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Abstract In this article, Kudryashov and modified Kudryashov techniques were
implemented to acquire new exact solutions of the time fractional (2+1)-dimensional
CBS equation. The solutions thus attained have been stated explicitly and graphical
models have been illustrated by choosing appropriate values to the parameters to
visualize the mechanism of the considered nonlinear fractional differential equation
(FDE). The considered methods are very powerful and effective enough to utilize for
establishing solutions of various nonlinear FDEs applied in mathematical physics.

Keywords Conformable fractional derivative · Fractional
Calogero–Bogoyavlenskii–Schiff (CBS) equation · Generalized Kudryashov
method · Modified Kudryashov method

1 Introduction

In present century, fractional calculus has been established as a vibrant field of study
in engineering and science, as many researchers are paying interest to it due to
its diversified implementation in various fields like heat transfer, signal processing,
biology, robotics, electronics, genetic algorithms, control systems, etc. Many math-
ematical models are governed by fractional order differential equations. These ideas
were attributed to Leibniz, Liouville, Riemann, Caputo, etc. The basic literature
related to fractional derivatives and integrals is discussed in refs [1, 2].

In examining the physical phenomena, the study of nonlinear FDEs executes a
significant role. Various methods have already been implemented to attain exact
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solutions of FPDEs [3–5]. Few distinguished efforts have been noticed by the scien-
tists for analyzing FDEs arising in mathematical physics. In this manuscript, the
conformal time fractional CBS equation has been contemplated for the first time.

Consider the conformable time fractional (2+1)-dimensional CBS equation

T α
t ux − 4uxuxy − 2uxxuy + uxxxy = 0 (1.1)

where α denotes the order of conformable derivative. Bogoyavlenskii constructed the
CBS equation by utilizing the modified Lax formalism [6, 7]. Later, it was derived
by Schiff [8] using self-dual Yang Mills equation. The fundamental interaction of a
Riemann wave along the y-axis with a long wave along the x-axis is governed by the
CBS equation.

Methods such as Cole Hopf transformation [9], singular manifold method [10,
11], similarity transformations method [12], the Tanh–Coth method [13], the Tanh
function method [14], the improved Tanh–Coth method [15], sine–cosine approach
[16], the extended homoclinic test approach [17], Hirota’s bilinear method [18], and
the Lie transformation method [10, 19] had been employed to acquire solutions of
CBS equation. But the extensive study of conformable time fractional CBS equation
is just the opening.

The acquired exact solutions for fractional (2+1)-dimensional CBS equation have
been documented first time ever in this manuscript.

This paper is systematized as follows. In Sect. 2, introduction to conformable frac-
tional derivative has been provided. The algorithm of generalized Kudryashov and
modified Kudryashov technique is provided in Sect. 3. The Kudryashov techniques
have been implemented to fractional CBS equation which is discussed in Sect. 4. In
Sect. 5, results are furnished, and Sect. 6 concludes the article.

2 Conformable Fractional Derivative

The conformable fractional derivative of a function u(t) of order α is defined by
[20–22]

Tα(u(t)) = lim
τ→0

u
(
t + τ t1−α

) − u(t)

τ
for all t > 0, α ∈ (0, 1) (2.1)

Some properties of conformal fractional derivatives are as follows [22]

(i) Tα(au + bv) = aTα(u) + bTα(v).
(ii) Tα(tμ) = μtμ−α, for allμ ∈ R.
(iii) Tα(u ∗ v)(t) = t1−αv′(t)u′(v(t)).
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3 Algorithm of the Proposed Method

The generalized Kudryashov and modified Kudryashov techniques have been
employed to calculate the exact solutions of fractional (2+1)-dimensional CBS equa-
tions. A number of researchers have demonstrated the generalization, reliability, and
efficacy of this approach [23, 24]. The basic ideas of generalized Kudryashov and
modified Kudryashov methods are discussed in Refs. [22, 25, 26].

4 Exact Solution of Time Fractional (2+1)-Dimensional
CBS Equation

This segment consists of the solutions of time fractional (2+1)-dimensional CBS
equations by utilizing the generalized Kudryashov and modified Kudryashov
techniques to calculate the exact solution for the same.

4.1 Application of Generalized Kudryashov Technique

By utilizing the wave transformation [27] u(x, y, t) = U (ξ), ξ = x + y − λ
(
tα

α

)
,

Eq. (1.1) can be reduced as

−λUξξ − 6UξUξξ +Uξξξξ = 0 (4.1)

where λ is the constant that is to be evaluated later. Now, the value of N is found to
be 1 by equating the nonlinear term and highest order derivative term of Eq. (4.1).

Therefore,

U (ξ) = ϕ0 + ϕ1ψ(ξ) (4.2)

where ψ(ξ) = 1
1±eξ .

ϕ0, ϕ1 are constants to be determined.
Next, system of algebraic equations was acquired from Eq. (4.2), substi-

tuting the derivatives of U (ξ) and considering the ansatz. The same powers of
ψ i , (i = 1, 2, 3, . . .) are collected and equate to zero, to acquire the following system
of nonlinear equations:

Coefficient of ψ1:

ϕ1 − λϕ1 = 0, (4.3)
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Coefficient of ψ2:

−15ϕ1 + 6ϕ2
1 + 3ϕ1λ = 0, (4.4)

Coefficient of ψ3:

50ϕ1 − 24ϕ2
1 − 2ϕ1λ = 0, (4.5)

Coefficient of ψ4 :

−60ϕ1 + 30ϕ2
1 = 0, (4.6)

Coefficient of ψ5:

24ϕ1 − 12ϕ2
1 = 0, (4.7)

On solving Eqs. (4.3)–(4.7), the following nontrivial solutions can be acquired.

Case I: For ϕ1 = 2, λ = 1 and ψ(ξ) = 1
1+eξ , the new exact solution of the

conformable time fractional CBS equation given in Eq. (1.1) can be identified as

u1(x, y, t) = 2 + ϕ0 + ϕ0 cos h
[
x + y − tα

α

] + ϕ0 sin h
[
x + y − tα

α

]

1 + cos h
[
x + y − tα

α

] + sin h
[
x + y − tα

α

] (4.8)

Case II: For ϕ1 = 2, λ = 1 and ψ(ξ) = 1
1−eξ , the exact solution of Eq. (1.1) is given

by

u2(x, y, t) = −2 − ϕ0 + ϕ0 cos h
[
x + y − tα

α

] + ϕ0 sin h
[
x + y − tα

α

]

−1 + cos h
[
x + y − tα

α

] + sin h
[
x + y − tα

α

] (4.9)

4.2 Application of Modified Kudryashov Technique

Equation (4.2) can be attained in the aforementioned manner. Next, considering the
ansatzψ(ξ) = 1

1±aξ in Eq. (4.2) and substituting the derivatives ofU (ξ) in Eq. (4.1),
the following equations can be acquired.

Coefficient of ψ1:

−λϕ1(ln(a))2 + ϕ1(ln(a))4 = 0, (4.10)
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Coefficient of ψ2:

3ϕ1λ(ln(a))2 + 6ϕ2
1(ln(a))3 − 15ϕ1(ln(a))4 = 0, (4.11)

Coefficient of ψ3:

−2ϕ1λ(ln(a))2 − 24ϕ2
1(ln(a))3 + 50ϕ1(ln(a))4 = 0, (4.12)

Coefficient of ψ4 :

30ϕ2
1(ln(a))3 − 60ϕ1(ln(a))4 = 0, (4.13)

Coefficient of ψ5:

−12ϕ2
1(ln(a))3 + 24ϕ1(ln(a))4 = 0, (4.14)

On solving Eqs. (4.10)–(4.14), the following nontrivial solutions can be attained.

Case I: For ϕ1 = 2 ln(a), λ = (ln(a))2 and ψ(ξ) = 1
1+aξ , the new exact solution of

the conformable time fractional CBS equation given in Eq. (1.1) can be identified as

u3(x, y, t) = ϕ0ax+y + ϕ0a
tα(ln(a))2

α + 2a
tα(ln(a))2

α ln(a)

ax+y + a
tα(ln(a))2

α

. (4.15)

Case II: For ϕ1 = 2 ln(a), λ = (ln(a))2 and ψ(ξ) = 1
1−aξ , the exact solution of

Eq. (1.1) is given by

u4(x, y, t) = ϕ0ax+y − ϕ0a
tα(ln(a))2

α − 2a
tα(ln(a))2

α ln(a)

ax+y − a
tα(ln(a))2

α

(4.16)

5 Results

The exact solutions of conformable time fractional (2+1)-dimensional CBS equation
have been attained for the first time by employing the generalized Kudryashov and
modified Kudryashov techniques with the aid of wave transform. The following 3D
graphical models of the obtained solutions u(x, y, t) have been illustrated in Figs. 1,
2, 3, 4, 5, 6, 7, and 8 for various values α and by choosing appropriate values to the
parameters.
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Fig. 1 3D plot of u1(x, y, t) for time fractional CBS equation given in Eq. (4.8) when ϕ0 = 1, y =
1, at (i) α = 0.25, (ii) α = 0.5

Fig. 2 3D plot of u1(x, y, t) for time fractional CBS equation given in Eq. (4.8) when ϕ0 = 1, y =
1, at (i) α = 0.75, (ii) α = 1

Fig. 3 3D plot of u2(x, y, t) for time fractional CBS equation given in Eq. (4.9) when ϕ0 = 1, y =
1, at (i) α = 0.25, (ii) α = 0.5
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Fig. 4 3D plot of u2(x, y, t) for time fractional CBS equation given in Eq. (4.9) when ϕ0 = 1, y =
1, at (i) α = 0.75, (ii) α = 1

Fig. 5 3D plot of u3(x, y, t) for time fractional CBS equation given in Eq. (4.15) when ϕ0 =
1, y = 1, a = 2 at (i) α = 0.25, (ii) α = 0.5

Fig. 6 3D plot of u3(x, y, t) for time fractional CBS equation given in Eq. (4.15) when ϕ0 =
1, y = 1, a = 2 at (i)α = 0.75, (ii) α = 1
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Fig. 7 3D plot of u4(x, y, t) for time fractional CBS equation given in Eq. (4.16) when ϕ0 =
1, y = 1, a = 2 at (i)α = 0.25, (ii) α = 0.5

Fig. 8 3D plot of u4(x, y, t) for time fractional CBS equation given in Eq. (4.16) when ϕ0 =
1, y = 1, a = 2 at (i)α = 0.75, (ii) α = 1

6 Conclusion

Here, the solitary wave solutions of conformable time fractional (2+1)-dimensional
CBS equations are investigated. The generalized Kudryashov and modified
Kudryashov techniques have successfully implemented to formally derive these
solutions. To visualize the mechanism of fractional CBS equation, the graphs of
the acquired solutions are furnished by selecting suitable values to the parameters.
This discourse evident that the focused methods are efficacious for analytical solu-
tions of higher order FDEs. It can also be manifested that the methods are thoroughly
dependable and significant to discover new exact solutions.
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