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1 Introduction

Let us consider a system of linear equations of the form

Ax = b, A ∈ R
m×n, x ∈ R

n, b ∈ R
m. (1.1)
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When the coefficient matrix A is very large and sparse, iterative methods become
more efficient. In this direction, by using the notion of proper splitting Berman and
Plemmons [4] proposed the following iterative method:

xk+1 = U †Vxk + U †b, k = 0, 1, 2, . . . , (1.2)

where U †V is the iteration matrix and U † is the Moore–Penrose inverse of U . The
same authors also proved that the above iterative method converges to A†b for any
initial guess x0 if and only if the spectral radius of the iteration matrix U †V is
less than 1 (see Corollary 1, [4] for instance). Therefore, the rate of convergence
of the iterative method (1.2) depends on ρ(U †V ) and so, the spectral radius of the
iteration matrix plays an important role in the comparison of the rate of convergence
of different iterative methods of the same system. Many authors such as Berman and
Plemmons [4], Climent et al. [7], Climent and Perea [8], Jena et al. [13], Mishra [14,
18], Mishra and Mishra [17], Baliarsingh and Mishra [1], Giri and Mishra [9–12],
Shekhar et al. [21], and others have introduced several convergence and comparison
results for different subclasses of a proper splitting.

In particular, Mishra [14] proposed the concept of alternating iteration method
for rectangular matrices by extending the work of Benzi and Szyld [2]. Mishra [14]
considered two proper splittings of A ∈ R

m×n, namely A = M − N = U − V , and
proposed the following iterative method

xk+1 = U †VM †Nxk + U †(VM † + I)b, k = 0, 1, 2, . . .

to solve (1.1). Recently, Nandi et al. [19] introduced the three-step alternating iter-
ation method by extending the work of Mishra [14]. Now we recall the same. Let
A = M − N = P − Q = U − V be proper splittings of A ∈ R

m×n. The same authors
considered

xk+1/3 = M †Nxk + M †b, (1.3)

xk+1/2 = P†Qxk+1/3 + P†b, (1.4)

xk+1 = U †Vxk+1/2 + U †b, k = 0, 1, 2, . . . . (1.5)

By simplifying (1.3), (1.4), and (1.5), one can formulate the following iterative
method known as the three-step alternating iterative method for rectangular matrices

xk+1 = U †VP†QM †Nxk + U †(VP†QM † + VP† + I)b, k = 0, 1, 2, . . . , (1.6)

where H = U †VP†QM †N is the iteration matrix of the iterative method (1.6). The
same authors [19] then studied the convergence criteria for the above iterative method
by assuming the splittings A = M − N = P − Q = U − V are proper weak regular
of type I (see Theorem 3.1). The convergence of three-step alternating iterations for
a singular linear system using the Group Inverse (see [3] for the definition) for type
II matrix splitting is studied in [22]. However, convergence of three-step alternating
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for a rectangular linear system in the case of type II splittings is not yet considered
in the literature.

The main objective of this paper is to study the convergence of three-step alternat-
ing iteration method by considering the splittings are proper weak regular of type II.
To fulfill this objective, we organize the contents of the paper as follows. In Sect. 2,
we introduce notations, definitions, and some preliminary results that are frequently
used while proving our main results. In Sect. 3, we prove our main results. Here, we
derived convergence and comparison results for the three-step alternating iteration
method by considering splittings A = M − N = P − Q = U − V are proper weak
regular of type II. The findings are verified through numerical examples in Sect. 4.
Finally, we concluded this article in Sect. 5.

2 Preliminaries

Throughout the article, all the matrices are considered as real of order m × n, unless
stated otherwise. The symbol R

m×n denotes the set of all real matrices of order
m × n and by R

n we mean an n-dimensional Euclidean space. The transpose, the
range space and the null space of a matrix A are denoted by AT, R(A) and N (A),
respectively. Let L and M be complementary subspaces of R

n, and PL,M be a projector
onto L along M . Then PL,M A = A if and only if R(A) ⊆ L and APL,M = A if and
only if N (A) ⊇ M . If L⊥M , then we denote PL,M by PL. Let λ1, λ2, . . . , λn be the
eigenvalues of A ∈ R

n×n. Then the spectral radius of A ∈ R
n×n is denoted by ρ(A)

and is defined by ρ(A) = max{|λ1|, |λ2|, . . . , |λn|}, whereas σ {A} denotes the set of
all eigenvalues of A.

2.1 Nonnegative Matrices

A ∈ R
m×n is called nonnegative (positive) if each entry of A is nonnegative (positive)

and is denoted by A ≥ 0 (A > 0). For A, B ∈ R
m×n, A ≥ B means A − B ≥ 0. The

same notation and nomenclature are also used for vectors. The next results deal with
the nonnegativity of a matrix and its spectral radius.

Theorem 2.1 (Theorem 2.20, [23])
Let B ∈ R

n×n and B ≥ 0. Then

(i) B has a nonnegative real eigenvalue equal to its spectral radius.
(ii) To ρ(B), there corresponds an eigenvector x ≥ 0.

Theorem 2.2 (Theorem 2.1.11, [6])
Let B ∈ R

n×n, B ≥ 0, x ≥ 0 (x �= 0), and α is a positive scalar.

(i) If αx ≤ Bx, then α ≤ ρ(B).
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(ii) If Bx ≤ αx, x > 0, then ρ(B) ≤ α.

Theorem 2.3 (Theorem 3.15, [23])
Let B ∈ R

n×n and B ≥ 0. Then ρ(B) < 1 if and only if (I − B)−1 exists and (I −
B)−1 =

∑∞
n=0

Bn ≥ 0.

2.2 The Moore–Penrose Inverse of a Matrix

For A ∈ R
m×n, the unique matrix X ∈ R

n×m satisfying the following four equations
known as Penrose equations:

AXA = A, XAX = X , (AX )T = AX and (XA)T = XA

is called the Moore–Penrose inverse of A. It always exists and is denoted by A†

(see [20]). Next, we collect some well-known properties of the Moore–Penrose
inverse of A ∈ R

m×n which will be used frequently in this article, namely: R(A†) =
R(AT); N (A†) = N (AT); AA† = PR(A†); A†A = PR(AT). In particular, if x ∈ R(A),
then x = A†Ax (for more details, see [3]). A ∈ R

m×n is called semimonotone, if
A† ≥ 0.

2.3 Proper Splittings

A splitting A = U − V of A ∈ R
m×n is called a proper splitting if R(U ) = R(A) and

N (U ) = N (A). A few properties of a proper splitting are summarized below.

Theorem 2.4 (Theorem 1, [4])
Let A = U − V be a proper splitting of A ∈ R

m×n. Then

(a) A = U (I − U †V ),

(b) (I − U †V ) is nonsingular,
(c) A† = (I − U †V )−1U †.

Theorem 2.5 (Theorem 1, [7])
Let A = U − V be a proper splitting of A ∈ R

m×n. Then

(a) A = (I − V U †)U,

(b) (I − V U †) is nonsingular,
(c) A† = U †(I − V U †)−1.

Theorem 2.6 (Theorem 1, [15])
Let A = U − V be a proper splitting of A ∈ R

m×n. Then

(a) AA† = UU † and A†A = U †U,
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(b) U †VA† = A†V U †,

(c) U †VA†V = A†V U †V ,

(d) V U †VA† = VA†V U †.

We refer [5, 16, 17, 21] for methods of construction of a proper splitting for a given
A ∈ R

m×n. Different subclasses of a proper splitting are recalled next.

Definition 2.7 A proper splitting A = U − V of A ∈ R
m×n is called a

(i) proper regular splitting [13], if U † ≥ 0 and V ≥ 0.
(ii) proper weak regular splitting of type I [13], if U † ≥ 0 and U †V ≥ 0.

(iii) proper weak regular splitting of type II [12], if U † ≥ 0 and V U † ≥ 0.

For the above class of proper splitting, we have the following convergence result.

Theorem 2.8 (Theorem 2.4, [17])
Let A = U − V be any of the above class of splittings of A ∈ R

m×n. Then A† ≥ 0 if
and only if ρ(V U †) = ρ(U †V ) < 1.

It is well known that matrix splittings having a smaller radius of iteration matrix
gives a faster rate of convergence for (1.2). Therefore, we have the following com-
parison result for proper weak regular splittings of different types.

Theorem 2.9 (Theorem 3.3, [9])
Let A = U1 − V1 = U2 − V2 be two proper weak regular splitting of different types
a semimonotone matrix A ∈ R

m×n. If U †
1 ≥ U †

2 , then ρ(U †
1 V1) ≤ ρ(U †

2 V2) < 1.

3 Classical Three-Step Alternating Iteration Method

This section deals with the convergence of the three-step alternating iteration method,
when the splittings A = M − N = P − Q = U − V are proper weak regular of type
II. Before proving our main results, we recall the following results.

Theorem 3.1 (Theorem 15, [19])
Let A = M − N = P − Q = U − V be three proper weak regular splittings of type
I of a semimonotone matrix A ∈ R

m×n. Then ρ(H ) = ρ(U †VP†QM †N ) < 1.

Theorem 3.2 (Theorem 16, [19])
Let A = M − N = P − Q = U − V be three proper weak regular splittings of type
I of a semimonotone matrix A ∈ R

m×n. Then the unique splitting A = B − C induced
by H with B = M (M + U − A + VP†N )†U is a proper weak regular splitting of
type I if R(M + U − A + VP†N ) = R(A) and N (M + U − A + VP†N ) = N (A).

A few properties of the matrix B mentioned in the above theorem are obtained next.
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Lemma 3.3 Let A = M − N = P − Q = U − V be three proper splittings of A ∈
R

m×n. If B = M (M + U − A + VP†N )†U, R(M + U − A + VP†N ) = R(A) and
N (M + U − A + VP†N ) = N (A), then B† = U †(M + U − A + VP†N )M †,
R(B) = R(A) and N (B) = N (A).

Proof Let X = U †(M + U − A + VP†N )M †. Since R(M + U − A + VP†N ) =
R(A), N (M + U − A + VP†N ) = N (A) and A = M − N = P − Q = U − V are
proper splittings, we have (M + U − A + VP†N )(M + U − A + VP†N )† = AA† =
MM † = PP† = UU †. Hence,

XB = U †(M + U − A + VP†N )M †M (M + U − A + VP†N )†U

= U †(M + U − A + VP†N )(M + U − A + VP†N )†U

= U †U

= (U †U )T

= (XB)T,

and

BX = M (M + U − A + VP†N )†UU †(M + U − A + VP†N )M †

= M (M + U − A + VP†N )†(M + U − A + VP†N )M †

= MM †

= (MM †)T

= (BX )T.

Therefore, XBX = U †UU †(M + U − A + VP†N )M † = U †(M + U − A + VP†N )

M † = X and BXB = MM †M (M + U − A + VP†N )†U = M (M + U − A + VP†

N )†U = B. Hence, X = B†.

Next we will show that R(B) = R(A) and N (B) = N (A). To do this, we will first
prove that N (U ) = N (B). Clearly, N (U ) ⊆ N (B). Let x ∈ N (B), i.e., Bx = 0. By
pre-multiplying M † to Bx = 0 and using the fact that M †M = PR((M +U−A+VP†N )T) =
PR(AT), we get M †M (M + U − A + VP†N )†Ux = (M + U − A + VP†N )†Ux =
0. Again, pre-multiplying (M + U − A + VP†N ) and using the fact (M + U −
A + VP†N )(M + U − A + VP†N )† = PR(M +U−A+VP†N ) = PR(A) = PR(U ), we get
(M + U − A + VP†N )(M + U − A + VP†N )†Ux = Ux = 0, i.e., x ∈ N (U ).

Hence, N (B) ⊆ N (U ). Next, we will show that R(B) = R(A) which is equivalent to
prove N (BT) = N (AT). But B = M (M + U − A + VP†N )†U implies N (M T) ⊆
N (BT). So, we need to show the other way, i.e., N (BT) ⊆ N (M T). Let x ∈
N (BT), then (M (M + U − A + VP†N )†U )Tx = 0. By pre-multiplying (U †)T, we
get (UU †)T((M + U − A + VP†N )†)TM Tx = ((M + U − A + VP†N )†UU †)TM T

x = 0 and using the fact UU † = PR(A) = PR(M +U−A+VP†N ) = (M + U − A + VP†

N )(M + U − A + VP†N )†, we get ((M + U − A + VP†N )†)TM Tx = 0.Again, pre-
multiplying (M + U − A + VP†N )T and using the fact (M +U − A + VP†N )†(M +
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U − A + VP†N ) = PR((M +U−A+VP†N )T) = PR(AT) = M †M , we obtain (M + U −
A + VP†N )T((M + U − A + VP†N )†)TM Tx = (M †M )TM Tx = M Tx = 0. Hence,
N (BT) ⊆ N (M T) = N (AT). �

We have the following two expressions for B†,

B† = U †(M + U − A + VP†N )M †

= U †MM † + U †UM † − U †AM † + U †VP†NM †

= U † + U †VM † + U †VP†NM †

and

B† = U †(M + U − A + VP†N )M †

= U †MM † + U †UM † − U †AM † + U †VP†NM †

= M † + U †NM † + U †VP†NM †.

The example given below shows that the alternating scheme is convergent even
though A = M − N = P − Q = U − V are not proper weak regular splittings of
type I.

Example 3.4 Let A =
[

5 −3 5
−3 5 −3

]
. Then, A† =

⎡

⎣
0.1563 0.0938
0.1875 0.3125
0.1563 0.0938

⎤

⎦ ≥ 0. Consider

A=
[

15 −9 15
−3 10 −3

]
−

[
10 −6 10
0 5 0

]
= M − N .ThenR(M ) = R(A), N (M ) = N (A),

M † =
⎡

⎣
0.0407 0.0366
0.0244 0.1220
0.0407 0.0366

⎤

⎦ ≥ 0, M †N =
⎡

⎣
0.4065 −0.0610 0.4065
0.2439 0.4634 0.2439
0.4065 −0.0610 0.4065

⎤

⎦ � 0

and NM † =
[

0.6667 0
0.1220 0.6098

]
≥ 0. Hence, A = M − N is a proper weak regular

splitting of type II but not I.

Further consider A =
[

20 −12 20
−3 10 −3

]
−

[
15 −9 15
0 5 0

]
=P − Q.ThenR(P)=R(A),

N (P) = N (A), P† =
⎡

⎣
0.0305 0.0366
0.0183 0.1220
0.0305 0.0366

⎤

⎦ ≥ 0, P†Q =
⎡

⎣
0.4573 −0.0915 0.4573
0.2744 0.4451 0.2744
0.4573 −0.0915 0.4573

⎤

⎦ �

0 and QP† =
[

0.7500 0
0.0915 0.6098

]
≥ 0. Hence, A = P − Q is a proper weak regular split-

ting of type II but not I.

Again consider A =
[

25 −15 25
−3 10 −3

]
−

[
20 −12 20
0 5 0

]
= U − V . Then R(U ) =

R(A), N (U ) = N (A), U † =
⎡

⎣
0.0244 0.0366
0.0146 0.1220
0.0244 0.0366

⎤

⎦ ≥ 0,
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U †V =
⎡

⎣
0.4878 −0.1098 0.4878
0.2927 0.4341 0.2927
0.4878 −0.1098 0.4878

⎤

⎦ � 0 and V U † =
[

0.8000 0
0.0732 0.6098

]
≥ 0.Hence,

A = U − V is a proper weak regular splitting of type II but not I. But ρ(H ) =
ρ(U †VP†QM †N ) = 0.4 < 1, and A is semimonotone.

In the above example, we can see that H = U †VP†QM †N

=
⎡

⎣
0.3046 −0.1147 0.3046
0.3486 0.0176 0.3486
0.3046 −0.1147 0.3046

⎤

⎦ � 0 but S = V U †QP†NM † =
[

0.4 0
0.1191 0.2267

]
≥ 0.

Motivated by the above example, we will now introduce a similar result as Theo-
rem 3.1 by considering the given splittings are proper weak regular of type II. With
this objective, we first derived the following properties of H and S which are useful
to prove further results.

Theorem 3.5 Let A = M − N = P − Q = U − V be three proper splittings of A ∈
R

m×n and S = V U †QP†NM †. Then,

(i) AA†S = S = SAA† and A†AH = H = HA†A, where H is the iteration matrix of
the iterative method (1.6).

(ii) S = AHA†, H = A†SA and ρ(S) = ρ(H ).

(iii) I − S and I − H are invertible if R(M + U − A + VP†N ) = R(A) and N (M +
U − A + VP†N ) = N (A).

Proof (i) AA†S = AA†V U †QP†NM † = S using the fact that R(S) ⊆ R(V ) ⊆
R(A). Again SAA† = V U †QP†NM †AA† = V U †QP†NM †MM † = S. Similar
argument yields the other equality.

(ii) By Theorem 2.6, we have U †VA† = A†V U †, P†QA† = A†QP† and M †NA† =
A†NM †. So

S = AA†S

= AA†V U †QP†NM †

= AU †VA†QP†NM †

= AU †VP†QA†NM †

= AU †VP†QM †NA†

= AHA†.

We then have A†S = A†AHA† = HA†. Again, post-multiplying A, we get H =
A†SA.

Consider Sx = λx, where λ is an eigenvalue of S, and x is its corresponding
eigenvector. Then x ∈ R(S) ⊆ R(A). Now λx = Sx = AHA†x. Pre-multiplying A†,
we getλy = Hy, where y = A†x.Therefore,λ is an eigenvalue of H if, y �= 0. Suppose
that y = A†x = 0. Then x ∈ N (A†) = N (AT). So, we have x ∈ R(A) ∩ N (AT) =
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{0} a contradiction. Hence, y �= 0 and so σ {S} ⊆ σ {H }. For the other way, consider
Hy = μy, where μ is an eigenvalue of H , and y is its corresponding eigenvector.
Then y ∈ R(H ) ⊆ R(AT). Also μy = A†SAy. Pre-multiplying A, we get μz = Sz,
where z = Ay. Suppose that z = 0. Then y ∈ N (A). So y ∈ R(AT) ∩ N (A) which
yields y = 0, a contradiction. Hence, σ {H } ⊆ σ {S}. Therefore, ρ(S) = ρ(H ).

(iii) We will prove this by the method of contradiction. Suppose that I − S is
not invertible. Then 1 is an eigenvalue of S. Therefore, x = V U †QP†NM †x ∈
R(V U †QP†NM †) ⊆ R(V ) ⊆ R(U ) = R(P) = R(M ) = R(A). So, x = UU †

x = PP†x = MM †x and hence

x = V U †QP†NM †x

= (U − A)U †(P − A)P†(M − A)M †x

= (UU † − AU †)(PP† − AP†)(MM † − AM †)x

= (AA† − AU †)(AA† − AP†)(AA† − AM †)x

= (AA† − AU †)(AA† − AP†)(AA†x − AM †x)

= (AA† − AU †)(AA† − AP†)(x − AM †x)

= (AA† − AU †)(AA†x − AA†AM †x − AP†x + AP†AM †x)

= (AA† − AU †)(x − AM †x − AP†x + AP†AM †x)

= (x − AM †x − AP†x + AP†AM †x − AU †x + AU †AM †x

+AU †AP†x − AU †AP†AM †x)

= x − A(M † + P† − P†AM † + U † − U †AM † − U †AP†

+U †AP†AM †)x

= x − A(M †MM † + P†PP† + U † − P†AM † − U †AM † − U †AP†

+U †AP†AM †)x

= x − A(U †UM † + U †UP† + U † − P†AM † − U †AM † − U †AP†

+U †AP†AM †)x

= x − A(U †UM † + U †UP†PP† + U †UU † − P†PP†AM † − U †AM †

−U †AP†PP† + U †AP†AM †)x

= x − A(U †UM † + U †UP†MM † + U †MM † − U †UP†AM † − U †AM †

−U †AP†M † + U †AP†AM †)x

= x − A(U †(U + M − A + UP†M − UP†A − AP†M + AP†A)M †)x

= x − A(U †(U + M − A + VP†N )M †)x

= x − AB†x.

Then AB†x = 0. Thus, B†x ∈ N (A) = N (B) and so BB†x = 0. But x ∈ R(A) =
R(B). (We have used the facts that N (B) = N (A) and R(B) = R(A) which fol-
lows from Lemma 3.3.) Therefore, x = BB†x = 0, a contradiction. Thus, I − S is
invertible.
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The other proof is explained next. Let (I − H )x = (I − U †VP†QM †N )x = 0.

So, x ∈ R(U †) = R(U T) = R(AT). Substituting V = U − A, Q = P − A and N =
M − A in (I − H )x = 0 and then simplifying, we get B†Ax = 0. Pre-multiplying
B and using the fact R(B) = R(A), we get x ∈ N (A). Hence, x = 0 yielding a
contradiction. Thus, I − H is invertible. �
Theorem 3.6 Let A = M − N = P − Q = U − V be three proper weak regular
splittings of type II of a semimonotone matrix A ∈ R

m×n and S = V U †QP†NM †.
Then ρ(H ) = ρ(U †VP†QM †N ) < 1.

Proof We have

0 ≤ S = V U †QP†NM †

= (U − A)U †(P − A)P†(M − A)M †

= (UU † − AU †)(PP† − AP†)(MM † − AM †)

= (AA† − AU †)(AA† − AP†)(AA† − AM †)

= AA† − AM † − AP† − AU † + AP†AM † + AU †AM †

+AU †AP† − AU †AP†AM †

since A = M − N = P − Q = U − V are proper weak regular splittings of type II.
Now

A†(I − S) = A† − A†S

= A†AA† − A†S

= A†(AA† − S)

= A†(AA† − AA† + AM † + AP† + AU † − AP†AM † − AU †AM †

−AU †AP† + AU †AP†AM †)

= A†AM † + A†AP† + A†AU † − A†AP†AM † − A†AU †AM †

−A†AU †AP† + A†AU †AP†AM †

= M † + P† + U † − P†AM † − U †AM † − U †AP† + U †AP†AM †

= M † + P†(M − A)M † + U †(P − A)P† + U †(AP†A − A)M †

= M † + P†NM † + U †QP† + U †(AP†A − PP†A)M †

= M † + P†NM † + U †QP† − U †(P − A)P†AM †

= M † + P†NM † + U †QP† − U †QP†(M − N )M †

= M † + P†NM † + U †QP†NM † ≥ 0.

Hence,

0 ≤ A†(I − S)(I + S + S2 + S3 + · · · + Sm)

= A†(I − Sm+1)

≤ A†
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for each m ∈ N. So, the partial sums of the series
∑∞

m=0
Sm is uniformly bounded.

Hence, ρ(S) < 1. Thus ρ(H ) = ρ(S) < 1 by Theorem 3.5 (ii). �

The next result showing that the matrix B in the splitting A = B − C induced by
H can also be expressed as the product of A and (I − H )−1.

Lemma 3.7 Let A = M − N = P − Q = U − V be three proper splittings of A ∈
R

m×n such that ρ(H ) < 1, R(M + P − A + VP†N ) = R(A) and N (M + P − A +
VP†N ) = N (A). Then the unique splitting A = B − C induced by H is a proper
splitting such that H = B†C, where B = A(I − H )−1.

Proof Let B = A(I − H )−1 and C = B − A. Then

B†C = B†(B − A)

= B†B − B†A

= B†B − (I − H )A†A

= A†A − A†A + HA†A

= H

using the fact that A = B − C is a proper splitting which is shown next.
Let Z = (I − H )A†. Then BZ = AA† which is symmetric and ZBZ = (I − H )A†A

A† = (I − H )A† = Z . Again

ZB = (I − H )A†A(I − H )−1

= (A†A − HA†A)(I − H )−1

= (A†A − A†AH )(I − H )−1

= A†A

which is symmetric and BZB = AA†A(I − H )−1 = A(I − H )−1 = B. So, we have

B† = (I − H )A†

= A† − U †VP†QM †NA†

= A† − (U †(U − A)P†(P − A)M †(M − A)A†)

= A† − (P† − U †AP†)(PM † − AM †)(MA† − AA†)

= A† − (M † − P†AM † − U †AM † + U †AP†AM †)(MA† − AA†)

= M † + P† − P†AM † + U † − U †AM † − U †AP† + U †AP†AM †

= M † + U † − U †AM † + P† − P†(P − Q)M † − U †(U − V )P†

+U †(U − V )P†(M − N )M †

= M † + U † − U †AM † + U †VP†NM †.

Hence, A = B − C is a proper splitting, by Lemma 3.3.
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For uniqueness, suppose that there exists another splitting A = B̄ − C̄ such that
H = B̄†C̄. Then B̄H = B̄B̄†C̄ = C̄ = B̄ − A. So B̄(I − H ) = A. Hence B̄ = A(I −
H )−1 = B. �

Theorem 3.8 Let A = M − N = P − Q = U − V be three proper weak regular
splittings of type II of a semimonotone matrix A ∈ R

m×n and S = V U †QP†NM †.
Then, H and S induce the same proper splitting A = B − C if R(M + U − A +
VP†N ) = R(A) and N (M + U − A + VP†N ) = N (A). Furthermore, the unique
proper splitting A = X − Y induced by matrix S is also a proper weak regular
splitting of type II.

Proof By Lemma 3.7, we have B = A(I − H )−1. Let us consider X = (I − S)−1A
and Y = X − A. We will show that the matrices H and S induce the same proper
splitting A = B − C. Since H = HA†A and S = AHA†, so Sk = AH kA†, for any
nonnegative integer k. By Theorem 3.6, we have ρ(S) < 1. Also, S ≥ 0. Therefore,
Theorem 2.3 yields

X = (I − S)−1A

=
∞∑

k=o

SkA

=
∞∑

k=o

AH kA†A

=
∞∑

k=o

AH k

= A(I − H )−1

= B.

Then R(X ) = R(B) = R(A) and N (X ) = N (B) = N (A) which in turn yields A =
X − Y is a proper splitting.

To prove A = X − Y is a proper weak regular splitting of type II, consider Z =
A†(I − S). Then ZX = A†(I − S)(I − S)−1A = A†A. Hence, ZX is symmetric and
ZXZ = A†AA†(I − S) = A†(I − S) = Z . Using the property AA†S = S = SAA†, we
obtain

XZ = (I − S)−1AA†(I − S)

= (I − S)−1(AA† − AA†S)

= (I − S)−1(AA† − SAA†)

= AA†.

So, XZ is symmetric and
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XZX = AA†(I − S)−1A

= AA†
∞∑

k=0

SkA

=
∞∑

k=0

SkA

= (I − S)−1A

= X .

Hence, X † = A†(I − S) ≥ 0 (see the proof of Theorem 3.6 for A†(I − S) ≥ 0).
Therefore,

YX † = (X − A)X †

= XX † − AX †

= AA† − AA†(I − S)

= S ≥ 0.

Thus A = X − Y is a proper weak regular splitting of type II induced by S. Let
A = X1 − Y1 be another splitting induced by S such that S = Y1X †

1 . Then SX1 =
Y1X †

1 X1 = Y1 = X1 − A. So A = X1 − SX1 = (I − S)X1 which implies X1 = (I −
S)−1A = X . Hence, A = X − Y is the unique proper weak regular splitting of type
II induced by S. �

The next results confirm that the proposed alternating iterative scheme converges
faster than (1.2) under suitable assumptions.

Theorem 3.9 Let A = M − N = P − Q = U − V be three proper regular split-
tings of a semimonotone matrix A ∈ R

m×n with R(M + U − A + VP†N ) = R(A)

and N (M + U − A + VP†N ) = N (A). Then ρ(H ) ≤ min{ρ(M †N ), ρ(P†Q),

ρ(U †V )} < 1.

Proof By Theorem 3.8, A = B − C is a proper weak regular splitting of type II
induced by H , and from (1.6), we have

B† = U †(VP†QM † + VP† + I) = U †VP†QM † + U †VP† + U † ≥ U †.

and

B† = U †VP†QM † + U †VP† + U †

= U †VP†QM † + U †UP† − U †AP† + U †MM †

= U †VP†QM † + P† + U †(M − A)M †

= U †VP†QM † + P† + U †NM † ≥ P†.
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Also,

B† = U †(M + U − A + VP†N )M †

= U †MM † + U †UM † − U †(M − N )M † + U †VP†NM †

= U † + M † − U †MM † + U †NM † + U †VP†NM †

= U † + M † − U † + U †NM † + U †VP†NM †

= M † + U †NM † + U †VP†NM † ≥ M †.

Hence, by applying Theorem 2.9 to the pair of the splittings A = B − C and A = P −
Q, A = B − C and A = U − V , and A = B − C and A = B − C, we have ρ(H ) ≤
ρ(P†Q) < 1, ρ(H ) ≤ ρ(M †N ) < 1 and ρ(H ) ≤ ρ(U †V ) < 1, respectively. There-
fore, ρ(H ) ≤ min{ρ(P†Q), ρ(M †N ), ρ(U †V )} < 1. �

Theorem 3.10 Let A = P − Q = M − N = U − V be three proper weak regu-
lar splittings of type II of a semimonotone matrix A ∈ R

n×n with R(M + U −
A + VP†N ) = R(A) and N (M + U − A + VP†N ) = N (A). Let A = B − C be the
proper weak regular splitting of type II induced by H (or S). If PB† ≥ I , MB† ≥ I
and UB† ≥ I , then ρ(H ) ≤ min{ρ(P†Q), ρ(M †N ), ρ(U †V )} < 1.

Proof Consider the pair of splittings A = B − C and A = P − Q. By Theorem 2.5,
we have

B†(I − CB†)−1 = P†(I − QP†)−1. (3.1)

Pre-multiplying (3.1) by P, we obtain

PB†(I − CB†)−1 = PP†(I − QP†)−1 = (I − QP†)−1. (3.2)

As CB† ≥ 0, there exists an eigenvector x ≥ 0 such that CB†x = ρ(CB†)x by The-
orem 2.1 . Post-multiplying (3.2) by x, we get PB†(I − CB†)−1x = (I − QP†)−1x,
i.e., PB†x

1−ρ(B†C)
= (I − QP†)−1x. Using the fact PB† ≥ I , we have

x

1 − ρ(CB†)
≤ PB†x

1 − ρ(CB†)
= (I − QP†)−1x.

Thus, ρ(B†C) ≤ ρ(P†Q) by Theorem 2.2 (i). Similarly, for the pair of splittings
A = B − C and A = M − N , and A = B − C and A = U − V , we have ρ(H ) ≤
ρ(M †N ) < 1 and ρ(H ) ≤ ρ(U †V ) < 1, respectively. Hence, ρ(H ) ≤ min{ρ(P†Q),

ρ(M †N ), ρ(U †V )} < 1. �

Theorem 3.11 Let A = M − N = P − Q = U − V be three proper regular split-
tings of a semimonotone matrix A ∈ R

m×n with R(M + U − A + VP†N ) = R(A)

andN (M + U − A + VP†N ) = N (A). Thenρ(H ) ≤ min{ρ(P†QM †N ), ρ(U †VP†

Q), ρ(U †VM †N )} < 1.
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Proof Suppose A = B − C be the splitting induced by the matrix H . Let A =
B1 − C1, A = B2 − C2, and A = B3 − C3 be the splitting induced by the matrices
M †NP†Q, M †NU †V , and P†QU †V , respectively. Then

B† = M † + U † − U †AM † + U †VP†NM †

≥ M † + U † − U †AM †

= U †(M + U − A)M † = B†
2

and by Theorems 3.8 and 2.9, we have ρ(B†C) ≤ ρ(B†
2C2), i.e., ρ(H ) ≤ ρ(U †V

M †N ). Again,

B† = M † + P† + U † − P†AM † − U †AP† + U †AP†AM †

= M † + P† − P†AM † + U † − U †AM † − U †AP† + U †AP†AM †

= M † + P† − P†AM † + U † − U †(M − N )M † − U †(P − Q)P†

+ U †(P − Q)P†(M − N )M †

= M † + P† − P†AM † + U †NM † − U † + U †QP†

+ U †(PP† − QP†)(MM † − NM †)

= M † + P† − P†AM † + U †QP†NM †

≥ M † + P† − P†AM †

= P†(M + P − A)M † = B†
1

and by Theorems 3.8 and 2.9, we have ρ(B†C) ≤ ρ(B†
1C1), i.e., ρ(H ) ≤ ρ(P†Q

M †N ).
Similarly, we can obtain

B† = U † + P† − U †AP† + U †VP†QM †

≥ U † + P† − U †AP†

= B†
3

and ρ(H ) ≤ ρ(U †VP†Q). Hence ρ(H ) ≤ min{ρ(P†QM †N ), ρ(U †VP†Q),

ρ(U †VM †N )} < 1. �

The following example demonstrates the above results.

Example 3.12 Consider the matrices in Example 3.4. Then S = V U †QP†NM †

=
[

0.4000 0
0.1191 0.2267

]
and the splitting induced by S is A = X − Y

=
[

8.3333 −5 8.3333
−2.5960 5.6957 −2.5960

]
−

[
3.3333 −2 3.3333
0.4040 0.6957 0.4040

]
. Here, R(A) = R(X ),
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N (A) = N (X ), X † =
⎡

⎣
0.0826 0.0725
0.0753 0.2417
0.0826 0.0725

⎤

⎦ ≥ 0 and YX † =
[

0.4000 0
0.1191 0.2267

]
≥ 0.

Hence, the induced splitting A = X − Y is a proper weak regular splitting of type II.

Also, PX † =
[

2.4000 0
0.2573 1.9816

]
≥ I , MX † =

[
1.8000 0
0.2573 1.9816

]
≥ I , UX † =

[
3 0

0.2573 1.9816

]
≥ I , respectively. Further ρ(H ) = 0.4 < min{ρ(M †N ), ρ(P†Q),

ρ(U †V )} = min{0.6666, 0.75, 0.8} < 1 and ρ(H ) = 0.4 < min{ρ(P†QM †N ),

ρ(U †VP†Q), ρ(U †VM †N )} = min{0.5, 0.6, 0.5333} < 1.

4 Numerical Computation

In this section, we demonstrate a few numerical examples to validate the proposed
theory. The estimation of error bounds, time in seconds, the number of iterations
(IT), and the spectral radius of the corresponding iteration matrix are evaluated using
MATLAB. We use MATLAB R2015a for the numerical computations in a Windows
operating system with configurations: Intel(R) Xenon(R) E-2224 with 16 GB RAM.
To terminate the iterative process, we use the stopping criteria ||xk − xk−1|| < ε,
where ε = 10−7.

To show that the three-step iterative scheme converges faster than the two-step and
single-step iterative schemes, we consider two different inconsistent linear system
and we consider three proper splittings of the coefficient matrices.

Example 4.1 Let us consider a linear system of the form (1.1) with A =

⎡

⎢⎢⎣

1 1 0
0 0 8
11 11 0
0 0 2

⎤

⎥⎥⎦

and b = [1, 1, 1, 1]T. We have

A† =
⎡

⎣
0.0041 0 0.0451 0
0.0041 0 0.0451 0

0 0.1176 0 0.0294

⎤

⎦ ≥ 0. Setting M =

⎡

⎢⎢⎣

1 1 0
0 0 12
11 11 0
0 0 3

⎤

⎥⎥⎦,

P =

⎡

⎢⎢⎣

1 1 0
0 0 28
11 11 0
0 0 7

⎤

⎥⎥⎦ and U =

⎡

⎢⎢⎣

1 1 0
0 0 16
11 11 0
0 0 16

⎤

⎥⎥⎦, we get three proper regular splittings

A = M − N = P − Q = U − V of A. The comparison of rate of convergence of
single-step, two-step, and three-step is given in Table 1.
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Table 1 Comparison table for Example 4.1

Alternate
iterations

Splittings IT ||A†b − xn||2 Time ρ

Three-step A = M −
N = P − Q =
U − V

7 4.9835e−08 0.000261 0.1190

Two-step A = M −
N = P − Q

10 8.6099e−08 0.000369 0.2381

Two-step A = M −
N = U − V

8 8.7555e−08 0.000349 0.1667

Two-step A = P − Q =
U − V

14 8.0775e−08 0.000512 0.3571

Single-step A = M − N 13 9.2239e−08 0.000469 0.3333

Single-step A = P − Q 43 7.6557e−08 0.001516 0.7143

Single-step A = U − V 21 7.0123e−08 0.000753 0.5

Example 4.2 Let us consider another linear system of the form (1.1) with A =⎡

⎢⎢⎣

1.41 0 1.41
0 1.41 0

1.41 0 1.41
2.82 0 2.82

⎤

⎥⎥⎦ and b = [2, 4, 1, 1]T. We have

A† =
⎡

⎣
0.0591 0 0.0591 0.1182
0.0000 0.7092 0 0
0.0591 0 0.0591 0.1182

⎤

⎦ ≥ 0. Setting M =

⎡

⎢⎢⎣

2.115 0 2.115
0 2.115 0

2.115 0 2.115
4.23 0 4.23

⎤

⎥⎥⎦,

P =

⎡

⎢⎢⎣

4.512 0 4.512
0 4.5120 0

4.512 0 4.512
9.024 0 9.024

⎤

⎥⎥⎦ and U =

⎡

⎢⎢⎣

3.525 0 3.525
0 3.525 0

3.525 0 3.525
7.05 0 7.05

⎤

⎥⎥⎦, we get three proper

regular splittings A = M − N = P − Q = U − V of A. The comparison of rate of
convergence of single-step, two-step, and three-step is given in Table 2.

From Tables 1 and 2, we observe that the spectral radius of the iteration matrix of
three-step alternating iteration schemes is significantly less which ultimately leads to
faster converges of these schemes. One may note that for a small size linear system
4 × 3, the iteration number (IT) and time in seconds is quite less in case of three-
step. So, for large inconsistent linear system, one can expect a significantly less
iterations and time consumption which eventually leads to a faster convergence and
thus computationally more feasible.
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Table 2 Comparison table for Example 4.2

Alternate
iterations

Splittings IT ||A†b − xn||2 Time ρ

Three-step A = M −
N = P − Q =
U − V

9 5.0376e−08 0.000332 0.1375

Two-step A = M −
N = P − Q

12 6.0162e−08 0.000434 0.2292

Two-step A = M −
N = U − V

11 5.8726e−08 0.000408 0.2

Two-step A = P − Q =
U − V

14 5.8342e−08 0.000730 0.4125

Single-step A = M − N 16 8.2157e−08 0.001231 0.6

Single-step A = P − Q 46 9.3766e−08 0.001643 0.6875

Single-step A = U − V 34 8.2157e−08 0.001231 0.6

5 Conclusion

In this paper, we have settled the problem of finding the least-squares solution of
minimum norm of a given inconsistent linear system using iterative method. In this
direction, we have derived some suitable sufficient conditions for the convergence of
the three-step alternating iterative scheme in case of proper weak regular splittings
of type II (Theorem 3.6) and then we have shown that the three-step alternating
iteration scheme converges faster than the usual iteration scheme and the two-step
alternating iteration scheme (Theorems 3.9, 3.10 and 3.11). Finally, we have validated
our theoretical results by performing numerical computations in Sect. 4. Our results
further expand the existing theory and give a faster numerical solution.
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