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Abstract In this study, we consider the problem of testing the hypothesis for the
quantile θ = μ + ησ1 (η is known) when independent random samples are available
from two normal populations with a common mean μ and ordered restricted vari-
ances. Utilizing some of the popular estimators of the common mean under order
restricted variances and the generalized p-value approach, we propose several test
procedures for the quantiles. All the proposed test procedures are evaluated through
their sizes and powers using the Monte Carlo simulation procedure. It has been
observed that the proposed tests compete with each other. Finally, two datasets have
been considered for illustrating the testing procedures.
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1 Introduction

Suppose two normal populationswith a commonmeanμ and unknown different vari-
ances σ 2

1 and σ 2
2 are available. Further, it is known in advance that the variances are

ordered. Particularly, let (X11, X12, . . . , X1n1) and (X21, X22, . . . , X2n2) be indepen-
dent observations of sizes n1 and n2 available from N (μ, σ 2

1 ) and N (μ, σ 2
2 ), respec-

tively. It is known that (X̄1, X̄2, S21 , S
2
2 ) is the minimal sufficient for (μ, σ 2

1 , σ 2
2 ),

where X̄1 = ∑n1
i=1 X1i/n1 ∼ N (μ, σ 2

1 /n1), X̄2 = ∑n2
j=1 X2 j/n2 ∼ N (μ, σ 2

2 /n2),

S21 = ∑n1
i=1(X1i − X̄1)

2 ∼ σ 2
1 χ2

n1−1 and S22 = ∑n2
j=1(X2 j − X̄2)

2 ∼ σ 2
2 χ2

n2−1.All the

random variables X̄1, X̄2, S21 and S22 are stochastically independent.
The problem discussed here is to test the hypothesis regarding the quantile θ =

μ + ησ1 under the belief that the variances are ordered, that is, σ 2
1 ≤ σ 2

2 . Here,
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η = �−1(p), p ∈ (0, 1), and � is the cdf of a standard normal random variable.
Specifically, we consider the hypothesis testing

H0 : θ = θ0 against H1 : θ �= θ0, (1)

where θ0 ∈ R is a predefined constant.
Note that the quantities like—median, quartiles, deciles, percentiles are obtained

from quantiles by considering the different values of η; hence, we consider the testing
of the quantile. Several literature pieces are available in the problem of estimating
the quantiles of normal and exponential distributions. The first work in this direction
was probably considered by Zidek [25], who addressed the problem of estimating
quantiles in the case of the normal population and obtained some decision-theoretic
results. Further, Rukhin [20] discussed the estimation problem on the quantile of
normal populations in decision-theoretic viewpoint and gives some application.

Researchers also considered estimating quantiles in the presence of more than
one independent normal populations with an equal mean. For some results in this
direction, one can refer to Kumar and Tripathy [12], Tripathy et al. [23] and the
references cited therein. Recently, under the order restriction on variances, Nagamani
and Tripathy [17] considered estimating quantiles of two Gaussian populations with
equalmean. Comparison of quantiles of two or several distributions is also useful, and
the same has been considered by Guo and Krishnamoorthy [6] and Li et al. [13]. The
problem of interval estimation and testing for quantiles of two normal populations
with equal mean and unrestricted variances has been recently investigated by Khatun
et al. [10]. The application of quantiles can be seen in the study of life testing,
reliability, survival analysis, statistical quality control and related areas. We refer
to Saleh [21], Keating and Tripathi [8] and the references cited therein for some
application of quantiles.

The current problem has its importance in the sense that the test procedures
obtained for the quantiles are based on the estimators of the common mean under
order restricted variances. In a particular case, by choosing η = 0, one can write all
the test procedures easily. The problem of estimating common mean of two or more
normal populations with unrestricted variances has been considered by Elfessi and
Pal [4], Jena et al. [7] and Misra and van der Meulen [15]. The problem of hypothe-
sis testing on the common mean of normal populations without order restriction on
variances has drawn several researchers’ attention in the past, and probably, Cohen
and Sackrowitz [3] was the first to consider this problem. Krishnamoorthy and Lu
[11] considered testing the common mean of two Gaussian populations using the
generalized variable method. Further, Lin and Lee [14] extended their results to sev-
eral normal populations. We refer to Chang and Pal [2] and Pal et al. [18] for some
review on testing common mean of several Gaussian populations.

The rest of our contributions can be described as follows. In Sect. 2, we discuss
some well-known results on estimating common mean μ of two normal populations
with and without order restrictions on variances. In Sect. 3, we propose some gener-
alized pivot variable and using these constructed generalized test variable for testing
the quantile θ. The generalized test variables have been constructed using some of
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the well-known estimators of the common mean under order restricted variances. A
comprehensive simulation study has been done in Sect. 4 in order to compare the
performances of all the proposed tests in terms of size and power for several combi-
nations of sample sizes and parameters. Finally, the article is concluded with some
real-life applications.

2 Some Basic Results

In literature, several estimators are available for the common mean of two normal
populations when there is no restriction on the variances and also when there is order
restriction on variances, that is σ 2

1 ≤ σ 2
2 .

When there is no order restriction on the variances, some well-known estimators
for the common mean μ are proposed by Graybill and Deal [5], Khatri and Shah [9],
Moore and Krishnamoorthy [16], Tripathy and Kumar [22] and the grand sample
mean, which are given as follows,

μGD = (n1 − 1)n1S22 X̄1 + (n2 − 1)n2S21 X̄2

(n1 − 1)n1S22 + (n2 − 1)n2S21

μKS = (n1 − 3)n1S22 X̄1 + (n2 − 3)n2S21 X̄2

(n1 − 3)n1S22 + (n2 − 3)n2S21

μMK =
√

(n1 − 1)n1S22 X̄1 +
√

(n2 − 1)n2S21 X̄2
√

(n1 − 1)n1S22 +
√

(n2 − 1)n2S21

μTK =
√
n1S22bn2 X̄1 +

√
n2S21bn1 X̄2

√
n1S22bn2 +

√
n2S21bn1

μGM = n1 X̄1 + n2 X̄2

n1 + n2

where bn1 = Γ ((n1−1)/2)√
2Γ (n1/2)

and bn2 = Γ ((n2−1)/2)√
2Γ (n2/2)

.

Further, Elfessi and Pal [4] proposed an estimator for the common mean when
the variances are ordered as σ 2

1 ≤ σ 2
2 or equivalently σ1 ≤ σ2 which is

μ̂GD =
{

(1 − C)X̄1 + C X̄2, if S21
n1−1 ≤ S22

n2−1

C∗ X̄1 + (1 − C∗)X̄2, if
S21

n1−1 >
S22

n2−1 ,
(2)

where

C = n2(n2 − 1)S21
n1(n1 − 1)S22 + n2(n2 − 1)S21



238 H. Khatun and M. R. Tripathy

and

C∗ =
{
C, if n1 = n2

n1
n1+n2

, if n1 �= n2.

When σ 2
1 ≤ σ 2

2 , the estimator μ̂GD dominates μGD stochastically and universally
for two normal populations. The results have been extended for several Gaussian
populations by Misra and van der Meulen [15].

Jena et al. [7] considered the same problem and proposed some alternative esti-
mators of the common mean μ which improve upon the estimators μKS, μMK and
μTK when σ 2

1 ≤ σ 2
2 . These improved estimators are given by

μ̂KS =
⎧
⎨

⎩

(1 − C1)X̄1 + C1 X̄2, if S21
S22

≤ n1−3
n2−3

C∗
1 X̄1 + (1 − C∗

1 )X̄2, if
S21
S22

> n1−3
n2−3 ,

(3)

μ̂MK =

⎧
⎪⎨

⎪⎩

(1 − C2)X̄1 + C2 X̄2, if
√

(n2−1)S21√
(n1−1)S22

≤
√
n2√
n1

C∗
2 X̄1 + (1 − C∗

2 )X̄2, if
√

(n2−1)S21√
(n1−1)S22

>
√
n2√
n1

,

(4)

μ̂TK =
⎧
⎨

⎩

(1 − C3)X̄1 + C3 X̄2, if S1
S2

≤
√
n2bn2√
n1bn1

C∗
3 X̄1 + (1 − C∗

3 )X̄2, if
S1
S2

>
√
n2bn2√
n1bn1

,
(5)

where C1 = n2(n2−3)S21
n1(n1−3)S22+n2(n2−3)S21

, C2 =
√
n2(n2−1)S1√

n1(n1−1)S2+√
n2(n2−1)S1

,

C3 =
√
n2bn1 S1√

n1bn2 S2+
√
n2bn1 S1

and

C∗
i =

{
Ci , if n1 = n2

n1
n1+n2

, if n1 �= n2.

for i = 1, 2, 3.
They proved that these estimators dominate the unrestricted estimatorsμKS, μMK

and μTK in terms of stochastic domination and Pitman nearness criteria. Applying
Brewster and Zidek [1] technique, they have also improved the estimators μGD,

μKS, μMK and μTK under order restricted variances. These improved estimators are,
respectively, given by

μa
GD =

{
μGD, if S21

n1−1 ≤ S22
n2−1

μGM, if S21
n1−1 >

S22
n2−1 ,

(6)

μa
KS =

{
μKS, if S21

n1−3 ≤ S22
n2−3

μGM, if S21
n1−3 >

S22
n2−3 ,

(7)
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μa
MK =

⎧
⎨

⎩

μMK, if
√

S21
n1−1 ≤

√
S22

n2−1

μGM, if
√

S21
n1−1 >

√
S22

n2−1 ,
(8)

μa
TK =

⎧
⎨

⎩

μTK, if S1
S2

≤
√
n2bn2√
n1bn1

μGM, if S1
S2

>
√
n2bn2√
n1bn1

.
(9)

Jena et al. [7] noted that for unequal sample sizes (n1 �= n2), μa
GD = μ̂GD, μa

KS =
μ̂KS, μa

MK = μ̂MK and μa
TK = μ̂TK.

In the next section, we propose some generalized test variables using these
improved estimators under order restriction on the variances, to test the quantile
θ = μ + ησ1.

3 Generalized Test Variable with P-Value

In this section, we will apply the generalized variable method proposed by Tsui and
Weerahandi [24] to test the hypothesis (1) regarding the quantile θ. We note that
Krishnamoorthy and Lu [11] and Lin and Lee [14] successfully applied this method
to test the common mean of two and more than two normal populations. In order to
obtain the test statistics using this approach, we first state the following definitions.

Let X be any random variable, and the distribution of X only depends on (δ, β),

where we want to test the parameter δ, which is the parameter of interest and β is
the nuisance parameter. Further, suppose one is interested in testing the hypothesis

H∗
0 : δ ≤ δ0 against H

∗
1 : δ > δ0, (10)

where δ0 is a known constant.

Definition 1 A random variable P = P(X; x, δ, β) will be called a generalized
pivot variable of δ if it satisfies the following conditions

(a) The distribution of P(X; x, δ, β) is free of all unknown parameters for a fixed
X = x .

(b) The value of P at X = x, is δ, that is, P(X; x, δ, β) = δ, the parameter of
interest.

Definition 2 A variable T = T (X; x, δ, β)will be called a generalized test variable
for testing the hypothesis (10), if it satisfies the conditions (a)–(c).

(a) The distribution of T = T (X; x, δ, β) is free from the nuisance parameter β for
a given x .

(b) The value of T = T (X; x, δ, β) is free of any unknown parameters when X = x
fixed.
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(c) For fixed x and β, the distribution of T = T (X; x, δ, β) is either stochastically
increasing or stochastically decreasing as a function of δ.

where x is the observed value of X.

Definition 3 Let t = T (x; x, δ, β), the value of T for fixed X = x . In the case of
stochastically increasing T with respect to δ, the generalized p-value for testing the
hypothesis (10) is given by

sup
H∗
0

Pr {T (X; x, δ, β) ≥ t} = Pr {T (X; x, δ0, β) ≥ t} , (11)

and if T (X; x, δ, β) is stochastically decreasing in δ, the generalized p-value for
testing the hypothesis (10) is given by

sup
H∗
0

Pr {T (X; x, δ, β) ≤ t} = Pr {T (X; x, δ0, β) ≤ t} . (12)

3.1 Generalized Test Variable for the Quantile

In this subsection, we propose generalized test variables using the estimators of com-
mon mean μ to test the hypothesis (1). Let the observed value of (X̄1, X̄2, S21 , S

2
2 )

is (x̄1, x̄2, s21 , s
2
2 ). Further, suppose Z1 = (X̄1 − μ)/(σ1/

√
(n1)) and Z2 = (X̄2 −

μ)/(σ2/
√

(n2)) where Z1 and Z2 follows N (0, 1). Now, denote U 2
1 = S21/σ

2
1 ∼

χ2
n1−1 and U

2
2 = S22/σ

2
2 ∼ χ2

n2−1 which are independent of Z1 and Z2.

When sample sizes are equal (n1 = n2)using the alternative estimators of common
mean μ given in equations (2) to (5), we propose the generalized pivot variable for
the quantile θ = μ + ησ1 as

PGD =

⎧
⎪⎨

⎪⎩

μ̄GD − (
√

(n1−1)n1s1s22 t1)+(
√

(n2−1)n2s21 s2 t2)

((n2−1)n2s21 )+((n1−1)n1s22 )
+ η s1

U1
, if

s21
n1−1 ≤ s22

n2−1

μ̄GD − ((n1−1)n1s32 t2/
√

(n2−1)n2)+((n2−1)n2s31 t1/
√

(n1−1)n1)

((n2−1)n2s21 )+((n1−1)n1s22 )
+ η s1

U1
, if

s21
n1−1 >

s22
n2−1 ,

PKS =

⎧
⎪⎨

⎪⎩

μ̄KS − (
√
n1/(n1−1)(n1−3)s1s22 t1)+(

√
n2/(n2−1)(n2−3)s21 s2 t2)

((n2−3)n2s21 )+((n1−3)n1s22 )
+ η s1

U1
, if

s21
n1−3 ≤ s22

n2−3

μ̄KS − ((n1−3)n1s32 t2/
√

(n2−1)n2)+((n2−3)n2s31 t1/
√

(n1−1)n1)

((n2−3)n2s21 )+((n1−3)n1s22 )
+ η s1

U1
, if

s21
n1−3 >

s22
n2−3 ,

PMK =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ̄MK − (t1+t2)s1s2
(
√

(n2−1)n2s1)+(
√

(n1−1)n1s2)
+ η s1

U1
, if

√
(n2−1)s21√
(n1−1)s22

≤
√
n2√
n1

μ̄MK − (
√

(n2/n1)((n2−1)/(n1−1))s21 t1)+(
√

(n1/n2)((n1−1)/(n2−1))s22 t2)
(
√

(n2−1)n2s1)+(
√

(n1−1)n1s2)
+ η s1

U1
, if

√
(n2−1)s21√
(n1−1)s22

>
√
n2√
n1

,

PTK =
⎧
⎨

⎩

μ̄TK − (bn2 s1s2 t1/
√
n1−1)+(bn1 s1s2 t2/

√
n2−1)

(
√
n2s1b1)+(

√
n1s2b2)

+ η s1
U1

, if s1
s2

≤
√
n2bn2√
n1bn1

μ̄TK − (
√
n2/(n1−1)bn1 s1t1)+(

√
n1/(n2−1)bn2 s2 t2)

(
√
n2s1b1)+(

√
n1s2b2)

+ η s1
U1

, if s1
s2

>
√
n2bn2√
n1bn1

,

where μ̄GD, μ̄KS, μ̄MK and μ̄TK are the observed values ofμGD, μKS, μMK andμTK,
respectively. Observe that all the four statistics PGD, PKS, PMK and PTK satisfy the
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conditions given in Definition 1. Now, we construct the generalized test variables for
the quantile θ using these four alternative estimators of the common mean μ under
the condition σ 2

1 ≤ σ 2
2 as TGD = PGD − θ, TKS = PKS − θ, TMK = PMK − θ and

TTK = PTK − θ. These test variables satisfy the conditions (a) and (b) in Definition
2 and also stochastically decreasing in θ. Utilizing the Definition 3, we compute the
p-values of all the generalized test variables as

2min(Pr{PGD ≥ θ0},Pr{PGD ≤ θ0}) (13)

2min(Pr{PKS ≥ θ0},Pr{PKS ≤ θ0}) (14)

2min(Pr{PMK ≥ θ0},Pr{PMK ≤ θ0}) (15)

2min(Pr{PTK ≥ θ0},Pr{PTK ≤ θ0}). (16)

The null hypothesis H0 will be rejected if the p-values are less than α, the level of
significance.

Next, we construct the generalized pivot variables and generalized test variables
for the quantile θ utilizing the improved estimators of the commonmean under order
restriction σ 2

1 ≤ σ 2
2 given in (6)–(9). The generalized pivot variables are given by

Pa
GD =

{
μ̄a
GD − (

√
(n1−1)n1s1s22 t1)+(

√
(n2−1)n2s21 s2t2)

((n2−1)n2s21 )+((n1−1)n1s22 )
+ η s1

U1
, if s21

n1−1 ≤ s22
n2−1

μ̄a
GD − (

√
(n1−1)n1s1t1)+(

√
(n2−1)n2s2t2)

n1+n2
+ η s1

U1
, if s21

n1−1 >
s22

n2−1 ,

Pa
KS =

{
μ̄a
KS − (

√
n1/(n1−1)(n1−3)s1s22 t1)+(

√
n2/(n2−1)(n2−3)s21 s2t2)

((n2−3)n2s21 )+((n1−3)n1s22 )
+ η s1

U1
, if s21

n1−3 ≤ s22
n2−3

μ̄a
KS − (

√
(n1−1)n1s1t1)+(

√
(n2−1)n2s2t2)

n1+n2
+ η s1

U1
, if s21

n1−3 >
s22

n2−3 ,

Pa
MK =

⎧
⎨

⎩

μ̄a
MK − (t1+t2)s1s2

(
√

(n2−1)n2s1)+(
√

(n1−1)n1s2)
+ η s1

U1
, if

√
s21

n1−1 ≤
√

s22
n2−1

μ̄a
MK − (

√
(n1−1)n1s1t1)+(

√
(n2−1)n2s2t2)

n1+n2
+ η s1

U1
, if

√
s21

n1−1 >

√
s22

n2−1 ,

Pa
TK =

⎧
⎨

⎩

μ̄a
TK − (bn2 s1s2t1/

√
n1−1)+(bn1 s1s2t2/

√
n2−1)

(
√
n2s1b1)+(

√
n1s2b2)

+ η s1
U1

, if s1
s2

≤
√
n2bn2√
n1bn1

μ̄a
TK − (

√
(n1−1)n1s1t1)+(

√
(n2−1)n2s2t2)

n1+n2
+ η s1

U1
, if s1

s2
>

√
n2bn2√
n1bn1

.

where μ̄a
GD, μ̄a

KS, μ̄a
MK and μ̄a

TK are the observed values of μa
GD, μa

KS, μa
MK and

μa
TK, respectively. In a similar manner, as discussed before, we construct the gen-

eralized test variables for the quantile θ to test hypothesis (1), which are given by
T a
GD = Pa

GD − θ, T a
KS = Pa

KS − θ, T a
MK = Pa

MK − θ and T a
TK = Pa

TK − θ. All these
test variables are stochastically decreasing in θ and satisfy the first two conditions in
Definition 2. The p-values for these tests are computed as

2min(Pr{Pa
GD ≥ θ0},Pr{Pa

GD ≤ θ0}) (17)

2min(Pr{Pa
KS ≥ θ0},Pr{Pa

KS ≤ θ0}) (18)

2min(Pr{Pa
MK ≥ θ0},Pr{Pa

MK ≤ θ0}) (19)

2min(Pr{Pa
TK ≥ θ0},Pr{Pa

TK ≤ θ0}). (20)
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If the p-values are less than significance level α, one should reject the null hypothesis
H0 given in (1), otherwise accept it.

For unequal sample sizes (n1 �= n2), TGD = T a
GD, TKS = T a

KS, TMK = T a
MK and

TTK = T a
TK as their corresponding estimators are equal.

Remark 1 Using the above pivot variables, one can also construct the general-
ized confidence intervals. The (1 − ψ)100% generalized confidence interval is
(P(ψ/2), P(1 − ψ/2)).

4 Simulation Study

In Sect. 3, we have proposed several generalized test variables for the quantile θ

under the condition that σ 2
1 ≤ σ 2

2 . In this section, we will compare the performances
of all those proposed test procedures for various combinations of sample sizes in
terms of size and power.

To compute the size and power, we have generated 10,000 random samples from
each normal populationwith a commonmean and ordered variances, using theMonte
Carlo simulation method. In order to compute the generalized test statistics, the inner
loop is repeated 5000 times. Though several choices of parameters and sample sizes
have been considered in the simulation study, in Tables3 and 4, we have presented the
size and power for a few specific choices of parameters and sample sizes. Throughout
the simulation study, we have taken η = 1.96. For computing the size and power, we
have taken θ0 = 1.96. Observe that all the tests are location invariant; hence, its size
only depends on ρ = σ1/σ2 > 0 through σ2. The values of ρ have been varied from
0 to 1 by fixing σ1 = 1, so that the condition σ 2

1 ≤ σ 2
2 is satisfied.

In Table3, we present the size of all the eight test procedures for the specific
sample sizes. In Table3, the first column presents the choice of ρ. Corresponding to
one value of ρ, there are eight values from the second column onward that present
sizes of tests in the given order of sample sizes. In each cell, the size values will be
read vertically downward. It is to be noted that for equal sample sizes, that is, when
n1 = n2 as the estimators μ̂GD = μ̂KS, μ̂MK = μ̂TK, μ̂a

GD = μ̂a
KS and μ̂a

MK = μ̂a
TK,

so their corresponding tests, as well as sizes and powers, are also equal. For the
unequal sample sizes that is when n1 �= n2, μa

GD = μ̂GD, μa
KS = μ̂KS, μa

MK = μ̂MK

and μa
TK = μ̂TK, so similarly their corresponding tests, sizes and powers are also

equal. The maximum bound for the simulation error has been seen up to 0.003 to
attain a high level of accuracy. The following observations have been made from
our simulation study and also from Tables3 and 4, which we write in the forms of a
remark.

Remark 2 1. It has been observed that all the tests attain the nominal level within
20% of the specified level of significance α = 0.05. All the tests are qualified for
further power comparison.

2. The powers of all the tests have been computed by varying θ from θ0, through
μ = 0.4, 0.6, 0.8, 1, 2 and fixing σ1 = σ2 = 1.
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Table 1 p-values for all the proposed tests

Method TGD TKS TMK TTK T a
GD T a

KS T a
MK T a

TK

p-value 0.0036 0.0036 0.0034 0.0034 0.0038 0.0038 0.0037 0.0037

Table 2 p-values for all the proposed tests

Method TGD TKS TMK TTK T a
GD T a

KS T a
MK T a

TK

p-value 0.7048 0.6972 0.7432 0.7492 0.7048 0.6972 0.7432 0.7492

3. It is further observed that as the difference between θ and θ0 increases, the powers
of all the tests increase up to 1. Moreover, when the sample size increases, the
powers of all the tests increase.

4. In the case of equal sample sizes, the test based on the improved estimator μa
GD

and μa
KS has the best performance in terms of power, whereas all other tests are

competing with each other. However, in the case of unequal sample sizes, none
of the tests dominates others; that is, all the tests compete well with each other.

5 Concluding Remarks with Real-life Examples

In this article, we have derived several generalized test procedures to test the hypoth-
esis regarding the quantile θ of the first normal population among two normal popula-
tions with a common mean and order restricted variances. Utilizing some estimators
proposed by Jena et al. [7], the generalized variable as well as test statistics have
been constructed to test a hypothesis regarding the quantile. All the proposed test
procedures have been compared in terms of their sizes and powers numerically using
the Monte Carlo simulation method.

From our simulation study, we have concluded that all the proposed tests attain the
nominal level within 20% of the level of significance. It is also concluded that the test
based on the estimators μa

GD and μa
KS (i.e., T

a
GD and T a

KS) have the best performance
in terms of power for equal sample sizes, whereas for unequal sample sizes, all the
tests compete with each other. We hope that the current research work will enlighten
the inference on the quantiles, which have many real-world applications. Below, we
discuss two examples, which will illustrate the methods of tests proposed in this
paper.

Example 1 We consider the two datasets of equal sample size 10 as given in Jena
et al. [7] which have a common mean and ordered variances σ 2

1 ≤ σ 2
2 . The sufficient

statistics for this data is x̄1 = 25.36, x̄2 = 25.04, s21 = 57.69 and s22 = 36.46. It has
been noted that s21 > s22 for this data. Suppose, one is interested to test hypothesis
H0 : θ = 40 against the alternative H1 : θ �= 40 at the level of significance α = 0.05.
Table1 presents the the p-values of all the proposed tests to test this hypothesis.
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Table 3 Sizes of the proposed tests for the sample sizes (5, 5), (12, 12), (25, 25), (40, 40), (5, 10),
(10, 5), (12, 20), (20, 12) and α = 0.05

ρ TGD TKS TMK TTK T a
GD T a

KS T a
MK T a

TK

0.2 0.0452 0.0452 0.0472 0.0472 0.0452 0.0452 0.0472 0.0472

0.0500 0.0500 0.0516 0.0516 0.0500 0.0500 0.0516 0.0516

0.0512 0.0512 0.0524 0.0524 0.0512 0.0512 0.0524 0.0524

0.0560 0.0560 0.0500 0.0500 0.0560 0.0560 0.0500 0.0500

0.0368 0.0412 0.0428 0.0420 0.0368 0.0412 0.0428 0.0420

0.0352 0.0356 0.0400 0.0400 0.0352 0.0356 0.0400 0.0400

0.0420 0.0412 0.0452 0.0444 0.0420 0.0412 0.0452 0.0444

0.0480 0.0476 0.0472 0.0472 0.0480 0.0476 0.0472 0.0472

0.4 0.0384 0.0384 0.0428 0.0428 0.0384 0.0384 0.0428 0.0428

0.0448 0.0448 0.0456 0.0456 0.0448 0.0448 0.0456 0.0456

0.0448 0.0448 0.0472 0.0472 0.0448 0.0448 0.0472 0.0472

0.0516 0.0516 0.0544 0.0544 0.0516 0.0516 0.0544 0.0544

0.0400 0.0412 0.0404 0.0404 0.0400 0.0412 0.0404 0.0404

0.0456 0.0464 0.0468 0.0468 0.0456 0.0464 0.0468 0.0468

0.0496 0.0496 0.0452 0.0444 0.0496 0.0496 0.0452 0.0444

0.0528 0.0528 0.0560 0.0560 0.0528 0.0528 0.0560 0.0560

0.6 0.0420 0.0420 0.0424 0.0424 0.0436 0.0436 0.0436 0.0436

0.0496 0.0496 0.0484 0.0484 0.0504 0.0504 0.0484 0.0484

0.0448 0.0448 0.0432 0.0432 0.0448 0.0448 0.0432 0.0432

0.0468 0.0468 0.0472 0.0472 0.0468 0.0468 0.0472 0.0472

0.0440 0.0444 0.0420 0.0416 0.0440 0.0444 0.0420 0.0416

0.0468 0.0484 0.0480 0.0480 0.0468 0.0484 0.0480 0.0480

0.0400 0.0408 0.0396 0.0396 0.0400 0.0408 0.0396 0.0396

0.0524 0.0520 0.0532 0.0512 0.0524 0.0520 0.0532 0.0512

0.8 0.0456 0.0456 0.0464 0.0464 0.0500 0.0500 0.0492 0.0492

0.0404 0.0404 0.0408 0.0408 0.0456 0.0456 0.0448 0.0448

0.0444 0.0444 0.0432 0.0432 0.0440 0.0440 0.0432 0.0432

0.0496 0.0496 0.0492 0.0492 0.0500 0.0500 0.0492 0.0492

0.0412 0.0408 0.0412 0.0408 0.0412 0.0408 0.0412 0.0408

0.0488 0.0508 0.0516 0.0504 0.0488 0.0508 0.0516 0.0504

0.0432 0.0448 0.0412 0.0404 0.0432 0.0448 0.0412 0.0404

0.0516 0.0536 0.0488 0.0484 0.0516 0.0536 0.0488 0.0484

1.0 0.0372 0.0372 0.0372 0.0372 0.0424 0.0424 0.0400 0.0400

0.0380 0.0380 0.0385 0.0385 0.0432 0.0432 0.0464 0.0464

0.0488 0.0488 0.0480 0.0480 0.0496 0.0496 0.0484 0.0484

0.0468 0.0468 0.0488 0.0488 0.0484 0.0484 0.0480 0.0480

0.0452 0.0436 0.0436 0.0428 0.0452 0.0436 0.0436 0.0428

0.0552 0.0552 0.0560 0.0560 0.0552 0.0552 0.0560 0.0560

0.0376 0.0380 0.0348 0.0348 0.0376 0.0380 0.0348 0.0348

0.0504 0.0500 0.0492 0.0492 0.0504 0.0500 0.0492 0.0492
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Table 4 Powers of the proposed tests for the sample sizes (5, 5), (12, 12), (25, 25), (40, 40),
(5, 10), (12, 20), (10, 5), (20, 12) and α = 0.05

θ TGD TKS TMK TTK T a
GD T a

KS T a
MK T a

TK

2.36 0.1072 0.1072 0.1156 0.1156 0.1300 0.1300 0.1292 0.1292

0.1488 0.1488 0.1552 0.1552 0.1612 0.1612 0.1604 0.1604

0.3044 0.3044 0.3044 0.3044 0.3048 0.3048 0.3036 0.3036

0.4432 0.4432 0.4424 0.4424 0.4464 0.4464 0.4444 0.4444

0.1056 0.1048 0.1064 0.1064 0.1056 0.1048 0.1064 0.1064

0.1820 0.1828 0.1824 0.1828 0.1820 0.1828 0.1824 0.1828

0.1176 0.1200 0.1116 0.1128 0.1176 0.1200 0.1116 0.1128

0.2364 0.2376 0.2332 0.2340 0.2364 0.2376 0.2332 0.2340

2.56 0.2224 0.2224 0.2316 0.2316 0.2428 0.2428 0.2432 0.2432

0.3308 0.3308 0.3380 0.3380 0.3508 0.3508 0.3480 0.3480

0.6068 0.6068 0.6076 0.6076 0.6100 0.6100 0.6072 0.6072

0.7820 0.7820 0.7808 0.7808 0.7832 0.7832 0.7812 0.7812

0.1876 0.1864 0.1852 0.1832 0.1876 0.1864 0.1852 0.1832

0.3512 0.3484 0.3520 0.3504 0.3512 0.3484 0.3520 0.3504

0.2388 0.2428 0.2328 0.2348 0.2388 0.2428 0.2328 0.2348

0.4776 0.4800 0.4696 0.4720 0.4776 0.4800 0.4696 0.4720

2.76 0.4136 0.4136 0.4200 0.4200 0.4336 0.4336 0.4296 0.4296

0.5444 0.5444 0.5496 0.5496 0.5608 0.5608 0.5552 0.5552

0.8564 0.8564 0.8552 0.8552 0.8564 0.8564 0.8552 0.8552

0.9612 0.9612 0.9612 0.9612 0.9612 0.9612 0.9612 0.9612

0.2904 0.2856 0.2884 0.2872 0.2904 0.2856 0.2884 0.2872

0.5812 0.5816 0.5792 0.5784 0.5812 0.5816 0.5792 0.5784

0.3992 0.4040 0.3732 0.3816 0.3992 0.4040 0.3732 0.3816

0.7368 0.7388 0.7272 0.7292 0.7368 0.7388 0.7272 0.7292

2.96 0.6140 0.6140 0.6224 0.6224 0.6312 0.6312 0.6304 0.6304

0.7380 0.7380 0.7376 0.7376 0.7440 0.7440 0.7412 0.7412

0.9688 0.9688 0.9684 0.9684 0.9688 0.9688 0.9684 0.9684

0.9984 0.9984 0.9984 0.9984 0.9984 0.9984 0.9984 0.9984

0.4432 0.4388 0.4376 0.4328 0.4432 0.4388 0.4376 0.4328

0.8012 0.8020 0.7996 0.7992 0.8012 0.8020 0.7996 0.7992

0.6212 0.6204 0.6020 0.6056 0.6212 0.6204 0.6020 0.6056

0.9084 0.9084 0.9100 0.9108 0.9084 0.9084 0.9100 0.9108

3.96 0.9988 0.9988 1.0000 1.0000 0.9988 0.9988 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.9760 0.9816 0.9784 0.9788 0.9760 0.9816 0.9784 0.9788

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.9988 0.9988 0.9980 0.9980 0.9988 0.9988 0.9980 0.9980

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Since all the p-values are less than 0.05, the null hypothesis H0 is rejected with
significance level 0.05.

Example 2 Rohatgi and Saleh [19] (p. 515) took up an example for a two-sample
problem on the mean life of bulbs (in hours). The mean life of the first sample of
nine light bulbs is (x̄1) 1309h and standard deviation 420h. The second sample of
16 bulbs from other population has a mean (x̄2) 1205h and a standard deviation
390h. Equality of means has been tested by two-sample t-test. Further, we apply
the F-test and observed that the variances are ordered, that is, σ 2

1 ≤ σ 2
2 . Therefore,

these datasets are considered for our model. It is our interest to test hypothesis
H0 : θ = 2040 against the alternative H1 : θ �= 2040 at significance level 0.05. and
present the p-values in Table 2.

We can conclude from the above p-values that hypothesis H0 cannot be rejected
using all the test procedures at level 0.05 (Tables 3 and 4).
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