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Abstract. Pedestrian detection from Unmanned Aerial Vehicle (UAV) has been
an important part of surveillance systems. A Two-stage (Sparse-Dense) sliding
window technique has been proposed to increase the speed of pedestrian detec-
tion using HOG-SVM classifier. Standard techniques follow a sliding window
approach with a fixed sliding strides over a multi-resolution image pyramid for
detection. The presented technique breaks down the detection task into sparse
sampling and dense sampling stages where the first one is region proposal step
and second stage scans only the proposed regions for objects. Sparse sampling
stage is working as weak classifier whereas the dense sampling stage works as
strong classifier for an image patch. Average pedestrian detection speed using the
proposed technique gave improvement from 1.95 fps to 15.36 fps for input images
of dimension [640, 360] on a system with 3.2 GHz CPU. UAV123 [1] dataset has
been chosen to train the classifier. For detection, Average Center Prediction Error
has been taken to quantify detection performance with increased speed.

Keywords: Sparse-dense sampling detector · UAV123 · Region proposal ·
Sparse sampling · Dense sampling · Pedestrian detection · HOG · SVM

1 Introduction

Fast pedestrian detection on aerial images has been a challenge due to dynamic nature of
the images and hardware constraints. Integral Image for fast feature calculation [2] and
Histogram of Oriented Gradients (HOG) [3], classification by Support Vector Machine
(SVM)based tree-typeneural network [4] are some initialwork. Some improvedmethods
for feature extraction are Integral channel feature [5], BoostedHOG [6], Channel Feature
Extrapolation [7] and Search Region Proposal based on Saliency Map [8]. Pedestrian
detection in infrared images has been shown by Zhang et al. [9]. Some techniques
exploiting input image properties are Image Orientation Adjustment by Xu et al. [10]
andLocally constraint linear coding based detection byYang et al. [11]. Some techniques
trying to enhance detection speed by breaking the task into multiple stages include local
binary pattern with HOG-SVM classifier [12], simplified HOG [13], Center Symmetric
- Local Binary Pattern (XCS-LBP) [14], Bin-Interleaved HOG [15] and two-stage linear
with non-linear SVM [16] but they need improvement for real-time application. Some
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hardware solutions for fast HOG-SVM based classification have been presented in [17,
18] that proposed hardware design suitable for HOG-SVM classification. This work
proposes a Two-stage (Sparse-Dense) sliding window technique for pedestrian detection
task and is an improvement over standard single stage sliding window techniques used
with HOG+SVM [3, 5] based classifiers. Re-searchers have proposed using features
other than HOG too for better detection but the proposed work shows how detection
process can be modified to speed it up using existing classification method HOG-SVM
and achieve real-time or near real-time performance. Section 2 discusses about standard
sliding window based pedestrian detection. Section 3 presents the proposed two-stage
(sparse-dense sliding) window based detection technique. Section 4 discusses about
experimental setup, results and analysis. Section 5 concludes the work presented.

2 HOG-SVM Classification Based Pedestrian Detection

Histogram of Oriented Gradients
Histogram of Oriented Gradients (HOG) was given by Dalal et al. [3] to extract visual
information from an image patch using pixel gradients. The technique has been used
widely for classification/detection [5–9]. One can refer to [3] for HOG feature vector
calculation for an image. Parameters to calculate HOG feature descriptor for an image
patch of dimension [M ,N ] has been shown in Table 1 and its length Fl [3] using (1) is
3780.

Table 1. HOG feature descriptor parameters

Parameter Value

Window size
[
Wh,Wv

]
[64, 128] pixels

Cell size
[
Ch,Cv

]
[8, 8] pixels

Block size
[
Bh,Bv

]
[2, 2] cells

Gamma correction (γ) 0.5

Bin size (b) 9

Fl =
(
M

Ch
− 1

)
∗
(
N

Cv
− 1

)
∗ b ∗ Bh ∗ Bv (1)

HOG feature plots with corresponding RGB images has been shown in Fig. 1.

SVM Classification
Support Vector Machines (SVM) [19, 20] is a supervised learning based classification
algorithm that creates an N-dimensional hyper-plane that divides m number of classes.
Input feature vector (p dimensional) and output label for a sample i has been denoted by
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hi ∈ Rp and yi ∈ {−1, 1}, where i = 1, 2, 3, ..., n, Person and Background classes have
been represented by label 1 and −1 respectively.

f (hi) = wT ∗ φ(hi) + b (2)

Here, f (hi) is distance of a sample from decision boundary and its sign indicate predicted
class,w is weight vector,φ(hi) is a function (kernel) of hi and b is the offset from decision
boundary.

Fig. 1. Example images from UAV123 [1] dataset with their HOG feature

Detection in an Image
While HOG-SVM classifier classify an image patch of dimension [Wh,Wv], pedestrian
detection on full image is done by extracting image patches of dimension [Wh,Wv] in
sliding window manner from multi-scale image pyramid.. Five level image pyramid
formed by original and downscaled versions of an image has been shown in Fig. 2.

An important factor that determines the speed of detection is frequency of classifica-
tion step for an image that has been denoted byHOGI

count and can be obtained using (3),
whereWh andWv are dimensions of HOGwindow,DSh andDSv are dense sliding strides
for HOG window [Wh,Wv] in horizontal and vertical direction respectively. [M ,N ] is
input image width and height in pixels respectively.

HOGI
count = M − Wh

DSh
∗ N − Wv

DSv
(3)

Down-scaled image shape can be given by shapedn =
[
M
αl ,

N
αl

]
where α = 1.5 and

l ∈ {0, 1, ..., (L − 1)} are downscaling factor and image pyramid level respectively.
L = 5 is the number of levels in image pyramid. Classification step frequency for an
image pyramid (HOGP

count) can be obtained using (4).

HOGP
count =

∑L−1

l=0

(
M − Wh

αl ∗ DSh
∗ N − Wv

αl ∗ DSv

)
(4)

where,HOGP
count denoted number ofHOG-SVMclassification step for an image pyramid

with L levels. Value of HOGP
count for the parameters given in Table 2 using (4) is 3692.

This work focuses on reducing the required number of classification steps for an image
pyramid by introducing a two-stage sliding (sparse-dense sampling) window technique.
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Fig. 2. Multi-resolution image pyramid formed from downscaled versions of original image

Table 2. Input image shape, HOG window shape, sliding stride for standard detection technique
[3] and image pyramid parameters

Parameter Value

Input image shape ([M ,N ]) [640, 360]

HOG window shape ([W_h,W_v]) [64, 128]

Image pyramid levels (L) 5

Downscaling factor (α) 1.5

Dense sliding stride ([DS_h,DS_v]) [8, 8]

3 A Two-Stage Sliding Window

Conventional classifier based detection techniques follow a dense sampling approach to
classify patches from image pyramid into number of classes. [3, 5, 9]. Dense sampling
window stride has been denoted by [DSh,DSv] and is [8, 8]. Here, DSh and DSv are
strides in horizontal and vertical direction respectively. The proposed two-stage sliding
window technique divides the detection task into sparse and dense sampling stages.
Block diagram has been shown in Fig. 3.

Fig. 3. Block diagram of Two-Stage sliding window pedestrian detection
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Stage 1: Sparse Sampling
In first stage, image patches of size [Wh,Wv] are extracted from all the levels in
the image pyramid at larger window sliding strides denoted by [SSh, SSv] as com-
pared to [DSh,DSv] taken by most of the previous techniques [3, 5, 6, 10, 11]. Here,
[SSh, SSv] ∈ {[32, 64], [43, 90], [51, 102]}. HOG-SVM classifier output represents dis-
tance from SVM decision boundary and has been taken to determine confidence of
classification. Distance threshold for this stage has been denoted by Thsparse and image
patches exceeding Thsparse are recorded as regions for proposal to stage 2. The regions
proposed in the stage are of dimension [Wh,Wv] in their corresponding downscaled
image from the pyramid. The shape of proposed regions has been transformed back to
level 0 (to represent same region in original image) denoted by PRS0 and can be obtained
using (5) where l ∈ {0, 1, ..., (L − 1)}.

PRS0 = [Wh,Wv] ∗ αl (5)

Fig. 4. Sparse sampling for region proposal and dense sampling on proposed region

Window sliding Stride fir sparse sampling stage has been calculated by taking per-
centage overlap between consecutive sampling windows. Overlap percentage of 50%,
30% and 20% have been taken for experimentation. Window sliding Stride values
[SSh, SSv] in pixels can be obtained using (6) and are [32, 64], [43, 90] and [51, 102]
respectively. HOG-SVM classification step frequency in sparse sampling stage has been
demoted by HOGS

count and can be obtained using (7).

[
SSh, SSv

]= overlap% ∗ [
Wh,Wv

]
(6)

HOGS
count =

∑L−1

l=0

(
M − Wh

αl∗SSh ∗ N − Wv

αl∗SSv
)

(7)

Stage 2: Dense Sampling
In this stage, image regions proposed from first stage are searched for objects by HOG-
SVM classifier with dense sampling window strides [DSh,DSv]. Image patches crossing
a threshold Thdense are final detections. An example has been shown in Fig. 4. Only the
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Fig. 5. Two-stage sliding window pedestrian detector process flow

proposed regions from stage 1 are processed in this stage and not the whole image
pyramid. This saves significant processing time. Flow-chart for the two-stage process
has been shown in Fig. 5.

Classification step frequency for dense sampling stage has been denoted byHOGI
count

(3) and depends upon region proposal. Here, I in HOGI
count represent an image region

proposed by sparse sampling stage.
(
HOGS

count + HOGI
count

)
is combined classification

step frequency and has been determined by average value for 1000 pedestrian images
from UAV123 [1] dataset.

Suppressing Duplicate Detections
Dense sampling stage yields multiple detections around the object as classifier out-
put crosses Thdense. These duplicate detections have been suppressed by computing
Intersection-over-Union (IoU) among the detection boxes using (8) where RB1 and RB2
denote area of box B1 and B2 respectively. If IoU (B1,B2) crosses a threshold IoUth,
then the box with lower confidence (f (hi)(2)) is discarded. An example can be seen in
Fig. 6.

IoU (B1,B2) = RB1 ∩ RB2

RB1 ∪ RB2
(8)
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Fig. 6. (a) Sparse sampling stage output, (b) Dense sampling stage output, (c) IoU thresholded
output

4 Experimental Results and Analysis

Dataset
Dataset used for training and testing of HOG-SVMclassifier is UAV123 [1]. It has 11575
images in its person class, out of which 2620 images with pedestrians are randomly
selected and a window of [64, 128] size has been cropped to form person and 2450
windows cropped for background class. Positive and negative class formation for training
has been shown in Fig. 7.

Fig. 7. Person and background dataset creation formUAV123 [1] for training and testing of SVM
classifier

SVM Training
Dataset size is 5070 images (2620 person class and 2450 background class) with train-
test split ratio 80:20. 5-fold cross validation scheme has been adopted to split dataset
into 5 mutually exclusive parts. Training has been done on 4 parts combined and testing
on the remaining part. 5 trials of training/testing has been done. Scikit-learn [21] python
library has been used to train Support Vector Classifier (SVC) for binary classification
of Person and Background classes. Classifier parameters have been shown in Table 3.

Classification Performance
Precision, Recall, F1-score and Accuracy have been taken as classification performance
metrics [22]. Metrics for 5 trials for test data with mean values has been presented in
Table 4.
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Table 3. SVM parameters

Parameter Value

Kernel Linear

Train/Test Image window size 128 × 64

Person class data size 2620

Background class data size 2450

Train: Test split 80:20

Iteration 5000

Table 4. Classification performance (5-fold cross validation, SD - Standard Deviation)

Dataset Class Precision Recall F1-score Accuracy

Set1 Person 0.9943 0.9943 0.9943 0.9941

Background 0.9939 0.9939 0.9939 0.9941

Set2 Person 1.0000 0.9356 0.9667 0.9666

Background 0.9351 1.0000 0.9665 0.9666

Set3 Person 1.0000 0.9261 0.9616 0.9617

Background 0.9263 1.0000 0.9617 0.9617

Set4 Person 1.0000 0.8220 0.9023 0.9077

Background 0.8390 1.0000 0.9125 0.9077

Set5 Person 0.9715 0.8386 0.9002 0.9314

Background 0.9127 0.9856 0.9478 0.9314

Mean ± SD Person 0.9892 ±
0.019

0.9033 ±
0.064

0.9450 ±
0.038

0.9523 ± 0.03

Background 0.9214 ±
0.05

0.9959 ±
0.006

0.9565 ±
0.027

0.9523 ± 0.03

Detection Performance
UAV123 [1] provides ground-truth bounding boxes for evaluation of detection result.
The prediction bounding box dimension of HOG-SVM classifier is fixed to [64, 128] as
the classifier is not designed for bounding box regression task. Centre Prediction Error
(CPE) [23] has been taken as performance metric that measures difference between
predicted object centre and ground-truth box centre. CESi

avg denote average CPE for an
image sequence Si and can be obtained using (9) where NSi denote number of frames
in a sequence Si,

(
xG, yG

)
and

(
xP, yP

)
represent ground-truth box centre and predicted

box centre respectively. Chosen dataset has 23 person class image sequences named
from person1 to person23 captured from an UAV platform. Average of CPESi

avg for 23
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sequences and shown in (10) where i = {1, 2, 3, ...,K} and K = 23.

CESi
avg = 1

NSi

∑NSi

t=1

√(
xGt − xPt

)2 + (
yGt − yPt

)
(9)

CEavg = 1

K

∑K

i=1
CE

NSi
avg (10)

CEavg(%) = CEavg × 100√
M 2 + N 2

(11)

CEavg as percentage of input image diagonal length can be given by (11) to present a
metric invariant to input image dimension. CEavg(%) for person sequences in UAV123
[1] has been found out by running detector for all the 23 sequences and comes out to
be 1.47%. Centre coordinate plot for X and Y direction for person1 has been shown in
Fig. 8. It can clearly be seen from X and Y coordinate detection graphs that detector
is following the ground-truth coordinates almost all the time. An example image with
ground-truth box, detection box and a line joining their centers has been shown in Fig. 9.

Fig. 8. x and y coordinate detection vs ground-truth

Proposed Technique Evaluation
In the proposed technique, Thsparse = 0.1 has been taken for sparse sampling, Thdense =
1.0 for dense sampling and IoUth = 0.5 for IoU thresholding step. Improvement in
processing time has been shown in Table 5 for different percentage of overlap between
consecutive sampling windows in sparse sampling stage. Testing has been done on a 3.2
GHz CPU machine. Significant reduction in processing time can be seen as originally
HOG-SVM classification step frequency has decreased from 3692 to 469, 344 and 294
(Table 5).

As shown in Fig. 10, the technique gives different region proposals for different
sliding strides and detections are concentrated around object after dense sampling stage.
It can be observed that maximum detections are there in single stage dense sampling
(Fig. 10-b) method but most of them are redundant and will be removed after IoU
thresholding. Sparse sampling with [32, 64] (Fig. 10-c)and [43, 90] (Fig. 10-f) strides
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Fig. 9. Ground-truth box (pink), detection (white) and line between centers (green)

Table 5. Percentage overlap vs processing time: 2 stage detector (input size: [640, 360])

% overlap Slide stride Classification steps per image Speed (fps)

[84.4, 92.2] (standard/baseline
dense sampling detection)

[8, 8] 3692 1.95

[50.0, 50.0] [32, 64] 469 15.36

[30.0, 30.0] [43, 90] 344 20.92

[20.0, 20.0] [51, 102] 294 24.48

provide significant number of region proposals around object and multiple detections
after dense sampling stage (Fig. 10-d and 10-g). IoU thresholding has been applied to
remove duplicate detections.

Comparison with single stage dense sampling technique has been shown in Table 5.
The improvement in speed for input image of size [640, 360] with [SSh, SSv] = [32, 64]
is from 1.95 to 15.36 fps (improved by a factor of 7.88) and 1.95 to 24.48 fps for
[SSh, SSv] = [51, 102] (improved by a factor of 10.50).

Detection speed on full images has been compared with existing techniques and
presented in Tables 6, 7, 8, 9 and 10 for different input image dimension.

It is evident from the comparison tables that the proposed technique performs bet-
ter than similar techniques. Moreover, the detection quality of the technique has been
quantified in terms of average center prediction error (CPE). It is a standard metric used
to judge the distance of predicted bounding box to that of ground-truth. Average CPE
CEavg(%) for UAV123 dataset (person class) is only 1.47% of image diagonal length.
Also, it should be noted that using classification based techniques clubbed with window
sliding always introduces a quantization error in detection (evident in Fig. 9) which is
equal to 0.5 times HOG window sliding stride [DSh,DSv]. So, a trade-off has to be
maintained between detection speed and quality to choose a particular sliding stride.
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Fig. 10. (a) Original image (b) Standard dense sampling detection output on image pyramid, (c)
Sparse stage output - [32, 64], (d) Sparse sampling output - [43, 90], (e) Sparse sampling output -
[52, 102], (f) Dense sampling output for c, (g) Dense sampling output for d, (h) Dense sampling
output for e

Table 6. Comparison with existing work (input image size: [320, 240])

Author Technique Detection speed (fps)

Dalal and Triggs [3] (2005) Original HOG 1.07

Son et al. [15] (2010) Bi-HOG 2.12

Sheng et al. [13] (2012) Simplified HOG 3.33

Proposed Sparse-dense sampling 24.4

Table 7. Comparison with existing work (input image size: [640, 480])

Author Technique Detection speed (fps)

P Dollar et al. [5] (2009) Integral channel feature 0.5

Min et al. [16] (2013) Two-stage linear+non-linear SVM 3.33

Vasuki et al. [14] (2016) XCS-LBP with HOG-linear-SVM 4.05

Proposed Sparse-dense sampling 8.61

Table 8. Comparison with existing work (input image size: [720, 400])

Author Technique Detection speed (fps)

Cao et al. [6] (2011) Boosting HOG 4.76

Proposed Sparse-dense sampling 10.14
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Table 9. Comparison with existing work (input image size: [1200, 400])

Author Technique Detection speed (fps)

Xu et al. [10] (2017) Orientation adjustment 5.3

Proposed Sparse-dense sampling 8.65

Table 10. Comparison with existing work (input image size: [640, 320])

Author Technique Detection speed (fps)

Yang et al. [11] (2019) Locally constraint linear coding 9

Proposed Sparse-dense sampling 16.8

This work has used [8, 8] as sliding stride in dense sampling stage and is a standard used
by other researchers. The presented average CPE value includes this quantization error
inherently along with the actual detection error.

5 Conclusion

The work introduced a Two-stage (Sparse-Dense) sliding window sampling technique
for fast pedestrian detector. The first stage was sparse sampling stage to extract relevant
regions. In the second stage, the proposed regions were taken to run classifier with
smaller strides and larger classification threshold. Thus, a modified version of simple
HOG-SVM detector has been presented. Visual information in image was exploited for
region proposal and most of the time was spent in processing proposed regions. The
proposed technique can be utilized to run real-time detection on low-cost processor on
UAV platform and thus eliminate dependency on external system. This eventually opens
up scope of more applications using UAV systems.

Acknowledgement. We kindly acknowledge IMPRINT I project, MHRD, Govt. of India for
supporting with resources from the project “Decentralized target tracking using swarm of aerial
robots”.
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