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Chapter 13
Effects of Water Temperature
and Nutritional Manipulation
on the Expression of Liver-Type Fatty
Acid-Binding Protein (L-FABP) Gene
in Golden Pompano Trachinotus ovatus
Larvae

Haijun Wei, Shengjie Zhou, and Mingjun Fu

Abstract The liver fatty acid-binding protein (L-FABP) is a 14-kDa cytoplasmic
protein that has the function of binding long-chain fatty acids with high affinity.
L-FABP cDNA was 604 bp in golden pompano, and its expression level varies from
ages and tissues. Temperature and nutrition can significantly regulate the expression
level of L-FABP in Trachinotus ovatus. On 12 and 18 days post hatch, the maximum
expression appeared in fish larvae at 29 �C. The maximum expression of L-FABP
was observed in fish fed with Artemia nauplii enriched with Algamac 3080, and the
minimum expression was observed in fish fed with Artemia nauplii enriched with
Nannochloropsis. This chapter addresses the expression of the L-FABP gene in
Trachinotus ovatus larvae under different nutritional and environmental conditions.
This study suggests that L-FABP can be used as a potential indicator to evaluate the
digestive function of fish larvae during early development.
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13.1 Introduction

The fatty acid-binding proteins (FABPs) belong to a multigene family with
14–16 kDa molecular mass, which could combine with fatty acids or other organic
dissolved substances in eukaryotic organisms (Borchers et al. 1989, 1997; Kanda
et al. 1989; Alvite et al. 2008). The length of FABPs was 126–137 amino acids, and
it varies from species to species (Pelsers et al. 2005; Chen and Shi 2009). FABPs can
protect cells from the cytotoxic effects of free fatty acids, target specific metabolic
pathways, mediate the transport of free fatty acids, modify lipid metabolism
enzymes, and participate in fatty acid signaling in the nucleus (Besnard et al.
2002; Storch and McDermott 2009; Lowe et al. 1987). According to the physiolog-
ical characteristics of different tissues, different types of FABP fulfilled the specific
functions (Banaszak et al. 1994; Veerkamp et al. 1991, 1993); therefore, FABPs
have been named after the first mammalian tissue from which they were isolated, for
instance, heart, adipose, myelin, intestine, and liver tissue.
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Veerkamp and Maatman (1995) pointed out that a 14 kDa cytoplasmic protein,
liver FABP (L-FABP), could bind long-chain fatty acids with high affinity. The
complete primary structures of L-FABPs have been determined in some
nonmammalian vertebrates, such as catfish, frogs, chick, and shark (Di Pietro et al.
1996; Schleicher and Santome 1996; Baba et al. 1999; Cecilian et al. 1994;
Medzihradszky et al. 1992). Furthermore, mammalian L-FABPs, a small cytosolic
protein in many tissues including kidney, liver, and small intestine, play an impor-
tant character in intracellular fatty acid metabolism and trafficking (Her et al. 2003).

Due to rapid growth, strong suitability, and adaptability, Trachinotus ovatus has
become a suitable species for culture (Ma et al. 2014). According to Storch and
McDermott (2009), L-FABP can intervene the transport of free fatty acids to target
specific metabolic pathways, and it can improve fingerling quality and our knowl-
edge of the nutrition requirement and digestive ontogeny in fish larvae (Ma et al.
2012). Consequently, this chapter aims to discuss the L-FABP expression during the
development in the first 18 DPH of golden pompano T. ovatus and the effects of
temperature and nutritional manipulation on L-FABP gene expression. Such infor-
mation will improve our understanding of the digestive organs of T. ovatus and
provide potential indicators to evaluate digestive function during early development
of fish larvae.

13.2 Cloning and Sequencing of L-FABP Gene cDNA

The Primer 5.0 (Premier Biosoft International, Palo Alto, CA, USA) was used for
designing the gene cloning primers (Table 13.1) based on the unpublished T. ovatus
transcriptome sequences in our lab. The full length of L-FABP cDNA (GenBank
accession No. MF034872) from T. ovatus was 604 bp, including a UTR of 154 bp, a
30-UTR of 69 bp, and a 281 bp ORF encoding a 126 amino acids polypeptide with a



point of 8.73 theoretical isoelectric, and a weight 14.06 kDa predicted molecule
(Fig. 13.1). The deduced protein sequence has the characteristics of cytoplasmic
fatty acid-binding protein, as shown in the multiple sequence alignment, and this
domain was found in all detected sequences (Fig. 13.2). Multiple sequence align-
ments showed that the L-FABP of T. ovatus was highly identical with other known
orthologs (Fig. 13.2). The L-FABP sequence of T. ovatus ginseng is 76.61%
identical to zebra fish liver bile acid-binding protein (PDB ID: 2qo4). Then, there
are ten antiparallel β-sheets forming a hydrophobic pocket.
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Table 13.1 Sequences of primers (Zhou et al. 2019)

Primers Sequence (50–30) Amplicon sizes (bp)

EF-1α-qF CCCCTTGGTCGTTTTGCC 101

EF-1α-qR GCCTTGGTTGTCTTTCCGCTA

L-FABP-F ATTGCGATGGGACCCC 539

L-FABP-R TTAACTTCACTGCCAAGTT

L-FABP-qF CAAGGACATCAAGCCAATTACTG 100

L-FABP-qR AATGGTAAAGGAATTGGTCACAG

Fig. 13.1 Nucleotide sequence and deduced amino acid of L-FABP gene in T. ovatus (Zhou et al.
2019)

Table 13.2 shows the multiple sequence alignment of some known L-FABP
family with the deduced amino acid sequences of L-FABP genes. The predicted
amino acid sequence of L-FABP genes from T. ovatus had high identity and
similarity with Epinephelus coioides (95.2% and 97.6%, ADG29164.1) and had
different similarity (62.2–98.4%) and identity (40.9–84.1%) with other species
(Table 13.2). Similar to the FABP of other species, the L-FABP in golden pompano
can actively participate in the transport of fatty acids and other fat-soluble substances



– –
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Fig. 13.2 Aligned of L-FABP with other known homologous H-FABP amino acid sequences in
T. ovatus (Zhou et al. 2019)

Table 13.2 Multiple sequence alignment of L-FABP genes in golden pompano (Zhou et al. 2019)

Species Accession NO. AA Similarity (%) Identity (%)

Trachinotus ovatus Present study 126

Epinephelus coioides ADG29164.1 126 97.6 95.2

Oryzias latipes XP_004078356.1 126 98.4 84.1

Cyprinus carpio ACA64701.1 126 92.1 80.2

Danio rerio NP_694492.1 126 92.9 76.2

Gallus gallus NP_989965.1 126 87.3 70.6

Rattus norvegicus NP_036688.1 127 62.2 40.9

Mus musculus NP_059095.1 127 62.2 41.7

Homo sapiens NP_001434.1 127 63.8 40.9



in cells, assigning fatty acids to different metabolic pathways (Hsu and Storch 1996;
Andre et al. 2000; Venold et al. 2013; Storch and Corsico 2008).
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13.3 Expression of L-FABP Genes in T. ovatus

On 18 DPH, the expression level of T. ovatus L-FABP gene in the heart, muscle,
stomach, intestine, eye, spleen, head kidney, gill, and brain was similar and signif-
icantly lower than that in the liver (P < 0.01, Fig. 13.3). The expression level of
L-FABP gene has been observed from the embryo stage to adult stage in zebra fish
(Her et al. 2003). The study is rare on the expression level of L-FABP gene during
early life of commercially cultured larval fish. During the embryogenesis of chicks
and Japanese quails, a small amount of L-FABP mRNA is identified in the liver and
intestinal tissues (Murai et al. 2009). The L-FABP gene expression level was low at
hatching, but it continued to increase significantly from 0 DPH to 4 DPH (Fig. 13.3).
The expression of L-FABP rapidly raised starting from 4 DPH and reached a high
level and remained at a stable level until 18 DPH when the experiment was complete.
Such expression pattern suggests that the T. ovatus L-FABP gene in larvae expressed
before the digestive tract developed, as the digestive system of T. ovatus expressed
before the development of the digestive tract, as the digestive system was immature
at hatch, and a mature digestive system emerged around 15 DPH (Ma et al. 2014).
Additionally, the upregulation of L-FABP expression may be connected with the
uptake of dietary fatty acids after a fully mature digestive tract developed in
T. ovatus larvae (Ma et al. 2014).

Fig. 13.3 Tissue and ontogenetic expression of L-FABP in T. ovatus larvae (Zhou et al. 2019)
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Fig. 13.4 Effects of temperature and nutrient enhancement on the expression of L-FABP gene in
T. ovatus larvae (Zhou et al. 2019)

13.4 Temperature and Nutrient Enhancement Regulates
the Expression of L-FABP Genes

Although genetic factors can control fish growth, fish development is also regulated
by environmental parameters. As an essential environmental factor, the temperature
can cause significant impact in fish metabolism and feeding activity (Ma et al. 2014),
and water temperature can significantly affect the digestive function of fish larvae
(Liu et al. 2017; Hevrøy et al. 2012). Fatty acid metabolism and fatty acid compo-
sition of fish can be regulated by temperature (Kemp and Smith 1970; Skalli et al.
2006; Farkas et al. 1980), but it is not clear whether temperature could impact the
expression level of L-FABP gene in the early developmental stage of larval fish. In
golden pompano, the expression level of the L-FABP gene has significant difference
in different water temperatures on 12 and 18 DPH (Fig. 13.4). Compared to 12 DPH,
a higher expression level of the L-FABP gene was noticed at 18 DPH, which may
reveal the developmental process of the digestive tract in fish larvae, as the digestive
system of T. ovatus seems to be more functional at 18 DPH (Ma et al. 2014).

FABP can affect gene regulation and activation of peroxisome proliferator-
activated receptors, leading to the decline of the expression of lipid-related genes
(Tan et al. 2002; Lawrence et al. 2000). Stimulation is not always the primary
determinant as it may only stimulate the expression of the L-FABP gene slightly
(Atsushi et al. 2009). In addition, it may be caused by the start of first feeding after
yolk absorption, and the L-FABP gene expression level did not alter after incubation
(Atsushi et al. 2009). In golden pompano, the L-FABP gene expression level had
significant difference in different nutritional enhancement. The highest expression
level of the L-FABP gene was observed in the Algamac 3080 treatment group, while
the lowest expression level was found in the Nannochloropsis group (Fig. 13.4).
This expression may have a parabolic relationship with the diet total saturated fatty



acid content. In the Algamac 3080 group, the high level of diet fatty acid content
may facilitate the expression of the L-FABP gene in T. ovatus (Yang et al. 2015).
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13.5 Conclusion

The expression of L-FABP gene in T. ovatus was significantly affected by temper-
ature and nutrient treatments. The tissue-dependent and time-dependent expressions
of the L-FABP gene in larval fish are essential for understanding the ontogeny and
growth of fish during their early stage. The monitoring of L-FABP gene expressions
in larval T. ovatusmay serve as an effective indicator to assess the response of fish to
the change of nutritional and environmental conditions during fish early
development.
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