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Abstract This paper investigates the provoked flow pattern due to an impulsive
motion of porous wavy wall with no slip suction velocity under the influence of
magnetic field. It is assumed that the amplitude of the wall is much smaller than the
developed boundary-layer thickness. This engendered flow pattern has two signifi-
cant flow regimes: Regime-I near to the wall boundary where flow is affected due to
waviness and viscosity and Regime-II is adjacent to the boundary-layer region, i.e.,
in the core region. Flows in these regimes are governed by boundary-layer equations,
and their solution is determined by considering the expansion in terms of smallness
of the amplitude oscillations. Results obtained are depicted graphically. It is shown
that themagnetic field and suction parameter tend to pull down the effect of Reynolds
stress.
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Nomenclature

vx ,vy Velocity Component
a∗ Dimensionless amplitude of the wall
B0 Applied magnetic field
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Greek symbols

ν Dynamic viscosity
� Stream function
ρ Fluid density
σ Electrical conductivity
ε Small amplitude of oscillation
λ Wave length

Non-dimensional Number

�ω Magnetic interaction parameter
S Suction parameter

1 Introduction

The Rayleigh problem is the subject of determining the flow caused by a sudden
movement of an infinitely long plate from rest, which leads to the study of
viscous boundary layer. Rayleigh [1] initiated the theoretical explanation on acoustic
streaming. The properties of acoustic streaming are typically seen when the size of
the flow region is very small comparedwith thewavelength (λ), butmuch greater than
the boundary-layer thickness δ. Cuevas and Ramos [2] investigated the effects of a
uniform, transverse magnetic field in the steady streaming associated with the oscil-
latory boundary-layer flow of an electrically conducting fluid. Fathimunnisa et al.
[3] have analyzed the flow pattern generated due to an interaction of standing wave
in the presence of transverse magnetic field with a fluid, which is slowly discharged
from the porous wall. In a viscous incompressible fluid, Shankar and Sinha [4] inves-
tigated the fluid motion caused by the impulsive motion of a wavy wall. The steady
streaming caused by an oscillating viscous flow over a wavy wall is investigated by
Lyne [5] using the conformal transformation approach. Schlichting [6] originally
treated the steady streaming due to an oscillating incompressible flow over a curved
boundary. Assuming the amplitude of oscillation (U∞/ω ∗ λ) and amplitude of the
wall (A/δ) to be small, Kaneko and Honji [7] investigated the double structures of
steady streaming in an oscillatory viscous flow over a wavywall. Vittori andVerzicco
[8] analyzed the viscous oscillatory flow over a wavy wall of small amplitude, taking
into account nonlinear effects and considering amplitude of fluid displacement (a∗)
to be small, equal, and greater than the wavelength (L∗) of the wall perturbation.

The problem analyzed in this paper focuses on the flow about an infinite porous
wavy wall executing vibrations about the know solution of the flat wall [Rayleigh].
These drag reduction models depict the effect of transverse magnetic field on the
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eddies generated due to Reynolds stresses in an oscillatory electrically conducting
fluid is commonly used in practical situation such as in the field of biomechanics,
civil engineering, in the study of the interaction between gravity water waves and
sea bottom in the near shore region, transpiration cooling of re-entry vehicles, and
rocket boosters. In this paper, we studied the effect of transverse magnetic field on
the fluid flow generated by the uniform impulsive motion of the porous wavy wall
with no slip suction velocity. The equation is then solved by the perturbation method
with the main objective to investigate the flow pattern. The influence of magnetic
field, suction, andwaviness of the boundaries on the flowhas been shown analytically
through the analysis of the velocity and skin friction. To achieve this goal, the paper is
organized as follows: In Sect. 2, we have come up with the mathematical formulation
of the problem. In Sect. 3, perturbation method is applied to obtain results. In Sect. 4,
the results are discussed and conclusions are drawn.

2 Formulation of the Problem

Consider an incompressible electrically conducting fluid in a semi-infinite region
bounded by a wavy wall y = A cos

(
2πx
λ

)
in the presence of a uniform transverse

magnetic field with strength B0. In our analysis, the assumptions made are as follows
(Fig. 1):

Fig. 1 Schematic of the problem
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(i) We assumed that the amplitude of the wall is much smaller than the boundary-
layer thickness.

(ii) We assumed that the quantity of fluid removed from the stream is so small that
only fluid particles in the immediate neighborhood of wall are sucked away.
This ensures the presence of no slip with suction.

(iii) We assumed that the induced magnetic field is much smaller than the applied
magnetic field. This will be true, if the magnetic Reynolds number Rm =
μeσλU0 is much less than unity.

For this two-dimensional situation, the equation and boundary conditions
describing the motion of the incompressible fluid flow are as follows:

∂vx

∂x
+ ∂vy

∂y
= 0, (1)

∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
= − 1

ρ

∂P

∂x
+ ν

(
∂2vx

∂x2
+ ∂2vx

∂y2

)
− σ B0

ρ
(Ez + vx B0), (2)

∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
= − 1

ρ

∂P

∂y
+ ν

(
∂2vy

∂x2
+ ∂2vy

∂y2

)
, (3)

vx = 0 vy = V0 @y = A cos
(
2πx
λ

)

vx = eiωt asy → ∞
}
, (4)

where vx , vy is the velocity component in the x, y direction and a is the dimensionless
amplitude of the wall. Since the boundary layer is thin, it is clear that the flow in it
takes place parallel to the surface (i.e., y-component flow velocity v is very small as
compared to x-component flow velocity). Since the velocity varies slowly along the
x-axis, ∂2vx

∂x2 may be neglected in comparison with ∂2vx
∂y2 and comparing (2) with (3)

we see that the derivative ∂P
∂y is small in comparison with ∂P

∂x , i.e.,
∂P
∂y ≈ 0.

Hence, the governing equations are given by

∂vx

∂x
+ ∂vy

∂y
= 0, (5)

∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
= U

∂U

∂x
+ ∂U

∂t
+ ν

(
∂2vx

∂y2

)
− σ B2

0

ρ
(vx −U ), (6)

Because of the ponderomotive forces �J × �B per unit volume along x-axis which
is equal to σ B0(Ez + vx B0), the condition for the pressure gradient along x-axis is
as follows:

− 1

ρ

∂p

∂x
− σ B0

ρ
(Ez + vx B0) = U

∂U

∂x
+ ∂U

∂t
, (7)
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Equation (7) confirms the assumption that the velocity field generated in boundary
layer will not be affected by the Ez , but it will modify the pressure gradient.

Let us define the dimensionless variables;

τ =ωt, X = x

λ
, Y = y

δ
, δ =

√
2ν

ω
, v∗

x = vx

U∞
,

v∗
y = vy

U∞ ∗ δ
/
λ

, U ∗ = U

U∞
, V ∗

0 = V0

U∞ ∗ δ
/
λ

, (7a)

After non-dimensionalization of Eqs. (5) and (6) using Eq. (7a) and on neglecting
the asterisk, the equation of motion and the corresponding boundary conditions can
be rewritten as follows:

∂vx

∂X
+ ∂vy

∂Y
= 0, (8)

2
∂vx

∂τ
+ ε

(
vx ∗ ∂vx

∂X
+ vy ∗ ∂vx

∂Y

)

= 2 ∗ ∂U

∂τ
+ ε ∗U

∂U

∂X
+

(
∂2vx

∂y2

)
− �ω(vx −U ), (9)

vx = 0 vy = S as Y = Yw = a∗ cos(2 ∗ π ∗ X)

vx = eiτ as Y → ∞
}
, (10)

where ε = 2∗U∞
ω∗λ

,�ω = 2∗σ B2
0

ρ∗ω
and S = V0

U∞∗δ/λ are dimensionless parameters,
respectively, and �ω is the magnetic interaction parameter, which is defined as
the ratio of the amplitude of the oscillation to the wave length λ and the ratio of
the magnetic to the inertial forces, respectively. S is the suction parameter. In the
present problem, we assume that there is small amplitude of oscillation, i.e., ε � 1
is considered; this assure that boundary-layer separation will not arise.

Let us define a new co-ordinate system in terms of old co-ordinates as follows:

X = χ, η = Y − Yw(X), (11)

and therefore
∂

∂X
= ∂

∂χ
+ 2 ∗ π ∗ a∗ sin(2 ∗ π ∗ χ)

∂

∂η
,

∂

∂Y
= ∂

∂η
, (12)

Equation (12) represents the change to the reference frame from the flat to wavy
wall. Since waviness of the wall affects the volumetric flow conservation, it neces-
sitates defining the flow defect equation.U∞δ is the volume flow defect at the crest
of the wavy wall due to the presence of the boundary layer. The incompressibility
condition signifies that this quantity must be preserved in any transversal section.

Hence, the volume defect balance equation is given as follows:
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U∞ ∗ δ = u0

[
δ + A

(
1 − cos

2 ∗ π ∗ x

λ

)]
,

where u0 is the modified velocity due to the wavy wall. In dimensionless form, the
above expression can be written as follows:

U0(χ) = u0
U∞

= [
1 + a∗(1 − cos 2 ∗ π ∗ χ)

]−1
, (13)

Thus, the dimensionless outer flow is as follows:

U (χ, τ ) = U0(χ) ∗ eiτ .

Using the transformation (11), Eqs. (8)–(10) can be rewritten as follows:

∂vx

∂χ
+ 2 ∗ π ∗ a∗ sin(2 ∗ π ∗ χ) ∗ ∂vx

∂χ
+ ∂vy

∂η
= 0, (14)

2
∂vx

∂τ
+ ε

(
vx ∗

[
∂vx

∂χ
+ 2 ∗ π ∗ a∗ sin(2 ∗ π ∗ χ) ∗ ∂vx

∂η

]
+ vy ∗ ∂vx

∂η

)

= 2 ∗ ∂U

∂τ
+ ε ∗U

∂U

∂χ
+

(
∂2vx

∂η2

)
− �ω(vx −U ), (15)

vx = 0 vy = S as η = 0
vx = U0(χ) ∗ eiτ as η → ∞

}
, (16)

To solve the above system of equations by the method of perturbation
[Schlichting6], let us express the velocity in the form

vx (χ, η, τ, ε,�ω) =v(1)
x (χ, η, τ, ε,�ω)

+ ε ∗ v(2)
x (χ, η, τ, ε,�ω) + O

(
ε2

)
, (17)

where the superscripts 1 and 2 represent the first approximation and second
approximation, respectively.

3 Solution of the Problem

3.1 First Approximation (ε(0))

Substituting Eq. (17) in Eq. (15) and equating the terms independent of ε, we get at
O

(
ε0

)
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2
∂v(1)

x

∂τ
− ∂2v(1)

x

∂η2
+ �ω

(
v(1)
x −U

) = 2 ∗ ∂U

∂τ
, (18)

Let us substitute,
v(1)
x = F(η) ∗ eiτ in Eq. (18), we obtain the solution as follows:

v(1)
x = Re

{[
1 + a∗(1 − cos 2 ∗ π ∗ χ)

]−1 ∗ (
1 − eJη

) ∗ eiτ
}
, (19)

where J = √
�ω + 2 ∗ I .

The corresponding stream function can be written as follows:

�(1) = −Sχ + Re
{[
1 + a∗(1 − cos(2 ∗ π ∗ χ))

]−1 ∗ ξ (1)(η) ∗ eiτ
}
. (20)

where ξ (1)(η) = η + e−J∗η

J − 1
J ,

3.2 Second Approximation (ε(1))

The second approximation in terms of stream function can be written as follows:

2
∂2�

∂τ ∗ ∂η
− ∂3�(2)

∂η3
+ �ω

∂�(2)

∂η

= ε

(
U

∂U

∂χ
− ∂�(1)

∂η
∗ ∂2�(1)

∂χ ∗ ∂η
+ ∂�(1)

∂χ
∗ ∂3�(1)

∂η2

)
, (21)

The right-hand side of Eq. (21) contains terms proportional to cos2(τ ). This gener-
ates time-independent terms, which leads to steady streaming flow. Considering only
this part of the velocity, the stream function �(2) is written as follows:

�(2) = −Sχ − 2πa∗ sin(2 ∗ π ∗ χ)
[
ξ (1)(η) − ξ (2)(η)

]
. (22)

Once Eqs. (20) and (22) is introduced in Eq. (21), we arrive the equation which
is as follows:

ξ (2)′′′(η) − �ωξ(2)′(η) = −2 ∗ e−aη sin(bη) − 2 ∗ ε

[1 + a∗(1 − cos(2 ∗ π ∗ χ))]3

− ε ∗ e−2aη

[1 + a∗(1 − cos(2 ∗ π ∗ χ))]3
{1 + cos(bη)}

+ 3 ∗ ε ∗ e−aη ∗ cos(bη)

[1 + a∗(1 − cos(2 ∗ π ∗ χ))]3
− ε ∗ e−aη ∗ η ∗ a ∗ cos(bη)

[1 + a∗(1 − cos(2 ∗ π ∗ χ))]3
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− ε ∗ e−aη ∗ η ∗ b ∗ sin(bη)

[1 + a∗(1 − cos(2 ∗ π ∗ χ))]3
, (23)

On solving Eq. (23) and eliminating the arbitrary constant with the boundary
conditions, the equation obtained is as follows:

ξ (2)(η) =−[
γ1p + γ3p + γ4p + γ6p

]

√
�ω

− D1p + D4p + D6p

+
(
γ1p + γ3p + γ4p + γ6p

)

√
�ω

∗ e−√
�ωη

+ e−aη
[
D1p ∗ cos(bη) + D2p ∗ sin(bη)

] + D3p ∗ η − D4p ∗ e−2aη

− e−2aη
[
D5p ∗ sin(bη) + D6p ∗ cos(bη)

]

+ e−aη ∗ η
[
D7p cos(bη) + D8p ∗ sin(bη)

]
, (24)

On differentiating Eq. (24), we get the equation as follows:

ξ (2)′(η) = − (
γ1p + γ3p + γ4p + γ6p

) ∗ e−√
�ωη

+ e−aη
[
γ1p ∗ cos(bη) + γ2p ∗ sin(bη)

]

+ γ3p + γ4p ∗ e−2aη

+ e−2aη
[
γ5p ∗ sin(bη) + γ6p ∗ cos(bη)

]

+ e−aη ∗ η
[
γ7p cos(bη) + γ8p ∗ sin(bη)

]
. (25)

The above constants are defined in Appendix.

3.3 Skin Friction

The skin friction is defined as the shearing stress exerted by the fluid on the surface
over which it flows, and is given by

τxy = μ ∗ ∂v(1)
x

∂η
, (26)

On differentiating Eq. (19) and substituting in Eq. (26), we get the equation as
follows:

τxy = μ

[1 + a∗(1 − cos(2 ∗ π ∗ χ))]
∗ {

a ∗ e−aη cos(τ − bη) + b ∗ e−aη sin(bη − τ)
}
.

(27)

The skin friction coefficient at the wall is as follows:c f = 2∗τ
ρ∗U 2 ,
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Substituting Eq. (27) in above expression, the equation we get is as follows:

c f =2 ∗ ν ∗ [
1 + a∗(1 − cos(2 ∗ π ∗ χ))

]

{
a ∗ e−aη cos(τ − bη) + b ∗ e−aη sin(bη − τ)

}
. (28)

The above constants are defined in Appendix.

4 Result and Discussion

Intricacy of the considered problem is analyzed by the figures plotted usingMATH-
EMATICA 11.1. These figures show the significant variation in the flow pattern
due to the presence of the magnetic field and waviness. Fathimunnisa et.al [3] have
presented the model of porous flat plate with the velocity distribution expression as
follows:

For Flat Porous Plate

ζ (2) =δ

{

−
(
β2p + β3p + β5p

)

√
2�B

− α2p + α3p − α5p +
(
β2p + β3p + β5p

)

√
2�ω

∗ e−√
2�Bη + e−aη

[
α1p sin(bη) + α2p cos(bη)

]

+ ηe−aη
[
α6p sin(bη) + α7p cos(bη)

] − α3pe
−2aη

+e−2aη
[
α4p sin(2bη) + α5p cos(2bη)

]}
.

In this manuscript, the velocity expression will take a form.

For Porous Wavy Plate

ξ (2)(η) =−[
γ1p + γ3p + γ4p + γ6p

]

√
�ω

− β1p + β4p + β6p

+
(
γ1p + γ3p + γ4p + γ6p

)

√
�ω

∗ e−√
�ωη

+ e−aη
[
D1p ∗ cos(bη) + D2p ∗ sin(bη)

]

+ D3p ∗ η − D4p ∗ e−2aη − e−2aη
[
D5p ∗ sin(bη) + D6p ∗ cos(bη)

]

+ e−aη ∗ η
[
D7p cos(bη) + D8p ∗ sin(bη)

]
.

where all the notations in the above expressions are presented in [3] appendix as well
as in current appendix. The velocity distribution of the flow pattern developed in the
current manuscript is compared with the velocity distribution established in [3].

Figure 2b represents the variation of stream function with magnetic interaction
parameter. This graph depicts that the flow is influenced by the magnetic interaction
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Fig. 2 aVelocity distribution perpendicular to porous wavy and flat wall for different�ω . b Stream
function plot for S = 0.01 and�ω = 0.05, 0.09, 0.5, 1.2. c Stream function plot for S = 0.01, 10
and�ω = 0.05

parameter, whereas Fig. 2c shows that for the fixed magnetic interaction parameter,
the streamlines are damped as the suction parameter is increased.

Figure 3 represents the skin friction plot for different magnetic interaction param-
eters. It describes the flow Regime-I. It shows that skin friction is increasing with
increase in magnetic field whereas it is decreasing from (0.4652, 0.0811) onwards.
This figure depicts that themagnetic fieldwill tend to retard theflowafterη = 0.4652.
From η = 0 to 0.46, flow will behave in a reverse way.
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Fig. 3 Skin friction for Flat and Porous wavy wall for �ω = 0.1, 0.4, 1.2

5 Conclusions

1. Damping phenomenon confirms that the increase in magnetic field tends to pull
down the Reynold stress in both cases, i.e., wavy wall and flat plate. Hence, due
to this phenomenon, a retarded zone is produced in the flow pattern.

2. Noteworthy increase in velocity for flow phenomena in case of wavy wall is
seen due to the roughness of the wall.

3. In the considered flowfield, the electromagnetic force ismore dominant over the
oscillatory motion present in the fluid. This helps in dampening the oscillatory
flow. Also, this depicts that the flow changes due to the suction parameter.

4. Increase in magnetic parameter results the flow to have a retard zone due to the
large shearing stress.

5. This figure also depicts that flat porous wall has large shearing stress near the
boundary as compared to the wavy porous wall. This conveys that rough surface
will help to reduce the large shearing stress as compared to the flat surface.

Our studies make it easier to develop powerful acoustofluidic devices for a variety
of chemical and biomedical applications.

Acknowledgements The authors thank the university authorities for providing the necessary
facilities. The authors express their sincere gratitude to Shaik Abdul Sayeed for his support.

Conflict of Interest Authors have no conflict of interest.

Appendix

a = (
4 + �2

ω

) 1
4 ∗ cos

(
1

2
Arg[2 ∗ i + �ω]

)
, (29)

b = (
4 + �2

ω

) 1
4 ∗ sin

(
1

2
Arg[2 ∗ i + �ω]

)
, (30)
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A1 = 3b2a − a3 + �ω ∗ a

3a2 − �ω − b2
, (31)

B1 = 6b2a − 8a3 + 2 ∗ �ω ∗ a

12a2 − �ω − b2
, (32)

E = A2
1 − b2

2A1
, (33)

M1p = 2
(
3 ∗ a2 − �ω − b2

) ∗ (
b2 + A2

1

) , (34)

M2p = 2 ∗ ε

�ω[1 + a∗(1 − cos(2 ∗ π ∗ χ))]3
, (35)

M3p = ε

[1 + a∗(1 − cos(2 ∗ π ∗ χ))]3 ∗ (
2 ∗ a ∗ �ω − 8 ∗ a2

) , (36)

M4p = ε

[1 + a∗(1 − cos(2 ∗ π ∗ χ))]3 ∗ (
12 ∗ a2 − �ω − b2

) ∗ (
b2 + B2

1

) , (37)

M5p = 3 ∗ ε

[1 + a∗(1 − cos(2 ∗ π ∗ χ))]3 ∗ (
3 ∗ a2 − �ω − b2

) ∗ (
b2 + A2

1

) , (38)

M6p = ε

[1 + a∗(1 − cos(2 ∗ π ∗ χ))]3 ∗ (
3 ∗ a2 − �ω − b2

) ∗ 2A1
(
b2 + E2

) ,

(39)

D1p = M1p ∗ b + M5p ∗ A1 + M6p ∗ a ∗ E − M6p ∗ b2, (40)

D2p = −M1p ∗ A1 + M5p ∗ b + M6p ∗ a ∗ b − M6p ∗ b ∗ E, (41)

D3p = M2p, (42)

D4p = M3p, (43)

D5p = M4p ∗ b, (44)

D6p = M4p ∗ B1, (45)

D7p = −M5p ∗ A1 ∗ a + M5p ∗ b2, (46)

D8p = −M5p ∗ b ∗ a − M5p ∗ A1 ∗ b, (47)
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γ1p = −a ∗ D1p + b ∗ D2p + D7p, (48)

γ2p = −b ∗ D1p − a ∗ D2p + D8p, (49)

γ3p = D3p, (50)

γ4p = 2 ∗ a ∗ D4p, (51)

γ5p = 2 ∗ a ∗ D5p + b ∗ D6p (52)

γ6p = −b ∗ D5p + 2 ∗ a ∗ D6p, (53)

γ7p = −a ∗ D7p + b ∗ D8p, (54)

γ8p = −b ∗ D7p − a ∗ D8p. (55)
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