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Abstract This study investigates the effects of two temperatures on a generalized
thermoelastic plate in light of generalized thermoelasticity. The plate is infinite in
x- and y-direction and has a finite thickness in the z-direction. The origin of the
coordinate system is taken on the middle plane of the plate. Various field quantities
are taken as functions of x, z, and t only. The boundary of the plate is rigidly fixed
and subjected to thermal loading. The governing equations are non-dimensionalized.
To solve the governing equations, potential functions are introduced, and harmonic
solutions are obtained. With the help of obtained solutions, the stress and displace-
ment components, and conductive and thermodynamic temperatures are determined
analytically in the closed-form. Using boundary conditions, the constants in the solu-
tions are obtained. To show the results graphically, numerical results are computed for
copper material. The variation of stress components and conductive and thermody-
namic temperatures, is presented graphically for different values of two-temperature
parameters and compared with one temperature thermoelasticity.
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1 Introduction

The theory of thermoelasticity is the coupling of thermal andmechanical fields. In the
classical theory of thermoelasticity, there are two shortcomings. The first one is that
the heat conduction equation has no elastic term. So, elastic changes do not affect the
temperature. The second one is that it has a parabolic type heat conduction equation
providing infinite speed for heatwaves’ deliverance. Biot [1] introduced the coupled
theory of thermoelasticity, eliminating the first drawback. To overcome the second
shortcoming, generalized theories of thermoelasticity have been developed by many
researchers predicting the finite speed of heatwaves. Lord and Shulman [2] proposed
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the first generalized theory of thermoelasticity by introducing one relaxation time.
Green andLindsay [3] have submitted another approach of thermoelasticity involving
two relaxation times.

In problems of ultra-short laser heating, where very high heat flux generates in
the body for a brief time interval (about 10−7), the two-temperature model’s role
becomes more significant. It explains more realistic results compared to one temper-
ature theory. For heat conduction in deformable bodies, Chen andGurtin [4] andChen
et al. [5] suggested two different temperatures, viz. conductive and thermodynamic
temperatures that arise due to thermal and mechanical processes, respectively, sepa-
rated by heat supply for time-independent situations, and hence when heat supply
vanishes, both temperatures will be equal. But for time-dependent problems, two
temperatures are in general distinct even though heat supply is zero.Warren andChen
[6] explained that, in two-temperature theory, the propagation speed increases and
discontinuities in strain and conductive and thermodynamic temperatures become
smooth. Thereafter, formany years, this theorywas underestimated and ignored. But,
in recent time, two-temperature theory (2TT) has been noticed by many researchers.
They further obtained advancement in two-temperature theory and explained their
applications, primarily describing the continuity of stress function as it is discontin-
uous for one temperature thermoelasticity (1TT) [7]. Various authors have presented
a good number of the problems of two-temperature thermoelasticity by considering
various models and boundary conditions [8–17].

Thepresent study ismotivatedby thebroad applications of two-temperature theory
in pulsed laser technologies in material processing and nondestructive detecting, and
explaining the continuity of the stress function [7]. Also, the plate structures are
broadly utilized in many engineering fields, for example, aerospace, mechanical,
and automotive engineering disciplines. The plate theory is a significant piece of
transport engineering,whereby the utilization of plate and shell structures is common,
particularly in aerospace engineering.

In this study, authors formulated a thermoelastic plate problem to analyze the
impact of two temperatures on symmetric and skew-symmetric modes of various
field quantities due to thermal loading. The Youssef model [18] of the generalized
thermoelasticity with two temperatures has been used to investigate the deformation
in thermoelastic plate. For numerical computations, copper material is taken, and
numerical results are obtained using MATLAB programming. The numerical results
obtained are presented graphically for symmetric as well as skew-symmetric cases
in light of Lord and Shulman’s theory with and without two temperatures. Stress
and displacement components, and conductive and thermodynamic temperatures are
displayed graphically to show the two-temperature effect. The results are compared
graphically with the one temperature thermoelasticity (1TT).
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2 Mathematical Modeling and Solution of the Problem

In this section, basic equations, formulation of the problem, and its solution will be
presented.

2.1 Basic Equations

In the framework of generalized two-temperature thermoelasticity followingYoussef
[18], governing equations and constitutive relations in the absence of body forces
and heat sources are

(λ + μ)u j,ij + μui,jj − γ

(
θ + ν

∂θ

∂t

)
,i

= ρ
∂2ui
∂t2

(1)

Kφ,i i = ρCE

(
∂θ

∂t
+ τ0

∂2θ

∂t2

)
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σij = 2μeij + λekkδij − γ
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The relation between two temperatures:

φ − θ = a∗φ,ii, θ = |T − T0| with θ

T0
� 1 (5)

where ui (i = 1, 2, 3)—displacement components, σi j—stress components, ei j—
strain components, θ—thermodynamic temperature, φ—conductive temperature,
T0—reference temperature, λ, μ—Lame’s parameters, K—thermal conductivity,
ρ—mass density, CE—specific heat at constant strain, γ = (3λ + 2μ)αt , αt -linear
thermal expansion, “a∗”—two-temperature parameter (2TP), τ0, ν—relaxation
times, and n0—parameter.

By putting τ0 = ν = 0, the governing equations correspond to coupled thermoe-
lasticity; n0 = 1, ν = 0 correspond to LS theory and n0 = 0 correspond to GL
theory of thermoelasticity. On taking a∗ = 0, the respective thermoelastic models in
1TT can be obtained.
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2.2 Formulation of the Problem

Consider an infinite elastic plate of finite width “2d,” which is homogeneous,
isotropic, and thermally conducting with initial uniform temperature T0. Initially,
the plate is assumed to be unstrained and unstressed. The middle plane of the plate
coincides with the x–y plane such that –d ≤ z ≤ d and−∞ < x, y < ∞ as shown in
figure below. The origin of the coordinate system is taken at any point of the middle
plane. The boundary surfaces z = ±d are considered to be rigidly fixed with thermal
loading.

We consider the x–z plane as the plane of incidence and restrict our analysis to
this plane so that various quantities are functions of only x, z, and t. Hence, the
displacement components and temperatures are given by

u = u(x, z, t), v = 0, w = w(x, z, t), φ = φ(x, z, t) & θ = θ(x, z, t) (6)

GEOMETRY OF THE PROBLEM 

X

Y

Z
Equations (1)–(5) along with (6) can be written in nondimensional form (after

hiding primes) as
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where nondimensional quantities are introduced as
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(
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2.3 Solution of the Problem

To simplify Eqs. (7)–(9), potential functions � and � are introduced by Helmholtz
decomposition theorem as [19]

u = ∂�

∂x
+ ∂�

∂z
, w = ∂�

∂z
− ∂�

∂x
(13)

Equations (7)–(9) with (13) can be obtained as

∇2φ = (φ̇ − a∗∇2φ̇) + τ0(φ̈ − a∗∇2φ̈)+ ∈ [∇2�̇ + n0τ0(∇2�̈)] (14)

∇2� − ∂2�

∂t2
= θ + ν

∂θ

∂t
(15)

∇2� − 1

δ2

∂2�

∂t2
= 0 (16)

We take the solutions following [19] as

(�,�, φ) = [ f (z), g(z), h(z)] exp[iξ(x − ct)] (17)

where c = ω
ξ
—phase velocity, ω—frequency, and ξ—wave number.

Equations (14)–(16) along with (13) and (17), after some simplifications, yield

u(x, z, t) =[iξ(C3 cosm1z + C4 sinm1z + C5 cosm2z + C6 sinm2z)

− βC7 sin βz + βC8 cosβz] exp[iξ(x − ct)] (18)

w(x, z, t) =[−m1C3 sinm1z + m1C4 cosm1z − m2C5 sinm2z + m2C6 cosm2z

− iξ(C7 cosβz + C8 sin βz)] exp[iξ(x − ct)] (19)
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,

t0 = τ0 + iω−1, t1 = ν + iω−1, t2 = n0τ0 + iω−1.

Terms corresponding to two-temperature parameter “a∗” stand for 2TT. If the
two-temperature parameter “a∗ = 0,” one will get the results for 1TT.

2.4 Boundary Conditions

The boundary conditions are taken as under.
Boundary conditions in nondimensional form at z = ± d are given as.

I. Mechanical boundary conditions: The surfaces of plate are considered rigidly
fixed, hence

u = w = 0, (22)

II. Thermal boundary conditions: Thermal load is applied on surfaces as

φ = G1e
iξ(x−ct), (23)
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G1 is the constant temperature applied on the boundary.

3 Amplitudes of Stress and Displacement Components,
and Conductive and Thermodynamic Temperatures

Invoking boundary conditions (22)–(23) with the help of solutions given in (18)–
(21) and relations (10)–(11), the analytical expressions of stress and displacement
components, and conductive and thermodynamic temperatures for symmetric as well
as skew-symmetric cases are obtained as

(σzz)sym(x, z, t) = [q1C3 cosm1z + q2C5 cosm2z + p1C8β cosβz] exp[iξ(x − ct)]
(σzz)sksym(x, z, t) = [q1C4 sinm1z + q2C6 sinm2z + p1C7β sin βz] exp[iξ(x − ct)]

}

(24)

(σxz)sym(x, z, t) = [q3C3 cosm1z + q4C5 cosm2z + p2C8β cosβz] exp[iξ(x − ct)]
(σxz)sksym(x, z, t) = [q3C4 sinm1z + q4C6 sinm2z + p2C7β sin βz] exp[iξ(x − ct)]

}

(25)

(u)sym(x, z, t) = [iξ(C3 cosm1z + C5 cosm2z + βC8 cosβz] exp[iξ(x − ct)]
(u)sksym(x, z, t) = [iξ(C4 sinm1z + C6 sinm2z) − βC7 sin βz] exp[iξ(x − ct)]

}
(26)

(w)sym(x, z, t) = [−m1C3 sinm1z − m2C5 sinm2z − iξC8 sin βz] exp[iξ(x − ct)]
(w)sksym(x, z, t) = [m1C4 cosm1z + m2C6 cosm2z − iξC7 cosβz] exp[iξ(x − ct)]

}

(27)
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]
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[
1
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(C6 sinm2z)

]
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⎫⎪⎪⎬
⎪⎪⎭

(28)

(θ)sym(x, z, t) =
[ {1 + a∗g1}

α1
(C3 cosm1z) + {1 + a∗g2}

α2
(C5 cosm2z)

]
exp[iξ(x − ct)]

(θ)sksym(x, z, t) =
[ {1 + a∗g1}

α1
(C4 sinm1z) + {1 + a∗g2}

α2
(C6 sinm2z)

]
exp[iξ(x − ct)]

⎫⎪⎪⎬
⎪⎪⎭

(29)

where constants Ci (i = 3, 4, 5, 6, 7, 8) are obtained by using boundary conditions
(22) and (23) such that

Ci =�i

�
, (i = 3, 4, 5, 6, 7, 8)

where,
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� = det(A), A =

⎛
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1
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⎟⎟⎟⎟⎟⎟⎟⎠

,

�i = determinant of matrix A when i th column of A is replaced by column

vector,B = (
0 0 0 0 G1 G1

)T

csi = cosmid, sni = sinmid, i = 1, 2

cs3 = cosβd, sn3 = sin βd,

q j = − m2
jα j − ξ 2

(
1 − 2δ2

)
α j − (

1 + a(m2
j + ξ 2)

)
(1 − iξcν), ( j = 1, 2)

qk =2iξmk−2αk−2, (k = 3, 4)

p1 =2iξβδ2,

p2 =(ξ 2 − β2).

sksym = Skew symmetric, sym = Symmetric.

4 Numerical Results and Discussion

In order to portray theoretical results presented in preceding sections, we have chosen
copper material (following [12]) for evaluation of numerical results and physical data
for which is as given below

λ = 7.76 × 1010Kgm−1s−2, μ = 3.86 × 1010Kgm−1s−2,

ε = 0.0168, ρ = 8954Kgm−3,

T0 = 293K,CE = 383.1JKg−1K−1,

K = 386Wm−1K−1, αt = 1.78 × 10−5K−1, ω = −0.3s−1,

τ0 = 0.003 s, ν = 0 s, t = 0.1 s, x = 1m, ξ = 1m−1,G1 = 1.

The variation of amplitudes of stress component σzz, displacement component
w, thermodynamic temperature (T ), and conductive temperature (φ) for skew-
symmetric and symmetric modes of vibration with the thickness of the plate z in
Figs. 1, 2, 3, 4, 5, and 6 for x = 1 and with the length of the plate x in Figs. 7 and 8
for z = 1 are demonstrated for three different values of two-temperature parameter
(2TP), viz.a∗ = 0, 0.5, 0.9 in the context of two-temperature LS theory. The solid
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Fig. 3 Variation of skew symmetric thermodynamic temperature with plate thickness



78 A. Bajpai and P. K. Sharma

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-2

0

2

4

6

8

z

T s
ym

a*=0
a*=0.5
a*=0.9

Fig. 4 Variation of symmetric thermodynamic temperature with plate thickness

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2

-1

0

1

2

z

(
zz
) s

ks
ym

a*=0

a*=0.5

a*=0.9

Fig. 5 Variation of skew symmetric normal stress component with plate thickness

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5

z

(
zz
) s

ym

a*=0

a*=0.5

a*=0.9

Fig. 6 Variation of symmetric normal stress component with plate thickness



Impact of Two Temperatures on a Generalized Thermoelastic Plate … 79

0 2 4 6 8 10
-3

-2

-1

0

1

2

3

x

W
sy

m

a*=0
a*=0.5
a*=0.9

Fig. 7 Variation of symmetric displacementW with plate length x

0 2 4 6 8 10-0.5

0

0.5

x

W
sk

sy
m

a*=0
a*=0.5
a*=0.9

Fig. 8 Variation of skew symmetric displacementW with plate length x

lines (—), dashed lines (- - -), and dotted lines (· · ·) correspond to 1TT (a∗ = 0) and
2TT (a∗ = 0.5, a∗ = 0.9), respectively.

Figures 1, 2, 3, and 4 represent the skew-symmetric and symmetric conductive
and thermodynamic temperature variation along the plate’s thickness due to thermal
loading, respectively. The symmetric and skew-symmetric components of conductive
and thermodynamic temperature have similar behavior with different magnitudes.
2TThas amaximum impact near the boundary surfaces. Its impact reduces onmoving
away from theboundary to themiddle of the plate. Figures 5 and6 show the symmetric
variation and skew-symmetric normal stress components with plate thickness. It
is clear from the figures that normal stress components for symmetric and skew-
symmetric cases have maximum impact of two-temperature parameter near the load.
Figures 7 and 8 depict the skew-symmetric and symmetric displacement component
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W variation along the length of the plate x. Displacement W has a similar pattern for
both symmetric and skew-symmetric case, but magnitude for both cases is different.
Similar to other field quantities, 2TT has its maximum impact near the loading
boundaries and reduces on moving away from the boundaries.

5 Conclusion

The effect of two-temperature parameter on various quantities in both modes is
maximum on the boundary and decreases on moving toward the plate’s middle plane
except skew-symmetric normal stress and conductive temperature. A similar pattern
of variations in these quantities is observed in 1TT and 2TT.However, various quanti-
ties show higher magnitudes in thermal load environment. Skew-symmetric thermo-
dynamic temperature is less affected by two-temperature parameters as compared to
symmetric one. Conductive and thermodynamic temperatures and normal stress have
their minima in the middle of the plate in symmetric modes. The two-temperature
parameter is observed to have more effects in the symmetric case than the skew-
symmetric one near the plate’s boundary. The two-temperature parameter leads to a
change in themagnitude of various computed quantities; however, trends of variation
remain unaffected.
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