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Abstract The physiological status of euryhaline teleost is regulated by environ-
mental salinity through different mechanisms. This chapter discusses the salinity to
the juvenile golden pompano Trachinotus ovatus (Linnaeus 1758) rearing perfor-
mance impact.

Rearing salinity significantly affected fish growth and the RNA/DNA ratio. When
the salinity was 34‰, the fish growth rate and RNA/DNA ratio were higher. The
effect of salinity on pepsin activity was not significant. However, rearing salinity had
a significant effect on α-amylase activity. The α-amylase activity of fish reared at the
salinity of 10‰ was significantly lower than fish at the salinity of 34‰. Raising
salinity has significant effects on FCR of juvenile golden pompano. The FCR of fish
cultured at the salinity of 10‰ was five times higher than the FCR of fish reared at
34‰. The GPX activity was highest when the salinity was 26‰ and lowest when the
salinity was 34‰. The activities of SOD of fish reared at 18‰ and 34‰ were
significantly higher than those reared at 10‰ and 26‰. The lowest activity of
Na+K+-ATPase was obtained in fish at 34‰, while the highest activity of Na+K+-
ATPase was obtained when fish at 18‰. Juvenile golden pompano can be reared
above 26‰ without affecting fish performance, and the salinity <18‰ is not
suitable for the growth of juvenile golden pompano.
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6.1 Introduction

Salinity is the most important environmental factor affecting aquatic habitats, and it
has been involved in many studies regarding on its impact on fish growth perfor-
mance (Rubio et al. 2005). Previous studies have suggested that environmental
salinity can change physiological activities such as feed intake (Rubio et al. 2005),
metabolic rate (Dutil et al. 1997), activity of enzyme (Moutou et al. 2004), and feed
conversion rate (Alava 1998), which are closely linked to the fish growth. In
practice, the growth performance of fish is better under moderate salinity conditions,
but the underlying mechanisms are still controversial (Moutou et al. 2004; Baeuf and
Payan 2001).
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The enzyme analysis of digestive has been considered a reliable method to
understand the digestive process and nutrition condition of fish (Ueberschär 1988;
Ma et al. 2014). Previous studies have demonstrated that changes of salinity can alter
the enzyme activities of digestive in species such as Salmo gairdnerii (Colin et al.
1985), Sparus sarba (Kelly et al. 1999), Centropomus parallelus (Tsuzuki et al.
2007), and Sparus aurata (Moutou et al. 2004). Such variation of digestive enzyme
activities can significantly affect the growth of fish (Tsuzuki et al. 2007). Since
proteinases can catalyze the hydrolytic degradation of proteins, it plays a crucial role
in living organism’s growth and survival (Klomklao 2008). Alpha-amylase is an
important enzyme for carbohydrate digestion and is involved in carbohydrate
metabolism of energy supply (Papoutsoglou and Lyndon 2003). As fish require
more metabolic energy for osmoregulation, a higher α-amylase activity may indicate
energy spending in the process of osmoregulatory. The α-amylase and pepsin
activities have been used to explore the influence of salinity digestibility to fish
(Yan and Wu 2010).

Although ambient salinity can affect fish physiological condition via different
mechanisms, these underlying mechanisms are not well understood (Arnason et al.
2013). When ambient salinity is approaching the physiological tolerance limit, fish
may be stressed, and the system of immune defense may be compromised (Harris
and Bird 2000). The relationship between salinity variation and fish immune defense
has been paid much attention (Zhang et al. 2011; Choi et al. 2013; Arnason et al.
2013).

Scavenging enzymes such as superoxide dismutase (SOD), catalase (CAT), and
glutathione peroxidase (GPX) are the main components of physiological antioxidant
protection of marine fish and play an important role in the immune defense system of
marine fish (Winston and Di Giulio 1991; Halliwell and Gutteridge 1996). Within
the physical process, SOD promotes the dismutation of two O2� molecules to H2O2

and O2, and CAT and GPX convert H2O2 to H2O. The inadequate antioxidant
defenses to combat reactive oxygen species can lead to oxidative stress (Martinez-
Alvarez et al. 2002). Nevertheless, knowledge about the response of antioxidant
enzymes to salinity of marine fish is still limited.

Golden pompano Trachinotus ovatus has been identified as a good aquaculture
candidate species due to its fast growth, high flesh quality, and suitability for cage



farming. In South China, most golden pompano farming is carried on small farms in
marine and brackish environments using discontinuous and non-quantified methods.
During the rearing period of golden pompano, salinity variations are often associated
with low growth, disease outbreak, and massive mortality. In this chapter, the effects
of environmental salinities (10‰, 18‰, 26‰, and 34‰) on juvenile golden pom-
pano (wet weight 3.24 � 0.14 g) during the grow-out phase are discussed, aiming to
increase the production efficiency of commercial farming of golden pompano.
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6.2 Growth and Survival of Golden Pompano Under
Different Salinity

Fish adaptations to salinity vary among pompano species. For instance, the
recommended low salinity range is 15–25‰ for T. blochii (Kalidas et al. 2012),
12–19‰ for T. carolinus (Moe et al. 1968), and 10–20‰ for T. marginatus (Costa
et al. 2008). In golden pompano, juveniles showed a reasonable survival rate at
18‰, 26‰, and 34‰, suggesting a good adaption of this species within this salinity
range. A previous study suggests that fish adaption to ambient salinity changes is life
stage-dependent (Aliume et al. 1997) with some metabolic restraints (Peters et al.
1998; Rocha et al. 2007). Although some marine fish species can tolerate a wide
range of salinity gradient changes, the consumption of metabolic energy during
osmotic regulation is unavoidable (Woo and Kelly 1995; Moser and Miller 1994;
Tseng and Hwang 2008). Even in species with lower metabolic rates, osmoregula-
tion seems to consume a high proportion of the available energy, ranging from 20%
to 50% of the total energetic expenditure (Baeuf and Payan 2001).

Maximum growth would occur in an isosmotic environment (10 � 2‰) because
of low osmoregulatory energy demand (Brett 1979), but optimal salinity for fish
growth is species-specific. For example, the optimal growth salinity is 55‰ for
Chanos chanos (Swanson 1998) and 14‰ for Gadus morhua (Lambert et al. 1994).
In contrast, the growth of Acanthopagrus butcheri is not significantly affected by the
rearing salinity from 0‰ to 12‰ (Partridge and Jenkins 2002), and salinity in the
range of 5–35‰ has no effect on the growth of Centropomus parallelus (Tsuzuki
et al. 2007). In golden pompano, the growth of juvenile fish was sensitive to the
rearing salinity, and the highest growth rate was recorded in fish cultured at 34‰
(Table 6.1). The lowest growth rate was observed in fish cultured at the salinity of
10‰. These results indicate that the growth of juvenile golden pompano is reduced
at lower salinity. The RNA/DNA ratio is used as an indicator of the fish’s growth
potential when sufficient food is provided to young fish under laboratory conditions
(Tanaka et al. 2007). In juvenile golden pompano, culture salinity had a significant
effect on the RNA/DNA ratio (Table 6.1). Since the diet, food availability, feeding
scheme, and environmental conditions were the same across treatments, the salinity
should cause the RNA/DNA ratios change. Higher RNA/DNA ratio is under the
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condition of high salinity farmed and higher RNA/DNA ratio, and high specific
growth rate is the same.
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Table 6.1 Initial and final mean body weights, specific growth rate (SGR), survival, RNA/DNA,
pepsin activity, amylase activity, and FCR of juvenile golden pompano at different salinities
(Ma et al. 2016a)

10‰ 18‰ 26‰ 34‰

Phase 1 (24 days)

Initial weight (g) 3.11 0.35a 3.21 0.41a 3.19 0.52a 3.43 0.59a

Final weight (g) 3.21 0.52a 3.45 0.48a 3.72 0.39a 4.19 0.86a

Phase 2 (30 days)

Initial weight (g) 3.21 0.52a 3.45 0.48a 3.72 0.39a 4.19 0.86a

Final mean weight
(g)

4.64 0.18a 6.34 0.75b 6.38 0.43b 12.22 2.43c

SGR (%/day) 1.23 0.11a 2.01 0.27b 1.79 0.21b 3.54 0.21c

Survival (%) 66.07 9.74a 82.04 6.32a,b 94.28 3.71c 87.12 0.64b

RNA/DNA 7.69 3.32a 11.85 1.32a,b 12.85 0.83b 15.84 2.38b,c

Pepsin activity
(mU/mg protein)

366.64 72.42a 349.52 26.38a 355.92 76.17a 362.72 55.43a

Amylase activity
(mU/mg protein)

2.82 0.53a 7.97 4.68a 20.46 4.49b 20.16 2.98b

FCR 8.66 0.44c 6.58 1.02b 5.02 0.74b 2.50 0.53a

Different letters of the same row represent a significant difference (P < 0.05)

6.3 Digestive Enzyme Activities of Golden Pompano Under
Different Salinity

The alternation of ambient salinities can lead to the changes of digestive enzyme
activities (Moutou et al. 2004; Woo and Kelly 1995). This effect may further affect
the digestion and absorption of dietary protein (Tsuzuki et al. 2007). Previous studies
have also evaluated the relationship between growth rate and digestive enzyme
activities of fish at different salinity, and a correlation is shown between growth
and target digestive enzymes. Previous studies have evaluated the fish growth rate
under different salinity and the relationship between the activity of digestive
enzymes and indicated the growth and the correlation between target enzymes
(Moutou et al. 2004; Woo and Kelly 1995). In larval golden pompano, the activities
of amylase in fish at 26‰ and 34‰ salinities were higher than those at 10‰ and
18‰ salinities, and also the growth rate of fish at 34‰ was higher than fish at 10‰.
But the existing literature does not support that amylase activity corresponds to fish
growth. Therefore, it may be worth further investigating the relationship between
amylase activity and fish growth.

The FCR of cultured fish is different under different environmental salinity, and
the response of feed conversion ratio to salinity is species-specific (Partridge and



Jenkins 2002). For example, when Gadus morhua are reared at salinities of 7‰,
14‰, and 28‰, the best FCR was obtained at 14‰ (Lambert et al. 1994), but better
FCR can be achieved when fish were reared at 24‰ in Acanthopagrus butcheri
(Partridge and Jenkins 2002). However, compared with the treatment groups with
salinity of 8‰, 18‰, and 38‰, Carassius auratus reared at salinity of 28‰ could
obtain the best FCR (Klaoudatos and Conides 1996). In juvenile golden pompano,
the FCR of fish increase with the increase of ambient salinity, and the optimal FCR
was observed when fish group is reared at 34‰ (Table 6.1). Coincidently, higher
amylase activity was also found when fish were reared at 34‰. This could indicate
that the digestibility is increased when fish are cultured at 34‰.
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6.4 Antioxidant Enzyme and Na+K+-ATPase Activities
of Golden Pompano Under Different Salinity

Ambient salinity can change fish metabolism and result in different survival rates.
The alternation of antioxidant enzyme activities in fish may be caused by a hypo-
osmotic shock (Roche and Boge 1996). In juvenile golden pompano, the GPX
activity in fish liver gradually increased, when the ambient salinity was between
10‰ and 28‰, while the CAT activity of the liver presented a gradually declining
trend. Similar results have also been reported by Wilhelm Filho et al. (1993) and
Martinez-Alvarez et al. (2002). The activity of SOD of fish at 28‰ salinity was
significantly lower compared to 34‰ salinity (Fig. 6.1). Furthermore, when fish
were reared in the salinity of 28‰, the highest GPX activity and the lowest CAT
activity were also observed, and the final survival rate of fish at 28‰ was signifi-
cantly higher than in other treatments. This may indicate that the salinity of 28‰ is
more suitable for the juvenile golden pompano’s basal metabolism.

The Na+-K+-ATPase (NKA) actively transports Na+ out and K+ in animal cells
among the transporters that modulate ion fluxes (Post and Jolly 1957), and NKA
generally involved in the maintenance of an internal hypo-osmotic state during
changes in environmental salinity. NKA activity in the osmoregulatory organ is
accompanied by the change of ambient salinity (Hirose et al. 2003; Burg et al. 2007;
Marshall 2002). In juvenile golden pompano, after 30 days of the study, the NKA
activity of fish was corresponding to the rearing salinity. Compared to the control
group, fish reared at the salinities of 18‰ and 10‰ showed higher activity of NKA
(Fig. 6.1). This result is consistent with the previous research results (Madsen et al.
1996; McCormick 1995; Morgan et al. 1997). Under low salinity treatment, NKA
activity was higher, and SGR was lower, indicating that low salinity of 10–18‰ was
not suitable for the physiology of juvenile pompano.
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Fig. 6.1 The GSH, SOD, CAT, and Na+K+-ATPase activities of juvenile golden pompano cultured
at 10‰, 18‰, 26‰, and 34‰ salinities. Different letters represent significant difference (P< 0.05)
(Ma et al. 2016b)

6.5 Conclusion

Ambient salinity has significant effects on fish growth and RNA/DNA ratio. When
the salinity was 34‰, the growth rate and RNA/DNA ratio of fish were higher. The
FCR of fish cultured at the salinity of 10‰was five times higher than the FCR of fish
reared at 34‰. The activities of NKA and antioxidant enzymes corresponded with
fish survival. Fish have a higher survival rate when salinity is 26‰. Juvenile golden
pompano can be raised above 26‰ without affecting the performance of fish, while
salinity <18‰ is not suitable for the juvenile golden pompano growth.
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