
Chapter 16
The Intestine Microbiota Community
and Enzyme Activity in Trachinotus ovatus
After Short-Time Antibiotic Bath
Administration

Xing Zheng, Siqi Lin, Zhifeng Gu, and Zhenhua Ma

Abstract The control of microbiota is essential for the prevention of bacterial and
fungal diseases in aquaculture. Antibiotic is often used as an effective strategy for
health management in fish farming. This chapter reviews and updates the recent
research outcomes in preventing and treating bacterial infections in golden pompano
Trachinotus ovatus. A short-time antibiotic bath administration was used with 5 mg
enrofloxacin/L for 24 h. The results indicate that 5 mg/L enrofloxacin bath admin-
istration for 24 h did not induce mortality and affect the gut bacterial richness of
golden pompano, but dramatically reduced pathogen bacteria. Furthermore, the
short-time antibiotic bath administration is unlikely to result in a dysfunction of
the anti-oxidative system or a digestive system disorder. Thus, 5 mg/L enrofloxacin
bath administration is safe to prevent bacterial diseases in T. ovatus farming. This
chapter sheds light on bacterial disease prevention and treatment to optimize the use
of enrofloxacin in the T. ovatus farming to improve health management in the
aquaculture of this economically important fish species.
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16.1 Introduction

It is well known that the control of microbiota is essential in aquaculture as bacterial
and fungal diseases are a severe challenge to aquaculture enterprises (Buchmann
2015). There is a need to develop effective methods for disease control. Furthermore,
a hatchery operation is different from the grow-out facility in general, and juvenile
fish would be disinfected before being pooled into reared tanks or cement pools.

Golden pompano (Trachinotus ovatus) is an economically important warm-water
marine fish species (25–32 �C), widely distributed in the tropical and temperate seas
of China, Japan, Australia, and other countries. In recent years, it has become a
popular cultured species in the Asia-Pacific region for its fast growth and high flesh
quality (Li et al. 2006; Ma et al. 2014, 2016). However, high stocking density and
low water quality can make fish susceptible to microbial and parasitic infections.
There are severe economic losses in T. ovatus due to disease outbreak in the last
decade (Guo et al. 2018; Harikrishnan et al. 2011; Kumari and Sahoo 2006).
Vibriosis, viral necrosis, and cryptocaryon are the primary diseases in T. ovatus
farming (Guo et al. 2018; Xia et al. 2012). Thus, there is a need to identify a method
to control infectious diseases successfully.

To prevent fish disease outbreak, antibiotics, vaccines, chemical medicine, and
immunostimulants have been widely used in aquaculture. Particularly, antibiotics
and chemicals have traditionally been used to control pathogens in hatcheries (Rico
and Van den Brink 2014). Furthermore, the method of treatment is vital to develop a
cost-effective management strategy to mitigate microbial infections. Oral adminis-
tration with feed, direct injection, and immersion in antibiotic bath solutions are
commonly used for fish health management (Fang et al. 2018). The advantage and
disadvantage of different methods are listed in Table 16.1. The addition of antibi-
otics in fish feed is the most common application method, but the infected fish often
have a reduced appetite making oral uptake less efficient. Antibiotic injections are a

Table 16.1 Advantage and disadvantage of different modes for antibiotics administration
(Armstrong et al. 2005; Haya et al. 2005)

Administration
modes

Oral with feed Time-saving;
cost-effective

Less efficient due to low appetite

Intramuscular/intra-
peritoneal injection

Direct and effi-
cient
Less antibiotic
used and losses

High labor costs

Bath administration Easy to use and
control

Antibiotics need to be physically removed or
destroyed before discharge; stressful to the fish



direct and efficient way to administer medicine, but it incurs a high labor cost. Bath
administration is the most convenient way and ease of use and effective for bacterial
infected skin diseases, but antibiotics in the solution need to be physically removed
or destroyed before discharge (Armstrong et al. 2005; Haya et al. 2005).
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However, previous studies have indicated that antibiotics and administration
modes to control fish diseases can stress the host. It may induce drug-resistant
pathogens, suppress aquatic animals’ immune system, and change intestinal bacteria
community composition (Cabello et al. 2013; Xu et al. 2018).

This chapter reviews and updates the recent research outcomes in preventing and
treating bacterial infections in T. ovatus farming. Enrofloxacin bath administration
was chosen under 5 mg/L for 24-h, and this dose has been used to treat bacterial
diseases by farmers. This chapter aims to provide fundamental knowledge and
improve the health management for golden pompano farming.

16.2 Changes of Digestive Enzyme Activity in the Stomach
After Enrofloxacin Bath Administration

The digestive system in marine fish is likely to be affected by reactive oxygen
species (ROS) induced by environmental stress to disturb normal physiological
function (Deng et al. 2010). The activity of digestive enzymes (amylase, pepsin,
trypsin, and lipase) is used to indicate the digestive processes and nutritional
condition of fish (Abolfathi et al. 2012). Various digestive enzymes are involved
in digestive and absorptive processes. Evidence has suggested that the availability of
digestive enzymes is essential for fish growth and development and is also essential
to cope with the stress from the environment (Yufera et al. 2000; Yufera and Darias
2007).

According to Lin et al. (2019), the significant changes of specific enzyme
activities (e.g., pepsin and trypsin) were not observed in T. ovatus’ stomach
(P > 0.05, Fig. 16.1). The specific activity of pepsin was 34.58 � 19.96 U/g protein
after 5 mg/L enrofloxacin bath administration for 24-h and was 38.89 � 14.48 U/g
protein in control (Fig. 16.1a). The trypsin-specific activity was 0.83 � 0.24 U/mg
protein after 5 mg/L enrofloxacin bath administration for 24 h but was
1.16 � 0.04 U/mg protein in control (Fig. 16.1b). This study indicates that 5 mg/L
enrofloxacin bath administration for 24 h is unlikely to cause a disorder of the
digestive system.
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Fig. 16.1 The total activity of pepsin (a) and trypsin (b) in Trachinoutus ovatus stomach after
5 mg/L enrofloxacin bath administration for 24-h. Fish in the natural condition from recirculating
system was used as control. (Reproduced from Lin et al. (2019), mean� SD (n¼ 10) with the same
superscript letter are not significantly different (increase the letter size of the x-axis label))

16.3 Changes of Antioxidant Enzyme Activity in the Liver
After Enrofloxacin Bath Administration

Reactive oxygen species (ROS) normally increases when animals are subjected to
stress, and this process will induce oxidative stress. To copy with ROS stress,
physiological responses normally happen, especially the antioxidant defense system
(Martínez-Álvarez et al. 2005). The antioxidant system protects cells by maintaining
ROS at low levels and attenuating damages related to their high reactivity. All
organisms have their own cellular antioxidant defense system, comprising both
enzymatic and nonenzymatic components. Antioxidant enzyme activities are usually
used as potential indicators of oxidative stress in fish (Lesser 2006; Xu et al. 2014),
consisting of alkaline phosphatase (AKP), superoxide dismutase (SOD), peroxidase
(POD), catalase (CAT), and glutathione peroxidase (GPX), which provide cellular
defense against endogenous and exogenous ROS (Winston 1991).

The liver tissue is the major metabolic organ assisting in digestion by secreting
enzymes that break down fats and storage carbohydrates and plays a vital role in
digestion, metabolism, immunity, and the storage of nutrients inside the body. All
other metabolic pathways depend upon the efficiency of liver for their energy supply
(Satyaparmeshwar et al. 2006). Thus, the function of the liver is important to
evaluate the antioxidant defense systems.

According to Lin et al. (2019), the significant change of antioxidant enzyme
activities was not observed in the liver of T. ovatus (P > 0.05, Fig. 16.2), including
AKP, POD, SOD, GPX, and CAT. The results suggest that enrofloxacin bath
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administration under 5 mg/L for 24 h did increase the production of reactive oxygen
species or cause dysfunction of the anti-oxidative system in the liver.
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To reduce the damage of ROS, O2
� are dismutated by SOD to H2O2 which is

reduced to water and molecular oxygen by CAT or is neutralized by GPX that
catalyzes the reduction of H2O2 to water and organic peroxide to alcohols using
glutathione (GSH) as a source of reducing equivalent (Verlecar et al. 2007). CAT
provides the first line of defense to clean up ROS, while GPX is involved in
detoxification of hydroperoxides (Farombi et al. 2007). Phosphatases remove phos-
phate groups from the substrates by hydrolyzing phosphoric acid monoesters into
phosphate ions and molecules with free hydroxyl groups. ACP and AKP are two
important phosphatases in marine organisms, participating in the degradation of
foreign protein, carbohydrate, and lipid, as well as immune regulation, ion secretion,
and other important physiological functions (Foss et al. 2009; Liu et al. 2004). ACP
is used as a marker for detecting lysosomes within cell fractions and is also a reliable
tool for assessing environmental pollution (Blasco et al. 1993; Mazorra et al. 2002;
Rajalakshmi and Mohandas 2005). AKP is an intrinsic plasma membrane enzyme in
the cell membranes (Blasco et al. 1993; Jing et al. 2006; Mazorra et al. 2002).

16.4 Changes of Gut Bacterial Diversity, Evenness,
and Community Composition

The gut is the home of trillions of microbial cells known as gut microbiota (Zhang
et al. 2016). The gut microbiota, which comprises a diverse and vast population of
microorganisms, plays critical functions in host nutrient and physiology (Ray et al.
2012; Tremaroli and Bäckhed 2012). The gut microbiota composition and interac-
tions affect energy extraction efficiency and are essential in metabolism and immu-
nity (Moore et al. 2011; Tremaroli and Bäckhed 2012). In comparison to mammals,
the gut microbial composition in fish is more likely to be affected by the environ-
ment, such as diet (De Filippo et al. 2010), drug (Zwolinska-Wcislo et al. 2011), and
stress (Galley et al. 2014; Xia et al. 2014). An altered microbiota in the gut can
change host immune function and increase disease risk (Morgan et al. 2012).
Evidence has demonstrated that antibiotic exposure, including oral, intramuscular,
or bath administration, would stress the treated animals and change the gut bacteria
community composition, diversity, and evenness (Cabello et al. 2013; Xu et al.
2018; Zhou et al. 2018). Antibiotic exposure can adversely affect the health of the
host. Therefore, maintaining a functional and steady gut microbiota is vital to
the host.

The fish microbiome with rich biodiversity can predictably react to the changing
gut condition (Hennersdorf et al. 2016). In T. ovatus gut bacteria community, the
community richness (estimators by ACE and Chao1) was not significantly affected
by 5 mg/L enrofloxacin bath administration (P > 0.05, Fig. 16.3a, b), but the
Shannon index for diversity decreased significantly from 4.00 � 0.12 to
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2.44 � 0.37 (P < 0.05, Fig. 16.3c). Alpha diversity shows the richness of T. ovatus
gut bacteria was not affected significantly by the administration of low concentra-
tions of enrofloxacin. Similarly, a previous study has also demonstrated that the gut
microbiota of aquatic animals is not affected significantly by the environment
(Zhang et al. 2016). In contrast, diversity was negatively affected. Bacterial diversity
or composition may be more susceptible to low administration concentrations of
enrofloxacin, which is consistent with the results of zebra fish gut bacteria compo-
sition after oxytetracycline exposure (Zhou et al. 2018).
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Fig. 16.4 The gut bacteria communities in Trachinotus ovatus at phyla level. “Others” meant the
sum of bacteria relative abundance were less than 1%. N ¼ 5. (a) Control group and (b) bath
administration

The composition of the gut bacterial community varies with a unique core
microbiome in each specific host species. Firmicutes and Bacteroidetes are the
most dominant phyla in mammals (Qin et al. 2010), whereas Proteobacteria,
Firmicutes, Fusobacteria, Actinobacteria, and Bacteroidetes are the major phyla in
the intestine of carnivorous marine fish (Rückert et al. 2008). Our research found a
total of 12 phyla that were detected in the gut bacterial community of T. ovatus.
Proteobacteria, Tenericutes, and Firmicutes were the most common phyla
(Fig. 16.4). The result is similar to the study of the woody forage effect on golden
pompano intestinal bacteria diversity (Chen et al. 2018). This finding is also in
agreement with the studies of the Atlantic salmon parr (Dehler et al. 2017), rainbow
trout (Lyons et al. 2015), and East African cichlid (Baldo et al. 2015). It is speculated
that Proteobacteria and Firmicutes are the common gut microbes in fish and play an
important role in intestinal function. Proteobacteria could catabolize feedstuff com-
ponents (Jumpertz et al. 2011), and Firmicutes may be involved in energy resorption
(Komaroff 2017) and have demonstrated probiotic properties in fish (Bøgwald and
Dalmo 2014). We found that the relative abundance of Proteobacteria was not



¼

significantly affected by the dose of 5 mg/L enrofloxacin bath administration for
24 h. It is consistent with the zebra fish results with sulfamethoxazole bath (Zhou
et al. 2018), indicating that a short-term enrofloxacin bath administration has no
significant effect on Proteobacteria.
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Fig. 16.5 The intestinal bacteria communities in Trachinotus ovatus intestine at the genus level.
“Others” meant the sum of bacteria relative abundance was less than 1%. N 5

Microbial identification is meaningful only when microbiota can be classified at
the genus or species concerning animal husbandry (Petrosino et al. 2009). A total of
84 genera were detected in the T. ovatus gut microbiota composition from the control
group (0 mg/L enrofloxacin solution) in our research, including Exiguobacterium,
Citrobacter, Acinetobacter, Pseudomonas, and Escherichia-Shigella as the domi-
nant genera. It is similar to previous results, showing that Aeromonas, Vibrio,
Micrococus, Alteromonas, and Acinetobacter are the main genera in marine fish
(Blanch et al. 1997; Newman et al. 2011). Moreover, 33 genera were detected in the
T. ovatus gut microbiota from the treatment of 5 mg/L enrofloxacin bath adminis-
tration, including the dominant genera ofMycoplasma, Photobacterium, Vibrio, and
Desulfovibrio (Fig. 16.5). Escherichia-Shigella and Vibrio were conditional patho-
gens (Hao et al. 2017; Tan et al. 2014). Our result found the relative abundance of
Escherichia-Shigella was significantly decreased after bathing with 5 mg/L
enrofloxacin, indicating 5 mg/L enrofloxacin bath administration for 24 h is useful
to control the quantity of conditional pathogen in the T. ovatus gut microbiota
composition.
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Antibiotics can cause adverse effects on animal physiology by affecting host
tissues or confusing commensal microbiota (Morgun et al. 2015). A disturbance in
gut microbial community can lead to changes in the microbial diversity and abun-
dance of certain bacteria, resulting in beneficial or harmful effects in fish (Gómez
and Balcázar 2008). The altered microbiota in the intestine can lead to the change of
the host immune functions and increase the risk of disease infection (Morgan et al.
2012). Antibiotic treatment can stress the treated animal, and the animal physiolog-
ical response may occur, depending on the strength and duration of stress. The
results indicate that the short-term enrofloxacin bath under a low concentration can
help control the number of conditional pathogens, without significantly affecting the
intestinal bacteria richness. It is useful for golden pompano farming and health
management to prevent and treat bacterial diseases without significantly changing
gut microbial community.

16.5 Conclusion

Golden pompano T. ovatus have harbored specific and core intestine microbiota,
including the dominant phyla, Proteobacteria and Firmicutes, and the dominant
genera, Exiguobacterium, Citrobacter, Acinetobacter, Pseudomonas, and
Escherichia-Shigella, in a circulating aquaculture system. Short-time antibiotic
bath administration (5 mg/L enrofloxacin bath for 24 h) did not induce mortality
and affect the gut bacterial richness of golden pompano, but reduced the diversity,
where the conditional pathogen declined dramatically. Furthermore, a short-time
antibiotic bath is unlikely to result in dysfunction of the anti-oxidative system or
disorder of the digestive system. Thus, the dose of 5 mg/L enrofloxacin bath may be
a safe way to prevent bacterial diseases in T. ovatus in aquaculture.
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