Sc = 0.22, and n = 0. In order to test
the validity of code generated the existing problem numerical scheme at ξ = 0, has
been compared with the results attained by Lloyd and Sparrow [25], Ramreddy and
Pradeepa [26] for Bi → ∞, Sr = 0, B = 0, N = 0, Da → ∞, ε = 0, Fs = 0 and
λ = 0. The results are shown in Table1, and the agreement is good.

Figure2 illustrates the variation of Forchheimer number andviscous dissipation on

dimensionless skin friction
(
Cf Re

1/2
x

)
, wall couple stress(MwRex), Nusselt number(

Nux/Re
1/2
x

)
and Sherwood number

(
Shx/Re

1/2
x

)
against streamwise coordinate (ξ).

Figure2 exhibits that as viscous dissipation parameter rises the skin friction and
mass transfer rate enhances, wall couple stress and heat transfer rate diminish for
both Darcian (Fs = 0.0) and non-Darcian flows (Fs = 0.5). Moreover, it is observed
that the skin friction, heat, and mass transfer rates are lower but wall couple stress is
higher forDarcianflowcomparedwith that of non-Darcianflow.For bothDarcian and
non-Darcian flow, there is no significant effect on the skin friction, wall couple stress,
and heat transfer rate but mass transfer rate increases slightly in the case of vertical
plate (ξ = 0), whereas in truncated cone (ξ > 0) skin friction and mass transfer rate

Table 1 Comparison analysis of −θ ′(0, 0) with the proposed method(SQLM) and that of results
obtained by Lloyd and Sparrow [25]

Pr −θ ′(0, 0)
Pr Lloyd and Sparrow

[25]
Ramreddy and
Pradeepa [26]

Present

0.003 0.02937 0.03967 0.03967

0.01 0.0515 0.05382 0.05382

0.03 0.08439 0.08443 0.08443

0.72 0.2956 0.29564 0.29564

10 0.7281 0.72814 0.72814

100 1.572 1.57184 1.57184

Ramreddy and Pradeepa [26] when n = 0.0, ε = 0, B = 0, Da → ∞, N = 0, ε = 1, Da → ∞,
Bi → ∞, ξ = 0, Sr = 0, Fs = 0 and λ = 0
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(a) (b)

(c) (d)

Fig. 2 Effect of Fs and ε on a skin friction b wall couple stress c Nusselt number and d Sherwood
number

raises, but wall couple stress and Nusselt number diminishes with increase of viscous
dissipation parameter.

The influence ofBiot andSoret numbers on dimensionless skin friction
(
Cf Re

1/2
x

)
,

wall couple stress(MwRex), Nusselt number
(
Nux/Re

1/2
x

)
, and Sherwood number(

Shx/Re
1/2
x

)
is depicted in Fig. 3. The diffusion of mass due to the temperature
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(a) (b)

(c) (d)

Fig. 3 Effect of Sr and Bi on a skin friction b wall couple stress c Nusselt number and d Sherwood
number

gradients is delineated as Soret number Sr. Figures3a, b display that for both
absence(Sr = 0.0) and presence(Sr = 1.0) of Soret number, the wall couple stress
diminishes, and skin friction enhances with the raise of Biot number. Figure3c dis-
plays that for both the presence and absence of Soret number, the

(
Nux/Re

1/2
x

)
aug-

ments nonlinearly with an increase of Biot number, but there is no immense effect
with rise in Soret number. While raising the Biot number the

(
Shx/Re

1/2
x

)
enhances
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in the absence of Soret number Sr = 0.0, and with an existence of Soret number
Sr = 1.0, it diminishes which is shown in Fig. 3d.

The dimensionless skin friction
(
Cf Re

1/2
x

)
, wall couple stress (MwRex), Nusselt

number
(
Nux/Re

1/2
x

)
, and Sherwood number

(
Shx/Re

1/2
x

)
with mixed convection

parameter variation for both micropolar (N = 0.5) viscous fluids (N = 0) is shown
in Fig. 4. The coupling number(N ) characterizes the rotational and linear motion of
fluid particles. Figure4a illustrates that for both (N = 0) and (N = 0.5) the skin fric-
tion in opposing flow case is low and in aiding flow is more as compared with forced
convection flow. Further noticed that the skin friction is high in case of micropolar
fluid than compared with that of viscous fluid case because micropolar fluid offers
high resistance which emerge from fluid particles motion. Figure4b portrays that
for micropolar fluid the wall couple stress is less in case of aiding flow than that
of opposing flow case. Figures4c, d represent that the heat and mass transfer rates
of micropolar fluid are lower than that of viscous fluid. Moreover, for both fluids
(N = 0.0 andN = 0.5), the

(
Nux/Re

1/2
x

)
and

(
Shx/Re

1/2
x

)
are less in case of oppos-

ing flow as compared with forced convection and aiding flow.

Figure5 portrays the effect of material constant parameter and porosity on

dimensionless skin friction
(
Cf Re

1/2
x

)
, wall couple stress(MwRex), Nusselt number(

Nux/Re
1/2
x

)
, and Sherwood number

(
Shx/Re

1/2
x

)
against streamwise coordinate (ξ).

Figure5a exhibits that the skin friction decreases and then increases with increase of
porosity. The skin friction decreases with increase of material constant parameter.
The wall couple stress enhances with the enhancement of both ε and n displayed in
Fig. 5b. Figure5c shows that Nusselt number increases and decreases with increase
of ε and n, respectively. As the porosity increases the Sherwood number decreases
first and then increases which is clearly observed in Fig. 5d. Moreover, Sherwood
number increases with increase of material constant parameter.

6 Conclusions

A mathematical model of steady mixed convection incompressible micropolar fluid
flow over a truncated cone embedded in a saturated porous medium with viscous
dissipation and thermal diffusion effects is investigated in this paper. In addition,
Forchheimer porous medium with convective boundary condition is incorporated.
The resulting non-similarity equations are solved using spectral quasilinearization
method. Based on the analysis carried out, the main conclusions are drawn

• For both presence (Fs = 0.5) and absence (Fs = 0.0) of Forchheimer number, the
Sherwood number and skin friction increases,whereaswall couple stress decreases
with raise in viscous dissipation.
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(a) (b)

(c) (d)

Fig. 4 Effect of N and λ on a skin friction b wall couple stress c Nusselt number and d Sherwood
number
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(a) (b)

(c) (d)

Fig. 5 Effect of n and ε on a skin friction b wall couple stress c Nusselt number and d Sherwood
number
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• The raise in Biot number results to diminish the wall couple stress, but raises
Nusselt number, skin friction for both the cases, i.e., presence and absence of
Soret number. Meanwhile, as the Biot number increases, the Sherwood number
shows the opposite behavior for the cases of Sr = 0.0 and Sr = 1.0.

• In the opposing flow, the Sherwood number and skin friction are more for both
viscous and micropolar fluids. The Nusselt number is less for opposing flow as
compared with forced convection and aiding flow.

• The skin friction and Sherwood number show similar behavior with increase of
porosity, but they showopposite behaviorwith increase ofmaterial constant param-
eter. Thewall couple stress andNusselt number increaseswith increase of porosity;
however, they show opposite behavior with increase of material constant parame-
ter.
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