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Abstract This paper deals with the estimation and classification of two logistic
populations with a common scale and different location parameters. Utilizing the
Metropolis–Hastings method, we compute the Bayes estimators of the associated
unknown parameters. For this purpose, we consider gamma priors for the common
scale parameter and normal priors for two location parameters. These Bayes esti-
mators are compared with some of the existing estimators in terms of their bias
and the mean squared error numerically. Moreover, utilizing these estimators for the
associated parameters, we construct some classification rules in order to classify a
single observation into one of the two logistic populations under the same model.
The performances of each of the classification rules are evaluated through expected
probability ofmisclassification, numerically. Finally, two real-life data sets have been
considered in order to show the potential application of the model problem.

Keywords Bayes estimator · Classification rules · Expected probability of
misclassification · Metropolis–Hastings procedure · Numerical comparison

1 Introduction

Suppose we have random samples from two logistic populations with a common
scale parameter σ and possibly distinct and unknown location parameters μ1 and
μ2. Specifically, let X

˜

= (X1,X2, . . . ,Xm) and Y
˜

= (Y1,Y2, . . . ,Yn) be m and n
independent random samples taken from two logistic populations Logistic(μ1, σ )

and Logistic(μ2, σ ) respectively. Here we denote Logistic(μi, σ ); i = 1, 2 as the
logistic population having the probability density function
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f (x;μi, σ ) =
1
σ
exp{−(

x−μi

σ
)}

[1 + exp{−(
x−μi

σ
)}]2 , − ∞ < x < ∞, − ∞ < μi < ∞, σ > 0

(1.1)
The problem is to classify a new observation into one of the two logistic popula-

tions using some of the estimators of the common scale parameter and two different
location parameters. First, we will derive certain estimators of the associated param-
eters such as σ, and the other two nuisance parameters μ1 and μ2 from a Bayesian
perspective. Using these estimators, we will construct some classification rules to
classify a new observation into one of the two logistic populations using training
samples. The performances of all the estimators will be evaluated through their bias

E(d − θ) (1.2)

and the mean squared error (MSE)

E(d − θ)2, (1.3)

where ‘d ’ is an estimator for estimating the parameter θ.

In a general framework, the problem of classification is to classify a new obser-
vation, say z into one of the several populations/groups, say π1, π2, . . . , πk , using
certain methodologies and training data. The classification problem can be seen
in machine learning for image classification, text classification, electrical science
for signal classification, military surveillance for recognizing speech, in biomedi-
cal sciences for taxonomic study. It also has an application in computer science for
classifying the object using receiver operating characteristic (ROC) curve.

Researchers in the past have considered the problem of classification under the
equality assumption of parameters. For example, [12] considered the classification
problemunder equality assumption on the location parameters using training samples
from several shifted exponential populations. Utilizing some well-known estimators
of the common location parameter, the authors proposed several classification rules.
The performances of all the rules have been evaluated using the expected probabil-
ity of misclassification. Further, [13] considered the classification rules for the two
Gaussian populations with a commonmean. It is noted that the classification problem
was first considered by Fisher in the year 1936 in a general framework. However,
under multivariate normal model, the problem of classification was considered by
[1, 2, 16]. Basu [5] proposed the classification rules for the two shifted exponential
distribution. Note that [2] considered the classification problem under multivariate
normal set up with a common co-variance matrix. This model reduces the problem
under common standard deviation (scale) in the case of univariate normal.

Contrary to the above, significantly less attention has been paid to constructing
classification rules and studying their performances when the distribution is not nor-
mal and exponential. However, there are many practical scenarios where the emerg-
ing data sets satisfactorily modeled by logistic distribution. In view of this, we take
two logistic populations having a common scale parameter (which is also the stan-
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dard error) and two different location parameters and construct several classification
rules. In this regard, we have considered two real-life data sets from civil engineer-
ing science, and the other is related to food science, which has been satisfactorily
modeled by using logistic distribution. The details of which have been discussed in
Sect. 5. Using the estimators under the same model problem, we construct specific
classification rules that may classify a new observation. The applications of logistic
distribution are seen in several fields of study. Logistic distribution is use to describe
the modeling agriculture production data, growth model in a demographic study (see
[4]), analysis of biomedical data, life testing data and bio-assay (see [14, 21]).

Several authors have considered the problem of estimating parameters under
equality restrictions in the past. For recent detailed and updates literature on esti-
mating parameters under equality restriction under the various probabilistic model,
we refer to [18–20, 23–26]. Recently, [20] studied the estimation of common scale
parameter (σ ) of two logistic populations with the unknown and unequal location
parameters (μi) from Bayesian point of view. They derived the MLEs and indi-
vidual approximate Bayes estimators of the parameter using non-informative and
informative priors, and using the Monte Carlo simulation study; they compare the
performances of all the proposed Bayes estimators numerically.

The researchers studied the point and interval estimation of logistic population
parameters, namely the location and scale parameters, from classical and Bayesian
points of view. The first attempt to estimate the logistic distribution parameters was
made by [9], where they derived the linear unbiased estimators based on sample
quantiles and some approximate unbiased linear estimators and compared their effi-
ciencies numerically. One may refer to [3, 7, 11, 17] for results on estimating scale
and location parameters of a logistic distribution.

The remaining contribution of the current research work can be described as fol-
lows. In Sect. 2, we discuss the Bayes classification rule in a general framework and
then obtained the classification rule for our proposed model set up. Consequently,
using the maximum likelihood estimators (MLEs) of the associated parameters, we
construct a classification rule. In Sect. 3, we consider Bayes estimators of the associ-
ated parameters using Markov chain Monte Carlo methods. Using these estimators,
classification rule also has been constructed. In Sect. 4, we carry out a detailed sim-
ulation study and compute the bias and the mean squared error of the proposed
estimators. Moreover, these estimators are compared with some of the existing esti-
mators previously proposed by Nagamani [20] for the associated parameters. Further
classification rules are constructed using the estimators proposed by Nagamani [20]
and compared with the rules using MLEs and the MCMC method. In Sect. 5, we
present two real-life data sets, which has been satisfactorily modeled by logistic dis-
tributions with common scale parameter. A new observation has been classified into
one of the data sets, using the proposed classification rules. Concluding remarks are
given in Sect. 6.
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2 Classification Rule Using the MLE for Two Logistic
Populations

In this section, we construct a classification rule using the MLEs of the associated
parameters, σ, μ1 and μ2 to the model (1.1).

Supposewehave training samplesX
˜

= (X1,X2, . . . ,Xm) andY
˜

= (Y1,Y2, . . . ,Yn)
from two Logistic populations Π1 and Π2 respectively, where Πi is the population
having density fi(x;μi, σ ), i = 1, 2. Now a new observation, say z is classified into
the population Π1 if

log

(

f1(z)

f2(z)

)

≥ log

(

C(2|1) ∗ q2
C(1|2) ∗ q1

)

(2.1)

and into the population Π2 if

log

(

f1(z)

f2(z)

)

< log

(

C(2|1) ∗ q2
C(1|2) ∗ q1

)

. (2.2)

Here C(i|j) is the cost of misclassification when an observation is from Πj and is
misclassified into the population Πi, i �= j, i, j = 1, 2. If we assume that C(2|1) =
C(1|2) and q2 = q1, where qi is the prior probability associated to the population Πi

then, the classification function for classifying an observation z into Logistic(μ1, σ )

or Logistic(μ2, σ ) obtained as

W (z) = 1

σ

(

(z − μ2) − (z − μ1)

)

+ 2 log

(

1 + exp

(

− (z − μ2)

σ

))

−2 log

(

1 + exp

(

− (z − μ1)

σ

))

. (2.3)

When the parameters are unknown, a natural approach is to replace the parameters
by their respective estimators and obtain the classification rule. Thus utilizing the
classification function W (z), we propose classification Rule R as: classify z into the
population Π1 if W (z) ≥ 0, else classify z into the population Π2.

Let us denote P(i|j,R), (i �= j, i, j = 1, 2) as the probability of misclassification
for an observation from Πj when it is misclassified into the population Πi. The new
observation z is classified into one of the two populations, such that the probability
of misclassification becomes the minimum. We refer to Anderson [1], for the details
of the classification rules using prior information.

In order to obtain the MLEs of the associated parameters, let us consider the
log-likelihood function under the current model setup which is given by
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L(ν ;̃ x
˜

, y
˜

) = − log σ(m + n) −
m

∑

i=1

(xi − μ1

σ

)

−
n

∑

j=1

(yj − μ2

σ

)

−2
m

∑

i=1

log
(

1 + exp
{

−
(xi − μ1

σ

)})

−2
n

∑

j=1

log
(

1 + exp
{

−
(yj − μ2

σ

)})

, (2.4)

where −∞ < μi < ∞(i = 1, 2); σ > 0.
Note that, under the same model setup the MLEs of the parameters σ, μ1 and

μ2 have been numerically obtained by Nagamani [20]. Let us denote the MLEs of
the parameters σ, μ1 and μ2 respectively by σ̂ml, μ̂1ml and μ̂2ml . For computing the
MLEs, using Newton–Raphson method, we have taken the initial guess as suggested
by Nagamani [20].

Now using the MLEs of the parameters μ1, μ2 and σ, we define a classification
function, say WML(z) as,

WML(z) = 1

σ̂ml

(

(z − μ̂2ml) − (z − μ̂1ml)

)

+ 2 log

(

1 + exp

(

− (z − μ̂2ml)

σ̂ml

))

−2 log

(

1 + exp

(

− (z − μ̂1ml)

σ̂ml

))

. (2.5)

Using this classification function WML(z), we propose a classification rule, say RML

as: classify z into Π1 if WML(z) ≥ 0, else classify z into the Π2.

3 Bayesian Estimation of Parameters Using MCMC
Approach and Classification Rule

It is noted that certain Bayes estimators of parameters using Lindley’s approximation
method and different types of priorswith respect to the squared error loss function and
the LINUX loss function have been obtained by Nagamani [20]. Here, we consider
Bayes estimators of the associated parameters using MCMC method along with the
Metropolis–Hastings algorithm. Moreover, utilizing these estimators we propose a
classification rule. Metropolis–Hastings algorithm is an important class of MCMC
method, which is applied to get the samples from the posterior distribution effectively
in a systematic manner.

A special case of Metropolis–Hastings method is the symmetric random walk
Metropolis (RWM) algorithm. In this method, we take the Markov chain described
by c alone to be a simple symmetric random walk, so that c(δ, δ∗) = c(δ∗ − δ) that
is the probability density c is a symmetric function. Suppose that a target distribution
has probability density function π. Thus for given δn, (at nth state) we generate
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δ∗
n+1 from a specified probability density, say q(δn, δ∗) and is then accepted with
probability α(δn, δ

∗
n+1) which is given by

α(δ, δ∗) = min

(

π(δ∗)
π(δ)

, 1

)

. (3.1)

If the proposedvalue is accepted,we set δn+1 = δ∗
n+1,otherwisewe reject it and assign

δn+1 = δn. The function α(δ, δ∗) is chosen precisely to ensure that the Markov chain
δ0, δ1, . . . , δn is reversible with respect to the target probability density π(δ∗), in the
sense that the target density is stationary for the chain. We refer to [6, 8, 10] for
details of the procedure of the Metropolis–Hastings algorithm.

In order to estimate the parameters using Metropolis–Hastings algorithm, in the
current model, we need to specify the prior distributions for the unknown parameters
σ, μ1 and μ2. We assume that the three parameters are independent having the prior
probability densities respectively as

μi ∼ N (ai, b
2
i ), σ ∼ Γ (c, d); i = 1, 2, (3.2)

where N (ai, b2i ) denotes the normal distribution having mean ai and variance b2i
and Γ (c, d) is the gamma distribution having c as shape and d as scale parameters,
respectively. These hyperparameters are known. The posterior probability density of
the parameters is seen to be of the following forms.

μ1|(μ2, σ, x
˜

, y
˜

) ∝ exp
{

μ1

(m

σ
+ a1

b21

)

− μ2
1

2b21

}
m

∏

i=1

(

1 + g(μ1, σ, xi)
)−2

μ2|(μ1, σ, x
˜

, y
˜

) ∝ exp
{

μ2

(m

σ
+ a2

b22

)

− μ2
2

2b22

}
m

∏

i=1

(

1 + h(μ2, σ, yi)
)−2

σ |(μ1, μ2, x
˜

, y
˜

) ∝ 1

σ n+m+1−c
2

exp
{

− K1 + K2

σ
− σ

d

}

n
∏

j=1

(

1 + g(μ1, σ, xj)
)−2 n

∏

j=1

(

1 + h(μ2, σ, yj)
)−2

,

wherewe denote g(μ1, σ1, xi)= exp{−(
xi−μ1

σ
)}, h(μ2, σ, yj) = exp{−(

yj−μ2

σ
)},K1 =

∑m
i=1(xi − μ), and K2 = ∑n

j=1(yj − μ). Note that, the posterior densities of μ1, μ2

andσ donot have anyknowndistributional form.Hence, to generate samples from the
posterior probability distributions of μ1, μ2 and σ, we use the well-known random
walk Metropolis–Hastings algorithm (RWM) which is a MCMC procedure. The
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details of the computational steps to generate μ1, μ2 and σ simultaneously using
Metropolis–Hastings algorithm can be described as follows.

Step-1: Let the kth state of Markov chain consists of (μ
(k−1)
1 , μ

(k−1)
2 , σ (k−1)).

Step-2: In order to update the parameters using randomwalkMetropolis–Hastings
algorithm (RWM), we generate ε1 ∼ N (0, σ 2

μ1
), ε2 ∼ N (0, σ 2

μ2
) and ε3 ∼

N (0, σ 2
σ ). Set μ

(∗)
1 = μ

(k−1)
1 + ε1, μ

(∗)
2 = μ

(k−1)
2 + ε2, σ (∗) = σ (k−1) +

ε3.

Step-3: Calculate the term α(μ
(∗)
1 , μ

(∗)
2 , σ (∗)) as given (3.1).

Step-4: Define a term S = min(1, α(μ
(∗)
1 , μ

(∗)
2 , σ (∗))).Generate a random number

v ∼ U (0, 1). If v ≤ S, accept (μ
(∗)
1 , μ

(∗)
2 , σ ∗) and update the parameters

as μ
(k)
1 = μ

(∗)
1 , μ

(k)
2 = μ

(∗)
2 and σ (k) = σ (∗), otherwise reject μ

(∗)
1 , μ

(∗)
2

and σ (∗) and set μ
(k)
1 = μ

(k−1)
1 , μ

(k)
2 = μ

(k−1)
2 and σ (k) = σ (k−1). Repeat

this step for k = 1, 2, . . . ,K, where K is a large number suitably fixed.

In this computational method, the most important step is to choose the values
of σ 2

μ1
, σ 2

μ2
and σ 2

σ . One may refer to [6] regarding choice of these variances. The
values of σ 2

μ1
, σ 2

μ2
and σ 2

σ are chosen in such a way that a acceptance ratio should lie
within the range from 20% to 30%. Now using these MCMC samples, we estimate
the parameters μ, σ1 and σ2 respectively as

μ̂1mc = 1

M − M0

M
∑

i=M0+1

μ
(i)
1 , μ̂2mc = 1

M − M0

M
∑

i=M0+1

μ
(i)
2 and σ̂ = 1

M − M0

M
∑

i=M0+1

σ (i),

(3.3)

where M0 is the burn-in period for the RWM method.
Utilizing these Bayes estimators of the parameters μ1, μ2 and σ, we construct a

classification function, say WMC(z) as

WMC(z) = 1

σ̂

(

(z − μ̂2mc) − (z − μ̂1mc)

)

+ 2 log

(

1 + exp

(

− (z − μ̂2mc)

σ̂mc

))

−2 log

(

1 + exp

(

− (z − μ̂1mc)

σ̂mc

))

. (3.4)

Using this classification function WMC(z), we propose a classification rule, say RMC

as: classify z into Π1 if WMC(z) ≥ 0, else classify z into the Π2.

Remark 1 We note that, all the existing estimators such as the MLE, Bayes esti-
mators using different priors for the current model are compared with the Bayes
estimator using MCMC approach in terms of MSE and bias numerically in Sect. 4.
It has been noticed that the MLEs and the Bayes estimators using MCMC approach
outperform the earlier estimators for all sample sizes. Hence, in the numerical com-
parison section, we only consider classification rules for comparison purpose based
on the MLEs and the Bayes estimators using the MCMC approach.
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4 Numerical Comparison of Classification Rules

In this section, we will evaluate and compare the performances of all the classifica-
tion rules in terms of probability of misclassification, numerically. Note that none of
the estimators, and hence the classification rules, could be obtained in closed form
expressions. It is not possible to compare their performances analytically. However,
utilizing the advanced computational facilities available nowadays, we have com-
pared the performances of all the proposed rules numerically, which will be handy
in certain practical applications.

In Sect. 2, we have proposed the classification rule RML using the MLEs of the
associated parameters for the two logistic populations. In Sect. 3, we have proposed
the classification rule RMC utilizing the Bayes estimators through MCMC approach.
In our simulation study, we have also included estimators proposed by Nagamani
[20] and compared their MSE and bias with the Bayes estimator that uses MCMC
approach (our proposed estimator). It has been noticed that the MLEs as well as the
proposed Bayes estimator through MCMC approach always have minimum MSE
and bias. Hence, we have not considered the classification rules based on the Bayes
estimators proposed by Nagamani [20], for numerical comparison in terms of prob-
ability of misclassification.

In order to compute the probability of misclassification of the classification rules
RML and RMC, we proceed in the following manner.

Step-1: Generate training samples of size m from the logistic population Logistic
(μ1, σ ). Then, similarly, we generate training samples of size n from
another logistic population Logistic(μ2, σ ). Utilizing these training sam-
ples, we estimate the parameters μ1, μ2 and σ. In particular, we compute
the MLEs and the Bayes estimators using MCMC approach that is we
compute μ̂1ml, μ̂2ml, σ̂ml, μ̂1mc, μ̂2mc, σ̂mc, which are involved in the clas-
sification functions WML(z) and WMC(z).

Step-2: Generate a new observation, say z from the logistic population Logistic
(μ1, σ ) and substitute it in the classification rules RML and RMC, then
we check whether it belongs to the population Π1 or not. Similarly, we
generate a new sample z from the logistic population Π2, and substitute it
in the classification rules, then check whether it belongs to the population
Π2 or not.

The above procedure is carried out using the well-known Monte Carlo simulation
method with 20, 000 replications. A high level of accuracy has been achieved in the
sense that the standard error in simulation is of the order of 10−4. . The probability
of misclassification P(1|2) and P(2|1) using the probability frequency approach
has been computed. In the computation of Bayes estimator using MCMC approach,
the hyperparameters involved in the conjugate prior have been suitably taken as
c = 2.5, d = 1 (for the common scale parameter), a1 = 2.5, b1 = 3, a2 = 2, b2 = 1
(in the case of location parameters). The computation also has been done using some
other choices of hyperparameters; however, the probability of misclassification of
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RMC changes insignificantly. In the MCMC method that uses Metropolis–Hastings
algorithm, we have generated 50, 000 MCMC samples from the posterior density
of σ, μ1 and μ2 with burn-in period M0 = 5000. In the simulation study, we have
seen that for some rules, the P(1|2) may be small but P(2|1) may be high. In view
of this and to have a better picture of the performance, we also define the expected
probability of misclassification (EPM), given by

E(R) = P(1|2,R) + P(2|1,R)

2

along with the probability of misclassifications, for comparing the rules.We consider
the cost and the prior probabilities are equal, that is C(1|2) = C(2|1) and q1 = q2,
for convenience.

The simulation study has been carried out by considering various combinations of
sample sizes and different choices of parameters. However, for illustration purpose
we present the expected probability of misclassification of the rules RML and RMC for
some specific choices of sample sizes and parameters. In Table 1, we have presented
the EPMof the rulesRML andRMC for equal and unequal sample sizes, for fixed values
of μ1 and μ2 with variation in scale parameter σ. The following observations were
made from our simulation study as well as the Table 1, regarding the performances
of the classification rules.

Table 1 Expected probability of misclassification (EPM) for the proposed rules with μ1 = 1 and
μ2 = 2 and Various Values of σ

(m, n) (σ ) E(RML) E(RMC) (m, n) E(RML) E(RMC)

0.5 0.274 0.270 0.268 0.267

(10,10) 1.5 0.442 0.428 (10,20) 0.460 0.450

2.5 0.472 0.465 0.482 0.452

3.5 0.490 0.488 0.495 0.475

0.5 0.274 0.272 0.296 0.296

(15,15) 1.5 0.432 0.426 (20,10) 0.444 0.438

2.5 0.452 0.449 0.492 0.482

3.5 0.477 0.475 0.475 0.496

0.5 0.274 0.272 0.279 0.280

(20,20) 1.5 0.432 0.426 (20,30) 0.434 0.427

2.5 0.452 0.449 0.497 0.495

3.5 0.475 0.477 0.478 0.476

0.5 0.272 0.270 0.268 0.269

(30,30) 1.5 0.430 0.424 (30,20) 0.426 0.424

2.5 0.450 0.446 0.478 0.483

3.5 0.474 0.470 0.470 0.474
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– The expected probability of misclassification for the proposed rules decrease as
the sample sizes increase. It is also noticed that for different location points (μi)
and fixing the scale parameter σ, the EPM remains almost same. It seems that the
rules are location invariant.

– The rule RMC based on the MCMC procedure always performs better than the
rule RML based on MLE in terms of expected probability of misclassification. It is
further noticed that when σ is close to 4, the maximum values for EPM is 0.5 for
both the rules.

– Considering the EPM as measure of performance, the classification rule RMC has
the lowest EPM value among all the proposed rules. Hence, we recommend to use
the classification rule RMC for classifying a new observation into one of the two
logistic populations.

5 Application with Real-Life Data Sets

In this section, we consider two real-life data sets which are related to compressive
strength of bricks and dietary fiber content in food. It has been shown that the logistic
distribution is a reasonable fit to these data sets. Further, Levene’s test with signif-
icance level 0.05 indicates that the equality of scale parameters cannot be rejected
(see [20]).

Example 1 Nagamani [20] considered the data sets related to compressive strength
(MPa) of clay bricks and fly ash bricks. The experiment was conducted by Teja [22]
to determine themechanical properties, such as initial rate of absorption (IRA), water
absorption (WA), dry density (DD), and compressive strength (CS) of 50 brick units
from each type. The compressive strength (MPa) of clay bricks and fly ash bricks is
given as follows.

Clay Brick: 8.02, 7.31, 7.31, 7.87, 7.09, 9.75, 5.90, 6.76, 6.58, 7.70, 5.70, 6.56,
8.14, 7.28, 5.70, 7.38, 7.02, 5.95, 5.90, 5.67, 7.22, 6.76, 7.73, 8.65, 8.08, 7.98,
5.60, 8.66, 9.67, 8.18, 8.70, 4.86, 9.33, 7.77, 6.21, 7.74, 11.31, 9.13, 8.28, 7.09,
5.62, 11.88, 5.73, 9.21, 7.03, 9.07, 7.81, 6.70, 9.97, 8.85

Fly Ash Brick: 3.62, 4.74, 9.88, 5.93, 6.09, 6.94, 6.32, 5.30, 5.14, 4.55, 4.03,
7.36, 3.57, 3.98, 4.03, 4.74, 7.32, 3.23, 5.38, 7.18, 6.07, 3.62, 6.64, 5.58, 5.23,
3.95, 5.86, 5.58, 6.97, 5.05, 4.35, 4.55, 4.79, 4.03, 4.74, 7.58, 3.62, 6.01, 3.99,
6.04, 4.74, 7.21, 3.61, 5.69, 7.21, 6.40, 3.55, 8.70, 4.35, 7.51.

It is our interest to classify a new observation, say z into Clay Brick or Fly Ash
Brick. So, we compute the estimators for the parameters (μ1, μ2, σ ) as (μ̂1ml, μ̂2ml,

σ̂ml) = (7.53694, 5.35400, 0.84857) and (μ̂1mc, μ̂2mc, σ̂mc) = (7.02195, 4.86868,
0.78183).Utilizing these estimators, we compute the classification functionsWML(z)
and WMC(z).

Suppose we have a new observation, say z = 6.5 and we want to classify this
observation into one of the two types of bricks using our proposed classification
rules. The values of classification functions are computed as WML = 0.07285 and
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WMC = −0.91663. The rule RML classifies z = 6.5 into the clay brick, whereas the
rule RMC classifies it into the fly ash brick.

Example 2 These data sets are related to the percentage of total dietary fiber (TDF)
content in foods, such as fruits, vegetables, and purified polysaccharides. Li and
Cardozo [15] conducted an inter laboratory (nine laboratories involved) study using
a procedure as described by Association of Official Agricultural Chemists (AOAC)
international to determine the percentage of total dietary fiber (TDF) content in food
samples. The experiment was conducted for six different types of food samples, such
as (a) apples, (b) apricots, (c) cabbage, (d) carrots, (e) onions, and (f) FIBRIM 1450
(soy fiber). The percentage of TDF using non-enzymatic-gravimetric method from
nine laboratories for apples and carrots is given as, Apple: 12.44, 12.87, 12.21,
12.82, 13.18, 12.31, 13.11, 14.29, 12.08; Carrots: 29.71, 29.38, 31.26, 29.41,
30.11, 27.02, 30.06, 31.30, 28.37.

Nagamani [20] shown that logistic distribution fits these two data sets reasonably
well. Their Levene’s test also confirms the equality of the scale parameters with level
of significance 0.05. In order to classify an observation into these two types of foods,
we compute the estimators of the parameters (μ1, μ2, σ ) as (μ̂1ml, μ̂2ml, σ̂ml) =
(12.765, 29.6497, 0.5604) and (μ̂1mc, μ̂2mc, σ̂mc) = (12.65066, 29.47925, 0.63596).
Utilizing these estimators, we compute the classification functions WML(z) and
WMC(z).

Suppose we have a new observation, say z = 21.2 and we want to classify this
observation into one of the two types of foods using our proposed classification
rules. The values of classification functions are computed as WML = 0.026588 and
WMC = −0.314322. The rule RML classifies z = 21.2 into Apples, whereas the rule
RMC classifies it into the Carrots.

6 Concluding Remarks

In this note, we have considered the problem of classification into one of the two
logistic populations with a common scale parameter and possibly different location
parameters. It is worth mentioning that the same model was previously considered
by Nagamani [20] and estimated the associated parameters. Specifically the authors
had derived certain Bayes estimators using different types of priors and Lindley’s
approximations. Utilizing their proposed estimators, and the one we have proposed
(Bayes estimators using MCMC approach), we have constructed several classifica-
tion rules. It has been seen that the proposed rule RMC outperforms all other rules
in terms of expected probability of misclassification. The application of our model
problem has been explained using two real-life data sets.
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