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Abstract A linear stability analysis is applied to study the onset of bioconvection
in a suspension of negatively geotactic (gravitactic) swimmers saturated with a non-
Darcy porous fluid layer under the effect of high-frequency and small-amplitude
vertical vibrations. The time-averaged formulation is used to write the closed system
of equations for average quantities and amplitudes of pulsation quantities in the
fluid, porous layer. The eigenvalue problem is solved using the Galerkin method.
An analytical expression for the modified critical bioconvection Rayleigh–Darcy
number dependence on parameters like vibrational Rayleigh–Darcy number, wave
number, modified Darcy number, and Péclet number has been obtained for both
rigid–rigid and rigid-free cases. The presence of a non-Darcy porous medium lessens
the magnitude of critical bioconvection Rayleigh–Darcy number compared to its
absence. Numerical results and discussions, along with their graphical comparisons,
are explored.

Keywords Gravitactic swimmers · Rigid-free boundary · Non-Darcy porous
medium · The time-averaged method · Vertical vibration

1 Introduction

In cultures of various protozoa, many of the microorganisms such as Paramecium,
flagellate Euglena gracilis, Tetrahymena pyriformis, and ciliated protozoan freely
swim preferentially upwards and gather near the top of the culture medium [1].
These kinds of microorganisms are named negative geotaxis (gravitaxis). Due to the
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density difference between fluid and cells, a layer with a higher density than the fluid
below occurs, which can cause a Rayleigh Bénard type instability [1, 2].

Theoreticalmodels on bioconvection and stability theorywere developed byPedly
and coworkers [2, 3]. The effect of vibration can be utilized to control the stability
of fluid systems and may be necessary for specific pharmaceutical and bioengineer-
ing processes [4]. Kuznetsov and Jiang first studied a model of bioconvection of
negatively geotactic particles in a porous medium, which accounts for cell deposi-
tion and declogging [5], and observed the permeability, the rate of cell deposition
are the important factors that affect the development of bioconvection. Nield and
coworkers investigated the onset of instability of suspension of gyrotaxis in a hori-
zontal porous layer [6]. The thermal behavior of the system is analyzed for the onset
of convection in a vertically vibrated porous saturated fluid layer [7]. Nguyen and
coworkers studied the suspension of gravitactic swimmers in a layer of finite depth
in the absence of porous media [8]. The effect of high-frequency, low-amplitude
vertical vibration in a suspension of different motile microorganisms confined in a
shallow horizontal fluid layer was studied [9, 10]. They reported that the strength
of vibration stabilizes the suspension. Bilgen and coworkers investigated the sus-
pension of gravitactic swimmers in a horizontal thermally stratified fluid layer [11].
Gravitactic bioconvection with double diffusion in a thermally stratified porous layer
was investigated and revealed that over-stability may take place when the diffusivity
of the stabilizing quantity is weaker than that of the destabilizing quantity [12].Many
thin films have been designed by the 2D system of bio-fluid mechanics through the
Hele-Shaw apparatus. Nguyen-Quang and coworkers investigated the 2D gravitactic
bioconvection in a system of Hele-Shaw cells [13].

The other study, such as nanofluid bioconvection in a porous saturated layer,
was addressed in [14]. Vertically vibrated suspension of active swimmers in a fluid
layer and porous saturated fluid layer was analyzed by [15–17]. Saini and Sharma
investigated the effect of vertical flow on the onset of nanofluid thermo-gravitactic
bioconvection in porousmedia. They disclosed that vertical through-flowdisturbs the
formation of bioconvection patterns necessary for the growth of bioconvection [18].
Further, they studied linear and nonlinear stability analysis of thermal convection in
a suspension of gravitactic swimmers in a fluid layer by energy method [19].

In recent times, researchers have published their work on the study of biocon-
vection formation due to suspension of motile microorganisms in porous media and
utilized the Darcy–Brinkman model [14, 20]. The onset of instability of vertically
vibrated suspension of gyrotactic swimmers in a thermally stratified fluid layer was
analyzed by Kumar and Srikanth [21]. In this paper, the study by Kuznetsov [9] is
continued. The mathematical model for this study has been based on the determinis-
tic formulation of a suspension of gravitactic swimmers. Here the non-Darcy model
is utilized to investigate the onset of bioconvection in a high-porosity porous layer
subjected to vertical vibration. The porosity of the porous medium is presumed to
be big enough so that the microorganism can freely swim. Weakly nonlinear analy-
sis of the present study and the other studies, such as the phenomena of oscillatory
instability of the bio-thermally vertically vibrated suspension of negatively geotactic
microorganisms, would also be of great interest.
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2 Model and Governing Equations

We consider a shallow horizontal sparsely packed high-porosity porous layer satu-
rated with the suspension of gravitactic swimmers of depth l is confined between
two parallel plates (z = 0 and z = l) with vertically downward gravity g acting on
it as shown in the Fig. 1. It is assumed that the porous matrix does not absorb the
microorganisms, imposed vertical vibration does not affect the behavior of gravitactic
swimmers, and the fluid is incompressible, then mass conservation equation:

∇.v = 0 (1)

Here v is the fluid filtration velocity vector.
By volume averaging the equation and adding Brinkman term which account for

the inertia effects [22], then the momentum equation:

ρ0ca
[
∂v/∂t

]
= −∇ p + μ̃∇2v −

(
μ/K

)
v + nθΔρ

(
g + b̂ω2 cosωtk

)
(2)

Here ρ0 and ca are the density of fluid and the acceleration coefficient; p and μ̃

are excess pressure and effective viscosity; μ and K are the dynamic viscosity of
suspension and the permeability of the non-Darcy porous medium; n and g are
number density of microorganisms and gravity vector; θ andΔρ are average volume
of microorganism, density difference(ρc − ρ0); b̂ and ω are vibration amplitude and
vibration angular frequency; t and k are time and vertically upward unit vector.

And cell conservation equation:

φ
[
∂n/∂t

]
= −∇.

(
nv + nqck − Dc∇n

)
(3)

where qc and k are the average upswimming velocity of microorganisms in the
porous medium and upward unit vector in the z-direction; Dc and φ are the effective
diffusivity of microorganisms in the porous medium and porosity.

Fig. 1 Schematic diagram of the problem
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To formulate the governing equation for the present study, the time-averaged
method has been adopted [7]. This method provides the time-averaged system of
equations which is valid if the following constraints are utilized [17]. Firstly, fre-
quency of vibration is sufficiently high which makes the vibration period low com-
pared to all the characteristic times scales, i.e., τvibrational = min(τdiffusive, τbuoyancy,
τviscous). Secondly, vibrational amplitude is small enough so that the components
corresponding to the rapid variation in velocity can be omitted, i.e., l/[θ(n1 −
n2)(Δρ/ρ0)] � b̂. Here (n1 − n2) is the density difference (of the cell concentra-
tion). Utilizing these assumptions, the variable quantities are decomposed as the
sum of mean (slowly varying) and rapidly oscillating (with time period τ = 2π/ω

) components to obtain the suitable equations for vibrational suspension. By using
this time-averaging technique, we obtain the following systems of equations:

∇.v = 0 (4)

ρ0ca
[
∂v/∂t

]
= −∇ p + μ̃∇2v −

(
μ/K

)
v + nθΔρg (5)

+
(
ρ0/2

)[(
Δρ/ρ0

)
b̂ω

]2[
θ2

(
w.∇

)(
nk − w

)]

φ
[
∂n/∂t

]
= −∇.

(
n v + nkqc − Dc∇n

)
(6)

The last term in the right-hand side of Eq. (5) is the average body force of vibrational
nature and the vector w is the solenoidal part of nk. Here this vector w satisfies the
Helmholtz decomposition [7, 23]:

curlw = ∇n × k, divw = 0 (7)

The rigid boundary conditions at lower and upper layer are taken as:

at z = 0, 1 : v = 0,
(
n v + nqck − Dc∇n

)
.k = 0, w.k = 0

}
(8)

2.1 Basic State Solution

In this state, we assume that the parameters’ velocity, pressure, and number density
vary in z-direction only. The time-independent quiescent solution of Equations [4–7]
are:

vb = 0, nb
(
z
) = ν exp

(
qcz/Dc

)
, Pe = qcl/Dc wb = 0,

pb(z) = p0 +
[
exp(Pe) − exp

(
qcz/Dc

)]
gνθΔρ

(
Dc/qc

)
⎫⎬
⎭ (9)

where the superscript ’b’ denotes the basic state, nav is the average concentration of

cells, integration constant ν = navPe/
(
exp

(
Pe

) − 1
)
represents the basic number
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density at the bottom of the layer, and Pe is the bioconvection Péclet number which
represents the ratio of the mean cell swimming speed to the speed of bulk fluid
motions.

2.2 Linear Stability Analysis

For the linear stability analysis, applying the small perturbation v = v∗, p = pb + p∗,
n = nb + n∗, w = w∗ to the basic state , we have:

∇.v∗ = 0 (10)

caρ0

(
∂v∗/∂t

)
= −∇ p∗ + μ̃∇2v∗ −

(
μ/K

)
v∗ + gn∗θΔρ (11)

+
(
ρ0/2

)[(
Δρ/ρ0

)
b̂ω

]2[
θ2

(
w∗.∇

)(
n∗k − w∗

)]

φ
[
∂n∗/∂t

]
= −vz

(
∂nb/∂z

)
− qc

(
∂n∗/∂z

)
+ Dc∇2n∗ (12)

curlw∗ = ∇n∗ × k (13)

Here w∗ = (wx , wy, wz), v∗ = (vx , vy, vz), and n∗, which represents vibrational
body force, perturbations to velocity and number density ofmicro-organisms, respec-
tively.
Operating k.curlcurl on Eq. (11) and curl on Eq. (13) we get:

caρ0
(
∂/∂t

)(
∇2vz

)
= −θΔρ∇1n

∗g +
(
ρ0/2

)[(
Δρ/ρ0

)
b̂ω

]2
(14)

×
[
θ2

(
∂nb/∂z

)
∇1

(
wz

)]
+ μ̃

[
∂4vz/∂x

4 + ∂4vz/∂y
4 + ∂4vz/∂z

4

+2
(
∂4vz/∂x

2∂y2 + ∂4vz/∂y
2∂z2 + ∂4vz/∂z

2∂x2
)]

−
(
μ/K

)
∇2vz

∇2wz = ∇1n
∗ (15)

Here ∇1 = ∂2/∂x2 + ∂2/∂y2 is the two-dimensional Laplacian operator. To analyze the distur-
bances into normal modes, the perturbation quantities are taken as follows:

(
vz, n∗, wz

) = (
Vz, Nz, Wz

)
f (x, y) exp

(
σ t

)
(16)

Here,
(∇1 f + α2

)
f (x, y) = 0, and ’α’ is the horizontal wave number. Introducing the following

dimensionless quantities:

zı = z/ l, αı = αl, Vz
ı = νθqcl

2Vz/D
2
c , Pe = qcl/Dc, Wı

z = Wzθ, Nı
z = Nθ

}
(17)

We get the non-dimensionalized system of equations as:
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(
μ̃/μ

)
V ı
z
I V −

[
2αı2

(
μ̃/μ

)
+

(
1/Da

)
+ σ

(
Caρ0l

2/μ
)]

V ı
z
′′ (18)

+
[
αı4

(
μ̃/μ

)
+

(
αı2/Da

)
+ σ

(
αı2Caρ0l

2/μ
)]

V ı
z

+αı2(RbPe)Nı
z − αı2(Rυ

)
exp

(
zı Pe

)
Wı

z = 0

Nı
z
′′ − PeNı

z
′ −

[
αı2 + σ

(
l2φ/Dc

)]
Nı
z − V ı

z exp
(
zı Pe

) = 0 (19)

Wı
z
′′ + αı2

(
Nı
z − Wı

z

)
= 0 (20)

Here, Da = K/ l2 is the Darcy number,
(
RbPe

)
= qcgνθΔρl4/μD2

c is the modified biocon-

vection Rayleigh number, Pe is the Péclet number, Rυ = ρ0
[
θ b̂ωνqcl2

(
Δρ/ρ0

)]2
/2μDc

3 is the
vibrational Rayleigh number, σ is the growth rate. The principal of exchange of stabilities [24]
is valid for this problem; therefore, in Eqs. (18)–(20) σ is set to zero for the onset of stationary
convection.

Da∗
[
V ı
z
I V − 2αı 2V ı

z
′′ + αı 4V ı

z

]
+

[
αı 2V ı

z − V ı
z
′′] (21)

+αı2 RbN
ı
z − αı2 Rv exp

(
zı Pe

)
Wı

z = 0

Nı
z
′′ − PeNı

z
′ − αı2Nı

z − V ı
z exp

(
zı Pe

) = 0 (22)

Wı
z
′′ + αı2

(
Nı
z − Wı

z

)
= 0 (23)

Da∗ = Kμ/ l2μ̃ is the modified Darcy number, Rb =
(
DaRbPe

)
is the bioconvection Rayleigh–

Darcy number, Rv =
(
RυDa

)
is the vibrationalRayleigh–Darcy number. To obtain an approximate

solution to the system of Eqs. (21)–(23), we apply a Galerkin-type weighted residuals method [25].
And select a trial solution (which satisfy the boundary conditions) and write

V ı
z =

M∑
j=1

A j
(
V ı
z

)
j , Nı

z =
M∑
j=1

Bj
(
Nı
z

)
j , Wı

z =
M∑
j=1

C j
(
Wı

z

)
j

⎫⎬
⎭ (24)

Substituting Eq. (24) into system of Eqs. (21)–(23) and applying the standard Galerkin procedure,
we get a system of 3M algebraic equations in 3M variables A j , Bj , C j , ( j = 1, 2, 3 . . . M).
A non-trivial solution of this system (vanishing of the determinant of coefficients) leads to an
interesting eigenvalue equation.

The dimensionless boundary conditions are taken as follows:

at zı = 0, 1; V ı
z = 0, PeNı

z = DNı
z , Wı

z = 0 (25)

and the trial solutions satisfying the boundaries Eq. (25) are chosen as:

(
V ı
z

)
1 = zı

(
1 − zı

)
,

(
Nı
z

)
1 = 2 − Pe

(
1 − 2zı

) − (
Pe

)2(
zı − zı

2)
,

and
(
Wı

z

)
1 = (

zı − zı
2)

⎫
⎬
⎭ (26)

Substituting Eq. (26) into Eqs. (21)–(23) and applying the Galerkin method [25], the eigenvalue
problem takes the form:
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(
Rb

)
cr

= Min
αı≥0

{({[
10

(
Pe

)4 + αı2
(
120 − 10

(
Pe

)2 + (
Pe

)4)](
10 + αı 2

)

×
[
Da∗

(
αı 4 + 20αı 2

)
+

(
10 + αı 2

)]}
+

{
900ξ1α

ı 4
(
10 − (

Pe
)2)

Rv

×
[(

24/
(
Pe

)5 + 2/
(
Pe

)3)(
exp

(
Pe

) − 1
)

−
(
12/

(
Pe

)4)

×
(
exp

(
Pe

) + 1
)]})/[

30ξ1α
ı2

(
10 + αı 2

)(
10 − (

Pe
)2)]}

(27)

where

ξ1 =
(
8/

(
Pe

)2)(
exp

(
Pe

) + 1
)

−
(
16/

(
Pe

)3 + 1/Pe
)(

exp
(
Pe

) − 1
)

(28)

In the absence of vertical vibration, Eq. (27) collapses to:

(
Rb

)
cr

= Min
αı≥0

({[
Da∗

(
αı 4 + 20αı 2

)
+

(
10 + αı 2

)]
(29)

×
[
10

(
Pe

)4 + αı2
(
120 − 10

(
Pe

)2 + (
Pe

)4)]}/[
30ξ1α

ı2
(
10 − (

Pe
)2)])

When Pe tends to zero, above expression reduces to:

(
Rb

)
cr

= Min
αı≥0

({
2Da∗

(
αı 4 + 20αı 2

)
+

(
20 + 2αı 2

)}/(
5ξ1

)
Pe→0

)
(30)

Here, Eq. (30) represents the expression for the critical bioconvection Rayleigh–Darcy number for

high-porosity porous layer case. And for this case
(
Rb

)
cr

is obtained as 12 for the corresponding

critical value of wave number αı
cr which is zero when the value of Da∗ tending to 0.

As a special case, the permeability K approaches to zero, this Eq. (30) set off as:

(
Rb

)
cr

= Min
αı≥0

{
2
(
10 + αı 2

)/[
5ξ1

]
Pe→0

}
= Min

αı≥0

{
6
(
10 + αı 2

)/
5

}
(31)

The above expression Eq. (31) holds for low porosity(Darcy model) and matches completely with
the results obtained by Nield and coworkers for the case of fluid layer confined between two rigid
boundaries [6]. Also this result coincides exactly with the known results for two impermeable
boundaries obtained by Virendra kumar [15, 17].

For the case of stress-free upper and rigid lower surfaces, the analysis is same as that for
rigid–rigid boundary case with the exception of boundary condition [in Eq. (25)] as: at zı =
0; V ı

z = 0, DV ı
z = 0 and zı = 1; V ı

z = 0, D2V ı
z = 0 and trial solution (in Eq. (26)) for(

V ı
z

)
1 as z

ı2
(
1 − zı

)(
3 − 2zı

)
. An analytical relation of

(
Rb

)
cr
is obtained [see inAppendixA.1].

And for limiting case, modified Darcy number Da∗ → 0, when Pe approaches to 0, the critical

bioconvection Rayleigh–Darcy number is
(
Rb

)
cr

= 7.619 for the corresponding critical value of

αı
cr = 0. This

(
Rb

)
cr

value is less in comparison with rigid–rigid case, means the suspension is

less stable in the system with rigid-free boundaries.
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2.3 Results and Discussion

For the fixed values of the dimensionless parameters αı = 1.9, (Rb) = 100, and Pe (0–3) [9, 17],
desired control parameter values are computed and the results are depicted with graphs. Figures2
and 3 illustrate the effect of the bioconvection Péclet number, Pe, on themodified critical bioconvec-
tion Rayleigh–Darcy number, (Rb)cr , for different values of vibrational Ralyeigh–Darcy number
and modified Darcy number respectively. For different values of Rv (0 to 5000) and modified Darcy
number, Da∗ (0.0001 to 1), the bioconvection Rayleigh–Darcy number (Rb)cr increases exponen-
tially as Pe increases. Similar trends were attained in earlier reported study of Kuznetsov in the
absence of porous media [9]. The vibration Rayleigh–Darcy number characterizes the effect of
high-frequency and low-amplitude vertical vibration across the non-Darcy porous fluid layer, as Rv

increases, magnitude of (Rb)cr increases, means vibrations have stabilizing effect on bioconvection.
As modified Darcy number enlarges, the magnitude of (Rb)cr enlarges, which means this modified
Darcy number makes the suspension stable.

In Figs. 4 and 5, the variation of αı
cr against bioconvection Péclet number, Pe, is examined

graphically for distinct values of vibrational Rayleigh–Darcy number, modified Darcy number,
respectively. From Fig. 4, it is observed that αı

cr first increases, after certain range it takes on a
maximum value, then decreases and also αı

cr enlarges as Rv enlarges, shows the stronger vibrations
correlate to larger critical wave number. For different values of modified Darcy number, the signifi-
cant changes in the critical wave number have shown in Fig. 5. It is noticed that, with an increase in
Péclet number (in a certain range, i.e., 0–2) critical wave number increases. Hence, the parameter
Pe reduce the size of cells in this range. The magnitude of αı

cr enlarges for decreased modified
Darcy values.

Fig. 2 Dependence of critical bioconvection Rayleigh–Darcy number (Rb)cr on Péclet number
(Pe) for different values of vibrational Rayleigh–Darcy number (Rv)
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Fig. 3 Dependence of critical bioconvection Rayleigh–Darcy number (Rb)cr on Péclet number
(Pe) for different values of modified Darcy number Da∗

Fig. 4 Dependence of critical wave number(αı
cr ) on Péclet number (Pe) for different values of

vibrational Rayleigh–Darcy number (Rv)
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Fig. 5 Dependence of critical wave number(αı
cr ) on Péclet number (Pe) for different values of

modified Darcy number Da∗

3 Conclusions

This paper analyzes the effect of high-frequency and low-amplitude vertical vibration of the onset of
bioconvection in a suspension of gravitactic swimmers in fluid saturatedwith a horizontal non-Darcy
porous layer of finite depth. The system is solved analytically using the Galerkin technique, and
an expression for the critical bioconvection Rayleigh number for the non-oscillatory convection
is obtained. The numerical results are in a good match-up with formerly published results. The
main conclusions are drawn. The influence of the vibration effect stabilizes the suspension, and
high-frequency vibrations can be applied to control (suppress) bioconvection. The impact of the
modified Darcy number is to stabilize the system. Due to the presence of a non-Darcy porous
medium, the magnitude of the parameters, bioconvection Rayleigh–Darcy number, wave number
is less in comparison with its absence. The suspension with rigid-rigid boundaries is more stable
than the system with rigid-free boundaries.

Appendix

An analytic expression for the dependence of critical bioconvection Rayleigh–Darcy number for
rigid-free boundaries case is given below:
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(
Rb

)
cr

= Min
αı≥0

{({[
Da∗

(
19αı 4 + 432αı 2 + 4536

)
+

(
19αı 2 + 216

)](
10 + αı 2

)

×
[
10

(
Pe

)4 + αı2
(
120 − 10

(
Pe

)2 + (
Pe

)4)]}
+

{
37800ψ1α

ı 4
(
10 − (

Pe
)2)

Rv

×
[
2 exp

(
Pe

)
/
(
Pe

)3 −
(
6 exp

(
Pe

) − 18
)
/
(
Pe

)4 −
(
72 exp

(
Pe

) − 192
)
/
(
Pe

)5

+
(
600 exp

(
Pe

) + 840
)
/
(
Pe

)6 − 1440
(
exp

(
Pe

) − 1
)
/
(
Pe

)7]})

/[
90ψ1α

ı2
(
10 + αı 2

)(
126 + 7Pe − 13

(
Pe

)2)]}
(32)

where ψ1 = − exp
(
Pe

)
/Pe +

(
4 exp

(
Pe

) − 12
)
/
(
Pe

)2 +
(
54 exp

(
pe

) − 138
)
/
(
Pe

)3

−
(
444 exp

(
Pe

) + 612
)
/
(
Pe

)4 + 1056
(
exp

(
Pe

) − 1
)
/
(
Pe

)5 and
(
ψ1

)
Pe→0

= 3/10
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