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Abstract This study explores the impact of double dispersion effects on the nonlin-
ear convective flow of power-law fluid along an inclined plate. Besides, the density
differences with concentration and temperature are assumed to be larger and also
convective thermal condition is considered at the boundary. Governing nonlinear
partial differential equations are solved numerically using the successive lineariza-
tion method (SLM) together with the local non-similarity technique. Accuracy and
convergence of obtained results of successive linearization method are confirmed
through error analysis. Also, present results are validated with previously published
works in a special case. The present study enables us to discuss the influence of perti-
nent governing parameters on the heat and mass transfer rates of the fluid flow at the
wall. This kind of investigation is useful in the mechanism of combustion, aerosol
technology, high-temperature polymericmixtures and solar collectors, which operate
at moderate to very high temperatures and concentrations.

Keywords Power-law fluid · Nonlinear Boussinesq approximation · Convective
boundary condition · Successive linearization method · Double dispersion effects

1 Introduction

Analysis of heat and mass transfer of non-Newtonian power-law fluid (Ostwald-de
Waele type) flow through porous media acquired huge attention by many researchers
[1–7] due its comprehensive applications in energy and geophysical industries. In
the fields of oil reservoir, ceramic processing and heat storage beds, the double
dispersion effects are more predominant with the consideration of inertial effects
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in the flow region of porous medium (refer Nield and Bejan [8]). Moreover, the
fluid flow through intricate paths activates dispersion effects in porous media at pore
level. With this consideration, the importance of the thermal and solutal dispersion
on the flow of fluid through a porous medium are exhibited by many authors. A lot
of research has been accounted-for on this point with different fluids as depicted in
the articles of researchers [9–13].

In addition to the above said point, double dispersion effects are more prevalent
in fluid flow regime when the temperature–concentration-dependent density relation
is nonlinear (also known as, nonlinear Boussinesq approximation [14, 15]) in the
buoyancy term. Since, most of the thermal equipment works at moderate and very
high temperatures and concentrations, this leads to have nonlinearity in buoyancy
with temperature–concentration-dependent density relation [16, 17].

Heat transfer analysiswith the convective thermal boundary condition is beneficial
consideration and has very important applications in the of fields nuclear plants, gas
turbines, heat exchangers related industries. In view of these applications, Munir
[18] (on viscous fluid flow), Hayat [19] (on power-law fluid flow) and RamReddy
and Naveen [20] (on micropolar fluid flow) considered this thermal condition at the
boundary for the study of fluid flow behaviour over different geometries.

In the present study, the heat and mass transport phenomena of power-law fluid
past an inclined plate with a convective thermal boundary condition is examined. The
double dispersion effects and nonlinear Boussinesq approximations are included in
order to investigate their effect over fluid flow.

2 Governing Equations

Consider, the steady, 2D, laminar mixed convective flow of incompressible power-
law fluid along an inclined plate in a non-Darcy porous medium. The inclination
angle is measured in terms of � about vertical direction. By left convection, the
infinite plate is either heated or cooled from a fluid with temperature T f . The solutal
concentration over the wall is Cw, and ambient porous medium concentration and
temperature are taken to be C∞ and T∞, respectively.

By employing nonlinearBoussinesq approximation andwith usual boundary layer
conditions, the governing equations for the power-law fluid flow in a non-Darcy
porous medium (Forchheimer model) [2, 21, 22] are given by

∂u

∂x
+ ∂v

∂y
= 0 (1)

∂un

∂y
+ b

√
Kp

ν

∂u2

∂y
= Kpg∗

ν

{
[β0 + 2β1(T − T∞)]

∂T

∂y
+ [β2 + 2β3(C − C∞)]

∂C

∂y

}
cos�

(2)
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Fig. 1 Schematic diagram of the problem

u
∂T

∂x
+ v

∂T

∂y
= ∂

∂y

[
(α + χ d u)

∂T

∂y

]
(3)

u
∂C

∂x
+ v

∂C

∂y
= ∂

∂y

[
(D + ζ d u)

∂C

∂y

]
(4)

The associated boundary conditions are

v = 0, −k f
∂T

∂y
= h f (T f − T ), C = Cw at y = 0

u = u∞, T = T∞, C = C∞ as y → ∞
(5)

where u and v are the velocity components in x and y directions, T is the temperature,
C is the concentration, b is the empirical constant associated with the Forchheimer
porous inertia term, n is the power-law index, � is the inclination angle, g∗ is the
acceleration due to gravity, Kp is the permeability, ν is the kinematic viscosity, k f

is the thermal conductivity of the fluid, h f is the convective heat transfer coefficient,
α is the molecular thermal diffusivity, D is the molecular solutal diffusivity, d is the
pore diameter, χ is the thermal dispersion coefficient and ζ is the solutal dispersion
coefficient, respectively.
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Further, the first- and second-order expansions of thermal coefficients are denoted
by β0 and β1. Like that, the first- and second-order expansions of solutal coefficients
are defined by β2 and β3, respectively.

Now introduce stream function ψ(x, y) as u = ∂ψ

∂y
and v = −∂ψ

∂x
, which is

automatically satisfied the continuity equation (1).
Here, we define non-similarity transformations [23–25] in the following form

ξ = x

L
, Pe = u∞ L

α
, η = y

L
Pe

1
2 ξ

−1
2 , ψ(ξ, η) = α ξ

1
2 Pe

1
2 f (ξ, η)

T (ξ, η) = T∞ + (
T f − T∞

)
θ(ξ, η), C(ξ, η) = C∞ + (Cw − C∞) φ(ξ, η)

(6)

where ξ is the stream-wise coordinate, L is the characteristics length and Pe = u∞ L
α

is the global Peclet’s number. f , θ and φ are the dimensionless stream function,
temperature and concentrations, respectively.

Substituting the transformations (6) into (1)–(4), we obtain the non-dimensional
governing equations,

n
(
f ′)n−1

f ′′ + 2F0Pe f
′ f ′′ = λn

[
(1 + 2 α1θ)θ ′ + B(1 + 2α2φ)φ′] cos� (7)

θ ′′ + Peχ

(
f ′ θ ′)′ + 1

2
f θ ′ = ξ

(
f ′ ∂θ

∂ξ
− ∂ f

∂ξ
θ ′

)
(8)

1

Le
φ′′ + Peζ

(
f ′ φ′)′ + 1

2
f φ′ = ξ

(
f ′ ∂φ

∂ξ
− ∂ f

∂ξ
φ′

)
(9)

The resultant boundary conditions from Eq. (5)

f (ξ, 0) = −2 ξ

(
∂ f

∂ξ

)

η=0

, θ ′(ξ, 0) = −Bi ξ
1
2 [1 − θ(ξ, 0)] , φ(ξ, 0) = 1,

f ′(ξ,∞) = 1, θ(ξ,∞) = 0, φ(ξ,∞) = 0.

(10)

In the above equations, Ra denotes the global Rayleigh number, λ denotes the mixed
convection parameter, F0Pe denotes the Forchheimer number, B denotes the and
Buoyancy ratio, � denotes the angle of inclination, Ped denotes the pore diameter-
dependent Péclet number, Peχ denotes the thermal dispersion parameter, Le denotes
the diffusivity ratio, Peζ denotes the solutal dispersion parameter, α1 denotes the
nonlinear density–temperature parameter (NDT), Bi denotes the Biot number, and
α2 denotes the nonlinear density–concentration parameter (NDC).

Mathematical expressions for the parameters are given below, Ra = ( L
α
)

( [Kpg∗β0(T f −T∞)]
ν

)1/n
,λ = Ra

Pe , F0Pe = f0(Ped)2−n

(
f0 =

[
(b
√

Kp)

ν

]
( α
d )2−n

)
, B =
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β2(Cw−C∞)

(β0(T f −T∞))
, Ped = (u∞d)

α
, Peχ = [χ d u∞]

α
, Le = α

D , Peζ = [ζ d u∞]
α

, α1 = β1(T f −T∞)

β0
,

α2 = β3(Cw−C∞)

β2
and Bi = h f L

(k f Pe1/2) .
Here, the physical quantities of interest, the non-dimensional Nusselt and the

Sherwood numbers are given by

NuPe
−1
2 = −ξ

1
2

[
1 + Peχ f ′(ξ, 0)

]
θ ′(ξ, 0), ShPe

−1
2 = −ξ

1
2

[
1 + Peζ f ′(ξ, 0)

]
φ′(ξ, 0).

3 Numerical Solution

For the solutions of partial differential equations (7)–(9) together with (10), the
following steps were followed

• Firstly, the above-said PDEq equations are transformed into ODEqs [26] by intro-
ducing auxiliary variables.

• Next, a novel successive linearization method is used to linearize the resultant
equations.

• Lastly, the linearized equations are solved with the Chebyshev collocation method
[27–29].

The detailed procedure of solution methodology to solve equations (7)–(9)
together with (10) is presented in the following Sects. 3.1 to 3.3.

3.1 Local Non-similarity Procedure

The preliminary approximate solution can be found from local similarity equations
for a particular case of ξ << 1; the terms containing ξ ∂

∂ξ
are supposed to be neg-

ligible. Then, the first-level truncation or local similarity equations from (7)–(10)
are

[
n

(
f ′)n−1 + 2F0Pe f

′
]
f ′′ − λn

[
(1 + 2α1θ)θ ′ + B(1 + 2 α2φ)φ′] cos� = 0

(11)

θ ′′ + Peχ

(
f ′ θ ′)′ + 1

2
f θ ′ = 0 (12)

1

Le
φ′′ + Peζ

(
f ′ φ′)′ + 1

2
f φ′ = 0 (13)
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The corresponding boundary conditions are

f (ξ, 0) = 0, θ ′(ξ, 0) = −Bi ξ
1
2 [1 − θ(ξ, 0)] , φ(ξ, 0) = 1,

f ′(ξ,∞) = 1, θ(ξ,∞) = 0, φ(ξ,∞) = 0.
(14)

The local non-similarity ordinary nonlinear differential equations in the second-
level truncation is discovered by introducing new variables to recall the omitted

expressions from the first-level truncation, i.e. take U = ∂ f

∂ξ
, V = ∂θ

∂ξ
,W = ∂φ

∂ξ
.

Thus, the second-level truncation is

[
n

(
f ′)n−1 + 2F0Pe f

′
]
f ′′ − λn

[
(1 + 2α1θ)θ ′ + B(1 + 2 α2φ)φ′] cos� = 0

(15)

θ ′′ + Peχ

(
f ′ θ ′)′ + 1

2
f θ ′ = ξ

(
V f ′ −U θ ′) (16)

1

Le
φ′′ + Peζ

(
f ′ φ′)′ + 1

2
f φ′ = ξ

(
W f ′ −U φ′) (17)

The corresponding boundary conditions are

f (ξ, 0) = −2 ξ U (ξ, η), θ ′ (ξ, 0) = −Bi ξ
1
2 [1 − θ(ξ, 0)] , φ(ξ, 0) = 1,

f ′(ξ,∞) = 1, θ(ξ,∞) = 0, φ(ξ,∞) = 0.
(18)

The two-level local non-similarity technique is accomplished with a third level of
truncation; for this, we differentiate equations (15)–(18) with respect to ξ and omit
the partial derivatives of U, V,W . Then, the resultant equations are

n(n − 1)
(
f ′)n−2

f ′′U ′ + n
(
f ′)n−1

U ′′ + 2F0Pe( f
′′U ′ +U ′′ f ′)−

λn
[
V ′ + 2 α1(V θ ′ + θV ′) + B(W ′ + 2 α2(Wφ′ + φW ′))

]
cos� = 0

(19)

V ′′ + 3

2
Uθ ′ + 1

2
V ′ f + Peχ

[
U ′′ θ ′ + f ′′ V ′ +U ′ θ ′′ + f ′ V ′′] − V f ′ = ξ

(
U ′V −UV ′)

(20)
1

Le
W ′′ + 3

2
Uφ′ + 1

2
W ′ f + Peζ

[
U ′′ φ′ + f ′′ W ′ +U ′ φ′′ + f ′ W ′′] − W f ′ = ξ

(
U ′W −UW ′)

(21)
The corresponding boundary conditions are

U (ξ, 0) = 0, V ′ (ξ, 0) = Biξ
1
2 V (ξ, 0) + 1

2
Biξ

−1
2 [θ(ξ, 0) − 1],W (ξ, 0) = 0,

U ′(ξ,∞) = 0, V (ξ,∞) = 0,W (ξ,∞) = 0
(22)
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The coupled nonlinear ordinary differential equations (15)–(17) and (19)–(21)
along with the boundary conditions (18) and (22) are evaluated using successive lin-
earization method. First, it linearize the non-similarity equation, and then, it utilizes
Chebyshev collocation method for the approximate solution.

3.2 Successive Linearization

Let us consider an independent vector Q(η) = [ f (η) , θ (η) , φ(η),U (η), V (η),

W (η)] and assume that it can be represented as

Q(η) = Qk(η) +
k−1∑

m=0

Qm(η) (23)

where Qk(η), k = 1, 2, 3 . . . are unknown vectors, and those are determined by
recursively evaluating the linearized version of the non-similarity equations and
presuming that Qm(η), (0 ≤ m ≤ k − 1) are expected from antecedent iterations.
The initial guesses Q0(η) is selected so that it satisfy the boundary conditions (18)
and (22). By imposing Eq. (23) in Eqs.(15)–(22) and considering only linear terms,
we obtain the linearized equations to be evaluated which are

p̃1,k−1 fk
′′ + p̃2,k−1 fk

′ + p̃3,k−1θk
′ + p̃4,k−1θk + p̃5,k−1φk

′ + p̃6,k−1φk = z̃1,k−1

(24)
q̃1,k−1 fk + q̃2,k−1θk

′′ + q̃3,k−1θk
′ + q̃4,k−1Uk + q̃5,k−1Vk = z̃2,k−1 (25)

ã1,k−1 fk + ã2,k−1φk
′′ + ã3,k−1φk

′ + ã4,k−1Uk + ã5,k−1Wk = z̃3,k−1 (26)

b̃1,k−1 fk
′′ + b̃2,k−1 fk

′ + b̃3,k−1θk
′ + b̃4,k−1θk + b̃5,k−1φk

′ + b̃6,k−1φk + b̃7,k−1Uk
′′ + b̃8,k−1Uk

′

+b̃9,k−1Vk
′ + b̃10,k−1Vk + b̃11,k−1Wk

′ + b̃12,k−1Wk = z̃4,k−1

(27)
c̃1,k−1 fk + c̃2,k−1θk

′ + c̃3,k−1Uk
′ + c̃4,k−1Uk + c̃5,k−1Vk

′′ + c̃6,k−1Hk
′ + c̃7,k−1Vk = z̃5,k−1

(28)
d̃1,k−1 fk + d̃2,k−1φk

′ + d̃3,k−1Uk
′ + d̃4,k−1Uk + d̃5,k−1Wk

′′ + d̃6,k−1Wk
′ + d̃7,k−1Wk = z̃6,k−1

(29)
The linearised boundary conditions are

fk(0) = fk
′(0) = fk

′(∞) = 0, Bi ξ
1
2 θk(0) + θk

′(0) = 0, θk(∞) = 0,

φk(0) = φk(∞) = 0, Uk(0) = Uk
′(0) = Uk

′(∞) = 0,

−1

2
Bi ξ

−1
2 θk(0) + Vk

′(0) − Bi ξ
1
2 Vk(0) = 0, Vk(∞) = 0, Wk(0) = Wk(∞) = 0

(30)
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Here, the coefficient parameters p̃s,k−1, q̃s,k−1, ãs,k−1, b̃s,k−1, c̃s,k−1, d̃s,k−1, and
z̃s,k−1 which depend on the Q0(η) and on the Qk(η) derivatives.

3.3 Chebyshev Collocation Scheme

We solve linearized equations (24)–(29) by an established procedure, namely Cheby-
shev collocation scheme [30]. In the context of numerical implication, the original
region [0,∞) is truncated to [0, L] for large value of L , and further, the truncated
region [0, L] is transformed into [−1, 1] using the following mapping

η

L
= τ + 1

2
, −1 ≤ τ ≤ 1 (31)

In this procedure, The Chebyshev polynomials Tm(τ ) = cos[m cos−1τ ] are used to
approximate the unknown functions Qk(η) and these polynomials are collocated at
K + 1 Gauss–Lobatto points in the interval [−1, 1] and those are defined as

τm = cos
πm
K

, m = 0, 1, ..., K (32)

The unknown function Qk(η) is imprecise at the collocation points by

Qk(τ ) =
K∑

j=0

Qk(τ j )Tj (τm), m = 0, 1, ...K (33)

and
dS

dηS
Qk(τ ) =

K∑

r=0

DS

rmQk(τr ), m = 0, 1, 2, ...K (34)

whereD is the Chebyshev spectral derivative matrix such that D = (2/L)D and S is
the order of differentiation. After employing Eqs.(31)–(34) into linearized form of
Eqs. (24)–(29), the resultant solution is

Ỹk = B̃−1
k−1Z̃k−1 (35)

In Eq. (35), B̃k−1 is a (6N + 6) × (6N + 6) matrix, Ỹk and Z̃k−1 are (6N + 1) × 1
column vectors defined by

B̃k−1 =
[
B̃i j

]
, i, j = 1, 2, . . . 6, Ỹk =

[
F̃k �̃k �̃k Ũk Ṽk W̃k

]
T ,

Z̃k−1 = [
z̃1,k−1 z̃2,k−1 z̃3,k−1 z̃4,k−1 z̃5,k−1 z̃6,k−1

]T
(36)
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3.4 Residual Error Analysis

It can be ensured the convergence of the proposed method by evaluating the norm
of the difference between two consecutive iterations. This algorithm is accepted to
have converged when the error norms are less than a given tolerance level. The error
norms are given by

E f = max
0≤i≤Nx

‖ fr+1,i − fr,i ‖∞, Eθ = max
0≤i≤Nx

‖ θr+1,i − θr,i ‖∞,

Eφ = max
0≤i≤Nx

‖ φr+1,i − φr,i ‖∞
(37)

Norm of the residual errors of the governing Eqs. (7)–(9) across ξ at different
iterations levels of the present numerical scheme are depicted by Fig. 2. This figure
revels that the residual errors decrease with an increase of number of iterations, and
this is an indication of convergence of the solutions. Also, observed that the residual
errors are nearly uniform across ξ . This result proves that the accuracy of solution
method does not depend on the length of ξ interval. Furthermore, the small residual
errors, which are obtained after a few iterations, are a clear sign of the accuracy of the
solution method. Hence, the residual error results validate the accuracy of generated
results in this study.

4 Results and Discussion

In addition to the error analysis, present numerical results are also validated with
the previously published works [9, 31] without nonlinear convection and double
dispersion effects as appeared in Tables 1 and 2. Results are in good agreement,
and the influence of the parameters α1, α2, Peχ , Peζ , � and Bi are depicted by the
Figs. 3, 4 and 5 for f ′, θ , φ, Nu Pe

−1
2 and Sh Pe

−1
2 .

4.1 Influence of α1 and α2 With Viscosity Index n

Variations of fluid flow profiles for α1(0, 6), α2 (0, 5) and n (0.7, 1.0, 1.4) with Peχ =
0.5, Peζ = 0.2, Bi = 0.5, ξ = 0.5 and� = 30◦ shown in Fig. 3a–c. It uncovers that
the influence of n is extensive and increases both thermal and solutal boundary
layer thickness, whereas it diminishes the thickness of momentum boundary layer.
Regarding α1, the velocity is predominant at the inclined plate surface and for ηmax

value, it achieves unity. As found in Fig. 3a, α1 > 0 infers that T f > T∞; henceforth,
some amount of the heat is induced to fluid region by the wall surface. Moreover,
Fig. 3a displays the impact of the α2 on the behaviour of velocity. The results of
this figure repeat the same kind of behaviour just like α1 in all three fluids. The
thicknesses of thermal and solutal boundary layer diminish with the rise of both α1
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(a) (b)

(c)

Fig. 2 Residual error over iterations when B = 0.5, F0Pe = 1, α1 = 1, α2 = 1, Bi = 0.5, n = 1,
Peχ = 0.5, Peζ = 0.2, � = 30◦

andα2, as shown inFig. 3b, c.Obviously, the nonlinear temperature and concentration
differences between the wall and ambient medium are increased for larger values of
α1 and α2, due to which higher velocity and smaller temperature concentration are
obtained.

Figure3d–e show the effect of α1(0, 6) and α2(0, 5) on the NuPe−1/2 and
ShPe−1/2 against ξ . The rise of either α1 or α2 increases all the fluid profiles of
the pseudo-plastic fluid flow. So, also, these two dimensionless quantities have a
same change in the other two fluid flows of Newtonian and dilatant fluid. Evidently,
these two heat and mass transfer rates are identically comparable with the works of
Partha [16] in Newtonian fluid (for n = 1) case.
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Table 1 Comparison of −θ ′(0) against λ with the fixed values of B = 0, F0Pe = 0, α1 = 0,
Bi → ∞, α2 = 0, Peχ = 0, Peζ = 0 and � = 0

n = 0.5 n = 1.0 n = 1.5

λ [31] Present [31] Present [31] Present

0 0.5641 0.5642 0.5641 0.5642 0.5641 0.5642

0.5 0.8209 0.8217 0.6473 0.6474 0.6034 0.6034

1.0 0.9303 0.9296 0.7205 0.7206 0.6634 0.6634

4.0 1.3010 1.3007 1.0250 1.0558 1.0180 1.0176

8.0 1.6100 1.6097 1.3540 1.3801 1.3800 1.4357

15.0 2.0010 2.0005 1.8120 1.8123 1.8620 1.8606

Table 2 Comparison of f ′(0),−θ ′(0) and−φ′(0) against Le,B, λwith the fixed values of F0Pe =
1, n = 1 , Peχ = 0, α2 = 0, Peζ = 0, Bi → ∞, α1 = 0 and � = 0

Le = 1 Le = 10

f ′(0) −θ ′(0) & −φ′(0) −θ ′(0) −φ′(0)
λ [9] Present [9] Present [9] Present [9] Present

B =
−0.5

0 1.0 1.0 0.5645 0.5642 0.5642 0.5642 1.7841 1.7841

1 1.1583 1.1583 0.5922 0.5922 0.6054 0.6054 1.9329 1.9329

5 1.6794 1.6794 0.6793 0.6793 0.7244 0.7244 2.3534 2.3534

10 2.1926 2.1926 0.7580 0.7580 0.8247 0.8247 2.7009 2.7009

20 3.0 3.0 0.8706 0.8706 0.9617 0.9617 3.1686 3.1686

B = 1.0 0 1.0 1.0 0.5642 0.5642 0.5642 0.5642 1.7841 1.7841

1 1.5616 1.5616 0.6603 0.6603 0.6377 0.6377 2.1381 2.1381

5 3.0 3.0 0.8706 0.8706 0.8083 0.8083 2.8864 2.8865

10 4.217 4.2167 1.0203 1.0203 0.9358 0.9358 3.4061 3.4061

20 6.0 6.0 1.2097 1.2097 1.1012 1.1012 4.0548 4.0548

4.2 Influence of � and Bi With Viscosity Index n

Effect of �(0◦, 60◦) and Bi(0.1, 10) on the f ′, θ and φ are displayed in Fig. 4a–
c for three instances of viscosity index (n = 0.7, 1.0, 1.4). As depicted in Fig. 4a,
reduction in the buoyancy effect caused by � diminishes the velocity f ′. Also, it is
observed fromFig. 4a that the velocity of the power-lawfluid enhances bymagnifying
Bi . With rising values of � values of θ and φ enhance, as show in Fig. 4b, c, and
these results are qualitatively matched with the work of Chen [32].

Impact of Bi on the θ is collected through Fig. 4b for the case of wall and non-
isothermal conditions. Since, convective thermal condition can be changed to wall
condition for a larger value of Bi (i.e. Bi → ∞) [33], the same was observed from
Fig. 4b. At the wall surface, the temperature is accelerating when Bi changing from
Bi < 0.1 (known as, thermally thin case) to Bi > 0.1 (known as, thermally thick
case). Further, that the concentration decreasing function of Bi , as shown in Fig. 4c.
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(a) (b)

(c)

(e)

(d)

Fig. 3 Impact of α1 and α2 on the (a) f ′, (b) θ , (c) φ, (d) Nu Pe
−1
2 , and (e) Sh Pe

−1
2 for three

values of n with Bi = 0.5, Peχ = 0.5, Peζ = 0.2, � = 30◦
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(a) (b)

(c) (d)

(e)

Fig. 4 Impact of � and Bi on the (a) f ′, (b) θ , (c) φ, (d) Nu Pe
−1
2 , and (e) Sh Pe

−1
2 for three

values of n with α1 = 1, Peχ = 0.5, α2 = 1, Peζ = 0.2



122 P. Naveen et al.

(a) (b)

(c) (d)

(e)

Fig. 5 Impact of Peχ and Peζ on the (a) f ′, (b) θ , (c) φ, (d) Nu Pe
−1
2 , and (e) Sh Pe

−1
2 for three

values of n with Bi = 0.3,α1 = 1, α2 = 1, � = 30◦
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Table 3 Parameters in the model and their values

Parameters Symbol Value range Source

Biot number Bi (0, 10) [19, 34]

Angle of inclination � (00, 900) [35, 36]

NDT parameter α1 (0, 6) [16]

Thermal dispersion
parameter

Peχ (0, 4) [11, 13]

NDC parameter α2 (0, 5) [16]

Solutal dispersion
parameter

Peζ (0, 6) [11, 13]

Power-law index n (0.5, 1.5) [36]

Figure4d–e exhibit the effect of�(0◦, 60◦) and Bi(0.1, 10) on the NuPe−1/2 and
ShPe−1/2 for three fluid cases with Peχ = 0.6, Peζ = 0.3, α1 = 1, α2 = 1. If posi-
tion of plate is changing from vertical to horizontal, there is a decrement in g∗cos�
term, and this degrade the buoyancy. Hence, this reduction diminishes NuPe−1/2

and ShPe−1/2. However, NuPe−1/2 and ShPe−1/2 enhance by the increase of Bi
and decrease with the viscosity index n (Table 3).

4.3 Influence of Peχ and Peζ Viscosity Index n

Figure5a–c revels the effect of Peχ (0, 4), Peζ (0, 6) on f ′, θ and φ, for a fixed value
ofα1 = 1,α2 = 1, Bi = 0.3, ξ = 0.5 and� = 30◦. FromFig. 5a, it is significant that
the thickness of the momentum boundary layer increases with the double dispersion
parameters. Supplementing thermal dispersion effect into the energy equation gives
more dominance in thermal conduction, and it improves thermal boundary layer
thickness near to the surface of the inclined plate, as shown in Fig. 5b. On the other
hand, increasing the solutal dispersion parameter leads to increase the thickness of
concentration boundary layers, as depicted in Fig. 5c. However, in the absence or
in the presence of double dispersion parameters, the temperature and concentration
profiles are increased for viscosity index n.

The effect of Peχ (0, 4) and Peζ = (0, 6) on Nusselt and Sherwood numbers is
displayed in Fig. 5d–e. It is referred that thermal dispersion increases the heat transfer
rate and solutal dispersion favours the mass transfer rate, as shown in Fig. 5d–e.
However, these two transfer rates are more in pseudo-plastic fluids when compared
with Newtonian and dilatant fluids.

5 Conclusions

In the present study, the characteristics power-law fluid flow along an inclined plate
is studied with the consideration double dispersion effects and convective boundary
condition at the wall. Influence of nonlinear convection parameters angle inclination
is discussed. Major findings are listed below:
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• Influence of α2 is notable on the Nusselt and Sherwood number, when compared
with the influence of α1.

• Angle of inclination increases the thermal and solutal boundary layer thicknesses,
whereas decreases the velocity, heat, and mass transfer rates of power-law fluid.

• Influence of Biot number is prominent in velocity, temperature, heat, and mass
transfer rates.

• Heat transfer rate and temperatures of power-law fluid are magnified with by
thermal dispersion parameter.

• Solutal dispersion parameter increases the concentration and mass transfer rates
of power-law fluid.

Nomenclature

b inertia coefficient which is taken to be a constant (–)

Bi Biot number
h f L

k f Pe
1
2

B buoyancy ratio β2(Cw−C∞)
β0(T f −T∞)

C concentration kgmol/m3

φ dimensionless concentration (–)
Cp specific heat capacity J/(kg · K)

Cw wall concentration kgmol/m3

C∞ ambient concentration kgmol/m3

D solutal diffusivity m2/s
f dimensionless stream function (–)
g∗ acceleration due to gravity m/s2

h f convective heat transfer coefficient W/(m2K)

k f thermal conductivity kgm/(K s3)
Kp permeability m2

L characteristic length m
Le diffusivity ratio α

D
n power-law index (–)

Nux local Nusselt number −x
(T f −T∞)

[
∂T
∂y

]

y=0

Nu Pe
−1
2 dimensionless Nusselt number −ξ

1
2

[
1 + Peχ f ′(ξ, 0)

]
θ ′(ξ, 0)

Pe global Peclet’s number u∞L
α

Ped pore diameter-dependent Peclet number u∞d
α

Peχ Thermal dispersion parameter [χ d u∞]
α

Peζ Solutal dispersion parameter [ζ d u∞]
α

Pr Prandtl number ν
α

Ra global Rayleigh number
[ L

α

] [
Kpg∗β0(T f −T∞)

ν

]1/n

F0Pe Forchheimer number

[(
b
√

Kp

ν

)
( α
d )2−n

]
(Ped )2−n

Shx local Sherwood number −x
(Cw−C∞)

[
∂C
∂y

]

y=0

ShPe
−1
2 dimensionless Sherwood number −ξ

1
2

[
1 + Peζ f ′(ξ, 0)

]
φ′(ξ, 0)

T temperature K
T dimensionless temperature (–)
T f wall temperature K
T∞ ambient temperature K
u, v velocity components m/s
u∞ free stream velocity m/s
x axial coordinate m
y normal coordinate m
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Greek Symbols

α thermal diffusivity m2/s

α1 nonlinear density-temperature (NDT) parameter
β1(T f −T∞)

β0

α2 nonlinear density-concentration (NDC) parameter β3(Cw−C∞)
β2

β0, β1 coefficients of thermal expansion of first and second orders (1/K, 1/K)
β2, β3 coefficients of solutal expansion of first and the second order (m3/kgmol,m3/kgmol)
η similarity variable (–)
λ mixed convection parameter Ra

Pe
� inclination of angle (–)
μ∗ fluid consistency of the power-law fluid kg/(ms)
ν kinematic viscosity m2/s
ρ density of the fluid kg/m3

ψ stream function (–)
ξ stream-wise coordinate (–)

Subscripts

w conditions at the wall (–)
∞ conditions at the ambient medium
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