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Abstract The Cobb angle measurement in adolescent idiopathic scoliosis is prone
to inter- and intra-observer variations. This paper proposes a deep learning architec-
ture for detection of spine vertebrae from X-ray images to automatically evaluate
the Cobb angle, and to assess for the presence of scoliosis and severity of the curva-
ture. The public AASCE MICCAI 2019 anterior–posterior X-ray image dataset was
used for training and testing of the proposed convolutional neural network architec-
ture. Seventeen vertebrae were detected from the input image to obtain 68 landmark
features of the spine. The obtained landmarks were processed to measure the Cobb
angle and to assess whether scoliosis was present. The severity of the curvature was
further classified into mild, moderate and severe, if scoliosis was present. The results
showed that the proposed algorithm has a classification accuracy of approximately
0.9 (90%). This architecture may be used as a tool to augment Cobb angle measure-
ment in X-ray images of patients with adolescent idiopathic scoliosis in a real-world
clinical setting.
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1 Introduction

Adolescent idiopathic scoliosis (AIS) is an abnormal curvature, in which the spine
curves abnormally from side to side and rotates. The Cobb measuring method is
the gold standard used in quantifying the curve. The Cobb angle (CA) is measured
from the most tilted vertebra (end vertebra) above and below the apex (most laterally
placed vertebra) of the curve on radiographs taken either in the anterior–posterior or
the posterior-anterior view on the coronal plane [1]. Generally, the manual procedure
requires lines to bedrawnonto ahardcopyof radiographicfilms and the angle between
the two lines are measured using a protractor (Fig. 1).

In addition to being time consuming, CA measurement of spine is unreliable
[2] and is associated with inter-observer and intra-observer variations [3]. Reported
accuracies ofmeasuringCAvary from2° to11° [4–6]withmeasurements differingup
to 5° evenwith the sameendvertebrae selected [4, 7]. The emergence of computerized
digitization of radiographs has allowed for semi-automatic assessment of CA where
the picture archiving and communications system (PACS) allows for an in-built
function enabling the user to digitally draw the lines for the end vertebrae and the
system automatically measures the CA. This has shown to have good reliability and

Fig. 1 Measurement of
Cobb angle (CA)



AutoSpine-Net: Spine Detection Using Convolutional … 549

less variations compared to the manual method [6, 8]. However, this is method is
still dependent on the manual inputs from the user.

The availability of an accurate reproducible CAmeasurementmethod is important
as the assessment of the CA is used to diagnose AIS and to guide decisions regarding
curve progression as well as therapeutic options including surgical interventions. In
addition, the method has be user-friendly and takes less time compared to the manual
and semi-automatic methods.

The development of computer vision technologies [9], machine learning methods
[10, 11], and deep learning methods [12–14] led to attempts for the transition from
traditional and semi-automatic CA assessment to automated CA measurement. In
this instance, the X-ray images were processed by means of computerized learning
method to enable CA measurement and prediction. The various machine learning
methods used in scoliosis clinical practice, including screening, diagnosis and clas-
sification, have previously been reported [11]. Vertebrae detection is an important
stage to identify the landmarks of interest on the spine image for CA measurement.
Studies on the vertebrae and spine detection based on machine learning methods
[10, 11] and deep learning methods [12–14] have been previously reported. Bern-
stein et al. showed that a neural network (NN) can be applied to automatically train
the vertebrae centroids detection [10]. However, automatic detection of the verte-
brae in X-ray images can be difficult. Computer vision task is challenging in X-rays
compared to computed tomography (CT) and magnetic resonance imaging (MRI)
images due tomultiple overlapping shadows of the ribs and pelvis, as well as, a differ-
ences in contrast between thoracic and lumbar vertebrae regions [15, 16]. Convo-
lutional neural network (CNN) architecture can help overcome this problem [10].
Researchers in the field of deep learning (DL) have previously develop fully auto-
matedmethods for Cobb anglemeasurement (Table 1). Themethods had successfully
detected and segmented the vertebrae and the spine. However, most of the studies

Table 1 Brief summary of selected papers in CA measurement using deep learning methods

References Image processing methods and the procedures Method

[12] 1. Vertebrae isolation and detection
2. Drawing spinal curve line
3. Vertebra rectangle segmentation

CNN

[13] 1. Usage of Moire screening system to obtain the curve
2. Fitting the curve to the 17 position using cubic B-spline
3. Calculate the two contact points of three lines perpendicular to the
curve
4. Define the middle vertebrae
5. Calculate the angle

CNN

[14] 1. Use picture archiving and communication systems
2. Consider the orientation of the overall spinal curve
3. Identify the max angle between the superior perpendicular of the
cranial
vertebrae and the inferior perpendicular of the caudal vertebrae at the
longitudinal central lines of the vertebral bodies

R-CNN
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were not collaborated with the clinicians and the results obtained were not compared
with measurements made in the real-world setting.

In this paper, we propose a CNN for spine vertebra detection, CA evaluation and
curve severity classification in AIS. The main objective is to automate and augment
(1) the detection and the assessment of the CA, and (2) the confirmation of presence
of scoliosis, based on standard spine X-ray images. The severity of the scoliosis is
also classified into mild (10°–25°), moderate (>25° to 40°), and severe (> 40°).

2 Proposed Method

2.1 Datasets

The collection and labelling of spinal images were performed by the public AASCE
MICCAI 2019 anterior–posterior X-ray images dataset [17]. The input images vary
in sizes from 359 × 973 to 1427 × 3755. Each image contains 17 vertebrae from
the thoracic (upper spine) and lumbar (lower spine). The image input resolution is
set to 1024 × 512 for the algorithm development. A total of 962 images are used
as follows, 481 images for training, 323 images for validation, and 158 images for
testing are used. Each vertebrae is located by 4 corner landmarks. The ground-truth
of the 68 landmarks or points in each image is provided by the dataset.

2.2 System Overview

The50-layerResNet [18] is used to classify 68 landmarks to obtain the corner offset of
spine. This CNN consists of several convolutional layers that learn the local features
of the images and generate the classifications. The proposed network (Fig. 2) includes

Fig. 2 Vertebrae detection network
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pooling layers (average pool and max pool), classification, and corner offset. Combi-
nation of semantically similar features into a single feature reduces the dimensions
of the extracted features and fully connected layers, and gives a final probability
value for the class. Network depth has been previously shown to be beneficial to
classification accuracy [19]. However, its performance can become saturated with
resultant rapid decrease in performance as the network gained greater depth. This
issue can be fixed by theResNet framework [20]where a shortcut connection is added
for every three convolution layers across the deep network. These shortcut connec-
tions performed identity mapping without additional parameters which can increase
computational complexity. This simplification of network optimization during the
training process enables ResNet to achieve a higher accuracy from deeper networks
when performing image classification tasks.

The ResNet50 architecture is mainly composed of residual blocks (Fig. 2).
Residual connection in ResNet architecture maintains connection to gain knowledge
during training and speed up model training time by increasing network capacity.
Batch normalization with ReLU activation is added for each convolutional layer.
Bi-cubic interpolation is used as upscaling method. The skip connection technique
is performed to exploit high-level semantic information and low-level fine details to
improve model performance.

During the training process, a fine-tuning technique is applied to transfer the
connection weights from the pre-trained model to our model and retrain the model to
the current task. This model accepts an image as input and performs a fully connected
layer as a final assessment. Finally, themodel outputs the bounding box of each target
object as well as the corresponding category label.

The X-ray images used contain 17 vertebrae, where each vertebrae has 4 corner
landmarks: top-left, top-right, bottom-left and bottom-right. Therefore, each image
has a total of 68 landmarks. The order of the landmarks is used to accurately localize
the vertebrae, so that the slope of each can be known. The landmarks were separated
into different groups to obtain an output feature map with a channel number of 68.
Then, a heat map of the center point [21] is constructed to obtain a corner offset maps
using a convolutional layers for landmark localization.

Landmarks of each corner of the vertebrae were obtained using the corner offset.
The corner offset was obtained from the center of the heat map to the vertebrae
margin using L1 loss to optimize the corner offset at the midpoint.

2.3 Cobb Angle Measurement for Classification

A review study on the classification of AIS is presented in [22]. The Author reviewed
the clinical classification of AIS from a few previous studies. It mentioned that the
classification provides a better andmore reliable tool to assist surgeons in determining
the appropriate method of treatment for certain curve pattern. In addition, with the
developing methods in 3D reconstruction may be used as a basis classification for
new therapeutic concepts [22].



552 W. Caesarendra et al.

Fig. 3 CA measurement for
classification Get 4 corner 
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In this study, the application of CNN for AIS classification is presented. The steps
to calculate the CA from the position of each corner found is presented in Fig. 3.
After detecting an object on the X-ray image, detected bounding boxes are displayed
on the spine. Boxes with a score of more than 0.5 were extracted. From the location
of the detected boxes, the center point of each vertebrae is found to remove some
outliers based on the anatomy of spine, where the adjacent vertebrae should not be
far apart from each other. If the x-axis center of the detected bounding box is more
than half the width of the box from the x-axis center of its two closest neighbors (top
and bottom), the box is rejected as an outlier. Otherwise, the position of the box is
reconsidered based on the position of the nearest boxes.

Following this, the depth of the curve at the found position of the corner box is
calculated. For each of the two vertebrae, the distance between the bottom-left point
of the upper box and the top-left of the lower box, and the bottom-right point of the
upper box and the top-right of the lower box is calculated. The apex of the spinal is
found as the deepest part of the curve.

For each box above the apex, the slope of each vertebrae is measured based on
the position between top-left and top-right to detect the most-tilted vertebrae above
the apex. For each box below the apex, the slope of each vertebrae is measured based
on the position between bottom-left and bottom-right to detect most-tilted vertebra
below the apex. The Cobb angle is then calculated as the angle of the intersection
between two lines from the most-tilted vertebrae above the apex and most-tilted
vertebrae below the apex.

3 Results

The datasets was trained on the RTX2060GPUwith Intel Core-i7 processor. Figure 4
shows the performance of the training dataset and the validation datasetwhen training
the network. The models are initialized from the pre-trained weights on ImageNet.
The network was trained with a learning rate of 0.0001 with Adam optimizer during
training. The batch and epoch sizes are set as 2 and 100, respectively.

Figure 5 shows the result of the detection of vertebrae in the spine on the X-ray
images. The condition of the patient’s spine is classified as normal if the measured
CA is less than 10°. For mild, moderate, and severe AIS, the CA measurements are
10° to 25°, >25° to 40°, and >40°, respectively.

The performance metrics comparison of the four classes is summarized in Table
2. Precision rate (PR), Recall, and F1-measure [23] can be computed as follows:
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Fig. 4 Performance of the dataset in network training

(a) (b) (c) (d)

Fig. 5 Detection results: a normal, b mild, c moderate, and d severe

Table 2 Performance
metrics comparison

Class Accuracy results

PR Recall F1-measure

Normal 0.92 0.89 0.9

Mild 0.95 0.93 0.94

Moderate 0.94 0.89 0.91

Severe 0.9 0.8 0.84

Average 0.92 0.87 0.9
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PR = T P

T P + FP
(1)

Recall = T P

T P + FN
(2)

F1− measure = 2× PR × Recall

P R + Recall
(3)

where TP is true positive, FP is false positive, and FN is false negative. TP is the
detected area of the vertebrae and corresponds to the associated class. FP is the
detected area not associated with the vertebrae. FN is the area associated with the
vertebrae that is not detected.

Severe AIS has the lowest PR, Recall, and F1-measure compared to the other
classes. The increase in the curvature made it difficult for the vertebrae to be detected
in the area of the arch. In some cases, the vertebrae is completed undetected or
misrepresented.

Mild AIS has the highest PR, Recall, and F1-measure compared to other classes.
The network can detect the vertebrae well as the spine is not too curved. In addition,
the X-ray images have good lighting and contrast conditions for this class of spine in
our dataset.Normal spine has lower accuracy thanmildAIS as some image conditions
for this class are not optimum. This resulted in a high number of FP and FN in the
detection.

4 Discussion

The proposed architecture using CNN accurately detected the location of each of the
17 vertebrae in the spine X-ray. In addition to this, the bounding box was evaluated
to be sufficient in its accordance with the vertebra positions. Its performance was
accurate to provide the information needed to detect the superior and inferior end
vertebrae, enabling the CA to be evaluated correctly.

The detection results also showed that the proposed architecture can be used to
identify the vertebrae in X-ray images of different contrast and lighting conditions.
Our test on several images with poor contrast and lighting conditions yielded good
results. Importantly, CAmeasurements and curve classification were able to be accu-
rately accomplished even when the detection process failed to identify one or two
vertebrae. This is was a key part of the algorithm as X-ray images may come in
different contrast and lighting qualities in the clinical setting, depending the severity
of the curve as well as the patient’s body habitus.

Previous studies using CNN [12–14] focus on vertebrae detection and measure-
ment of CA under certain conditions but did not classify the severity of scoliosis.
The method we proposed was able to measure CA from normal to severely scoliotic
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spine (up to 81°). This was an important step as severely abnormal curvatures were
often difficult to detect.

There are some limitations to our study. In this proposed CNN, more errors in
detection had occurred in images where the X-ray were of different sizes and when it
involved larger areas from the neck to the hipwhichwere not important landmarks for
vertebrae detection. Further improvements with automatic image cropping to satisfy
the conditions for optimal vertebrae detection is ongoing. Lastly, the results from this
CNN were not validated against the clinicians’ CA measurements (which remains
the gold standard). This important final step will be crucial in confirming that this
CNN will be capable in augmenting the specialist clinician’s ability to accurately
measure CA and may be used as a tool for non-specialist clinicians and nurses to
assess CA in AIS patients.

5 Conclusions

A convolutional neural network for vertebrae spine detection, Cobb angle measure-
ment and curvature severity classification in X-ray images of adolescent idiopathic
scoliosis is proposed in this paper. The detection of vertebrae and classification had
an accuracy of 0.9 (90%). Upon clinical validation, this architecture may be used as
tool to augment Cobb anglemeasurement inX-ray images of patientswith adolescent
idiopathic scoliosis in a real-world clinical setting. A developed CNNmethod is also
possible to be implemented for the real-time assessment or monitoring of scoliosis
patients in the future [24].

Funding This project was supported by The AO Spine National Research Grant 2020
[AOSEA(R)2020–05].
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